Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From autocatalysis to survival of the fittest in self-reproducing lipid systems

Abstract

Studying autocatalysis — in which molecules catalyse their own formation — might help to explain the emergence of chemical systems that exhibit traits normally associated with biology. When coupled to other processes, autocatalysis can lead to complex systems-level behaviour in apparently simple mixtures. Lipids are an important class of chemicals that appear simple in isolation, but collectively show complex supramolecular and mesoscale dynamics. Here we discuss autocatalytic lipids as a source of extraordinary behaviour such as primitive chemical evolution, chemotaxis, temporally controllable materials and even as supramolecular catalysts for continuous synthesis. We survey the literature since the first examples of lipid autocatalysis and highlight state-of-the-art synthetic systems that emulate life, displaying behaviour such as metabolism and homeostasis, with special consideration for generating structural complexity and out-of-equilibrium models of life. Autocatalytic lipid systems have enormous potential for building complexity from simple components, and connections between physical effects and molecular reactivity are only just beginning to be discovered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Defining autocatalytic reactions.
Fig. 2: Autopoietic systems reported by Luisi and co-workers based on micelle and vesicle compartments.
Fig. 3: Bond-forming chemistry enables more complex autocatalytic systems.
Fig. 4: Irreversible bond formation in physically autocatalytic systems.
Fig. 5: Thermodynamics and kinetics of autocatalytic reactions.
Fig. 6: Self-reproduction based on alkene metathesis.
Fig. 7: Self-reproducing lipids held out of equilibrium by chemical fuel.
Fig. 8: Selection in systems of self-reproducing disulfide lipids.
Fig. 9: Competition between out-of-equilibrium self-reproducing micelles and vesicles.
Fig. 10: Moving beyond self-reproduction/replication.

Similar content being viewed by others

References

  1. Luisi, P. L. About various definitions of life. Orig. Life Evol. Biosph. 28, 613–622 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Varela, F. G., Maturana, H. R. & Uribe, R. Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5, 187–196 (1974).

    Article  CAS  Google Scholar 

  3. Szostak, J. W. Attempts to define life do not help to understand the origin of life. J. Biomol. Struct. Dyn. 29, 599–600 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cornish-Bowden, A. & Cárdenas, M. L. Contrasting theories of life: historical context, current theories. In search of an ideal theory. Biosystems 188, 104063 (2020).

    Article  PubMed  Google Scholar 

  5. Benner, S. A. & Sismour, A. M. Synthetic biology. Nat. Rev. Genet. 6, 533–543 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, A. P. & Fletcher, D. A. Biology under construction: in vitro reconstitution of cellular function. Nat. Rev. Mol. Cell Biol. 10, 644–650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miller, S. L. A production of amino acids under possible primitive earth conditions. Science 117, 528–529 (1953).

    Article  CAS  PubMed  Google Scholar 

  10. Mann, S. The origins of life: old problems, new chemistries. Angew. Chem. Int. Ed. 52, 155–162 (2013).

    Article  CAS  Google Scholar 

  11. Peters, J. W. & Williams, L. D. The origin of life: look up and look down. Astrobiology 12, 1087–1092 (2012).

    Article  PubMed  Google Scholar 

  12. Walde, P. Surfactant assemblies and their various possible roles for the origin(s) of life. Orig. Life Evol. Biosph. 36, 109–150 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Luisi, P. L., Walde, P. & Oberholzer, T. Lipid vesicles as possible intermediates in the origin of life. Curr. Opin. Colloid Interface Sci. 4, 33–39 (1999).

    Article  CAS  Google Scholar 

  14. Monnard, P.-A. & Deamer, D. W. Membrane self-assembly processes: steps toward the first cellular life. Anat. Rec. 268, 196–207 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Segré, D., Ben-Eli, D., Deamer, D. W. & Lancet, D. The lipid world. Orig. Life Evol. Biosph. 31, 119–145 (2001).

    Article  PubMed  Google Scholar 

  16. Kahana, A., Maslov, S. & Lancet, D. Dynamic lipid aptamers: non-polymeric chemical path to early life. Chem. Soc. Rev. 50, 11741–11746 (2021). Discussion on the various roles of self-assembling aggregates in the origin of life.

    Article  CAS  PubMed  Google Scholar 

  17. Hanopolskyi, A. I., Smaliak, V. A., Novichkov, A. I. & Semenov, S. N. Autocatalysis: kinetics, mechanisms and design. ChemSystChem 3, e2000026 (2021).

    Article  CAS  Google Scholar 

  18. Clixby, G. & Twyman, L. Self-replicating systems. Org. Biomol. Chem. 14, 4170–4184 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Adamski, P. et al. From self-replication to replicator systems en route to de novo life. Nat. Rev. Chem. 4, 386–403 (2020).

    Article  PubMed  Google Scholar 

  20. Vidonne, A. & Philp, D. Making molecules make themselves — the chemistry of artificial replicators. Eur. J. Org. Chem. 2009, 593–610 (2009).

    Article  Google Scholar 

  21. Bissette, A. J. & Fletcher, S. P. Mechanisms of autocatalysis. Angew. Chem. Int. Ed. 52, 12800–12826 (2013). Background on the mechanisms by which molecules can make themselves, including template replication.

    Article  CAS  Google Scholar 

  22. Blackmond, D. G. An examination of the role of autocatalytic cycles in the chemistry of proposed primordial reactions. Angew. Chem. Int. Ed. 48, 386–390 (2009).

    Article  CAS  Google Scholar 

  23. Ruiz-Mirazo, K., Briones, C. & De La Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Sun, X., Reuther, J. F., Phillips, S. T. & Anslyn, E. V. Coupling activity-based detection, target amplification, colorimetric and fluorometric signal amplification, for quantitative chemosensing of fluoride generated from nerve agents. Chem. Eur. J. 23, 3903–3909 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Cohen, I. The bromination of acetone in organic solvents. J. Am. Chem. Soc. 52, 2827–2835 (1930).

    Article  CAS  Google Scholar 

  26. Breslow, R. On the mechanism of the formose reaction. Tetrahedron Lett. 1, 22–26 (1959).

    Article  Google Scholar 

  27. Butlerow, A. Formation synthétique d’une substance sucrée. C. R. Acad. Sci. 53, 145–147 (1861).

    Google Scholar 

  28. Orgel, L. E. Self-organizing biochemical cycles. Proc. Natl Acad. Sci. USA 97, 12503–12507 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Muchowska, K. B., Varma, S. J. & Moran, J. Nonenzymatic metabolic reactions and life’s origins. Chem. Rev. 120, 7708–7744 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Gyorgyi, L., Turanyi, T. & Field, R. J. Mechanistic details of the oscillatory Belousov–Zhabotinskii reaction. J. Phys. Chem. A 94, 7162–7170 (1990).

    CAS  Google Scholar 

  31. Epstein, I. R. & Showalter, K. Nonlinear chemical dynamics:  oscillations, patterns, and chaos. J. Phys. Chem. A 100, 13132–13147 (1996).

    CAS  Google Scholar 

  32. Hudson, J. L. & Mankin, J. C. Chaos in the Belousov–Zhabotinskii reaction. J. Chem. Phys. 74, 6171–6177 (1981).

    Article  CAS  Google Scholar 

  33. Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K. & Ghadiri, M. R. A self-replicating peptide. Nature 382, 525–528 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, B. & Sutherland, I. O. Self-replication in a Diels–Alder reaction. Chem. Commun. https://doi.org/10.1039/A701573I (1997).

  35. Tjivikua, T., Ballester, P. & Rebek, J. Self-replicating system. J. Am. Chem. Soc. 112, 1249–1250 (1990).

    Article  CAS  Google Scholar 

  36. Buhse, T., Lavabre, D., Nagarajan, R. & Micheau, J. C. Origin of autocatalysis in the biphasic alkaline hydrolysis of C-4 to C-8 ethyl alkanoates. J. Phys. Chem. A 102, 10552–10559 (1998).

    Article  CAS  Google Scholar 

  37. Chen, M., Jin, Y., Li, J., Zhang, Y. & Li, X. Mechanism and kinetic model for autocatalysis in liquid–liquid system: oxidation of dibutyl sulfide with aqueous hydrogen peroxide. Ind. Eng. Chem. Res. 56, 7675–7684 (2017).

    Article  CAS  Google Scholar 

  38. Glatzer, H. J. & Doraiswamy, L. K. Rate enhancements due to autocatalysis and heterogenization in phase transfer catalysis: a comparative study. Chem. Eng. Sci. 55, 5149–5160 (2000).

    Article  CAS  Google Scholar 

  39. Chen, X. & Micheau, J. C. Hydrotrope-induced autocatalysis in the biphasic alkaline hydrolysis of aromatic esters. J. Colloid Interface Sci. 249, 172–179 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Bachmann, P. A., Walde, P., Luisi, P. L. & Lang, J. Self-replicating reverse micelles and chemical autopoiesis. J. Am. Chem. Soc. 112, 8200–8201 (1990). The first experimental example of autopoietic micelles as a model of life.

    Article  CAS  Google Scholar 

  41. Maturana, H. R. & Varela, F. J. Autopoiesis and Cognition: The Realization of the Living (D. Reidel Publishing Co., 1980).

  42. Fleischaker, G. R. Origins of life: an operational definition. Orig. Life Evol. Biosph. 20, 127–137 (1990).

    Article  Google Scholar 

  43. Dzieciol, A. J. & Mann, S. Designs for life: protocell models in the laboratory. Chem. Soc. Rev. 41, 79–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Luisi, P. L. & Varela, F. J. Self-replicating micelles — a chemical version of a minimal autopoietic system. Orig. Life Evol. Biosph. 19, 633–643 (1989).

    Article  CAS  Google Scholar 

  45. Bachmann, P. A., Walde, P., Luisi, P. L. & Lang, J. Self-replicating micelles: aqueous micelles and enzymatically driven reactions in reverse micelles. J. Am. Chem. Soc. 113, 8204–8209 (1991).

    Article  CAS  Google Scholar 

  46. Bachmann, P. A., Luisi, P. L. & Lang, J. Autocatalytic self-replicating micelles as models for prebiotic structures. Nature 357, 57–59 (1992).

    Article  CAS  Google Scholar 

  47. Walde, P., Wick, R., Fresta, M., Mangone, A. & Luisi, P. L. Autopoietic self-reproduction of fatty acid vesicles. J. Am. Chem. Soc. 116, 11649–11654 (1994).

    Article  CAS  Google Scholar 

  48. Wick, R., Walde, P. & Luisi, P. L. Light microscopic investigations of the autocatalytic self-reproduction of giant vesicles. J. Am. Chem. Soc. 117, 1435–1436 (1995).

    Article  CAS  Google Scholar 

  49. Kust, P. R. & Rathman, J. F. Synthesis of surfactants by micellar autocatalysis: N,N-dimethyldodecylamine N-oxide. Langmuir 11, 3007–3012 (1995).

    Article  CAS  Google Scholar 

  50. Bissette, A. J. & Fletcher, S. P. Novel applications of physical autocatalysis. Orig. Life Evol. Biosph. 45, 21–30 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Bissette, A. J., Odell, B. & Fletcher, S. P. Physical autocatalysis driven by a bond-forming thiol–ene reaction. Nat. Commun. 5, 4607 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Takakura, K., Toyota, T. & Sugawara, T. A novel system of self-reproducing giant vesicles. J. Am. Chem. Soc. 125, 8134–8140 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Kurihara, K. et al. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat. Chem. 3, 775–781 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Priest, L., Peters, J. S. & Kukura, P. Scattering-based light microscopy: from metal nanoparticles to single proteins. Chem. Rev. 121, 11937–11970 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Young, G. & Kukura, P. Interferometric scattering microscopy. Annu. Rev. Phys. Chem. 70, 301–322 (2019). These two articles provide background on iSCAT technique and the super-resolution imaging of life-like systems.

    Article  CAS  PubMed  Google Scholar 

  56. Ortega-Arroyo, J., Bissette, A. J., Kukura, P. & Fletcher, S. P. Visualization of the spontaneous emergence of a complex, dynamic, and autocatalytic system. Proc. Natl Acad. Sci. USA 113, 11122–11126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hardy, M. D. et al. Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth. Proc. Natl Acad. Sci. USA 112, 8187–8192 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Budin, I. & Devaraj, N. K. Membrane assembly driven by a biomimetic coupling reaction. J. Am. Chem. Soc. 134, 751–753 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Post, E. A. J., Bissette, A. J. & Fletcher, S. P. Self-reproducing micelles coupled to a secondary catalyst. Chem. Commun. 54, 8777–8780 (2018).

    Article  CAS  Google Scholar 

  60. Post, E. A. J. & Fletcher, S. P. Controlling the kinetics of self-reproducing micelles by catalyst compartmentalization in a biphasic system. J. Org. Chem. 84, 2741–2755 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grzybowski, B. A., Fitzner, K., Paczesny, J. & Granick, S. From dynamic self-assembly to networked chemical systems. Chem. Soc. Rev. 46, 5647–5678 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. van Esch, J. H., Klajn, R. & Otto, S. Chemical systems out of equilibrium. Chem. Soc. Rev. 46, 5474–5475 (2017).

    Article  PubMed  Google Scholar 

  63. Pascal, R., Pross, A. & Sutherland, J. D. Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics. Open. Biol. 3, 130156 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lerch, M. M., Grinthal, A. & Aizenberg, J. Viewpoint: homeostasis as inspiration — toward interactive materials. Adv. Mater. 32, 1905554 (2020).

    Article  CAS  Google Scholar 

  65. Merindol, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Boekhoven, J. et al. Dissipative self-assembly of a molecular gelator by using a chemical fuel. Angew. Chem. Int. Ed. 49, 4825–4828 (2010).

    Article  CAS  Google Scholar 

  67. De, S. & Klajn, R. Dissipative self-assembly driven by the consumption of chemical fuels. Adv. Mater. 30, 1706750 (2018).

    Article  Google Scholar 

  68. van Rossum, S. A. P., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).

    Article  PubMed  Google Scholar 

  69. Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Amano, S., Borsley, S., Leigh, D. A. & Sun, Z. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nat. Nanotechnol. 16, 1057–1067 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Rieß, B., Grötsch, R. K. & Boekhoven, J. The design of dissipative molecular assemblies driven by chemical reaction cycles. Chem 6, 552–578 (2020).

    Article  Google Scholar 

  72. Zepik, H. H., Blöchliger, E. & Luisi, P. L. A chemical model of homeostasis. Angew. Chem. Int. Ed. 40, 199–202 (2001). An important example of an out-of-equilibrium self-reproducing system.

    Article  CAS  Google Scholar 

  73. Colomer, I., Morrow, S. M. & Fletcher, S. P. A transient self-assembling self-replicator. Nat. Commun. 9, 2239 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Morrow, S. M., Colomer, I. & Fletcher, S. P. A chemically fuelled self-replicator. Nat. Commun. 10, 1011 (2019). An important example of an out-of-equilibrium self-reproducing system.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Afrose, S. P., Ghosh, C. & Das, D. Substrate induced generation of transient self-assembled catalytic systems. Chem. Rev. 12, 14674–14685 (2021).

    CAS  Google Scholar 

  76. Lutz, J. F. Can Life emerge from synthetic polymers? Isr. J. Chem. 60, 151–159 (2020).

    Article  CAS  Google Scholar 

  77. Lebedeva, M. A., Palmieri, E., Kukura, P. & Fletcher, S. P. Emergence and rearrangement of dynamic supramolecular aggregates visualized by interferometric scattering microscopy. ACS Nano 14, 11160–11168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Maestro, M. A kinetic model for an autopoietic synthesis of micelles. Mol. Eng. 6, 391–403 (1996).

    Article  CAS  Google Scholar 

  79. Mavelli, F. & Luisi, P. L. Autopoietic self-reproducing vesicles: a simplified kinetic model. J. Phys. Chem. A 100, 16600–16607 (1996).

    CAS  Google Scholar 

  80. Buhse, T., Nagarajan, R., Lavabre, D. & Micheau, J. C. Phase-transfer model for the dynamics of ‘micellar autocatalysis’. J. Phys. Chem. A 101, 3910–3917 (1997).

    Article  CAS  Google Scholar 

  81. Engwerda, A. H. J. et al. Coupled metabolic cycles allow out‐of‐equilibrium autopoietic vesicle replication. Angew. Chem. Int. Ed. 59, 20361–20366 (2020).

    Article  CAS  Google Scholar 

  82. Colomer, I., Borissov, A. & Fletcher, S. P. Selection from a pool of self-assembling lipid replicators. Nat. Commun. 11, 176 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Myrgorodska, I., Colomer, I. & Fletcher, S. P. Oligomerization driven by phase separation. ChemSystChem 2, e1900059 (2020).

    Article  CAS  Google Scholar 

  84. Howlett, M. G., Scanes, R. J. H. & Fletcher, S. P. Selection between competing self-reproducing lipids: succession and dynamic activation. JACS Au 1, 1355–1361 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Post, E. A. J. & Fletcher, S. P. Dissipative self-assembly, competition and inhibition in a self-reproducing protocell model. Chem. Sci. 11, 9434–9442 (2020). These two articles provide key examples of self-reproducing systems that exhibit surprising complexity and competition between species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Feynman, R. P. There’s plenty of room at the bottom. Eng. Sci. 22, 22–26 (1960).

    Google Scholar 

  87. Drexler, K. E. Engines of Creation: The Coming Era of Nanotechnology (Doubleday, 1986).

  88. Corra, S., Curcio, M., Baroncini, M., Silvi, S. & Credi, A. Photoactivated artificial molecular machines that can perform tasks. Adv. Mater. 32, 1906064 (2020).

    Article  CAS  Google Scholar 

  89. van Dijk, L. et al. Molecular machines for catalysis. Nat. Rev. Chem. 2, 0117 (2018).

    Article  Google Scholar 

  90. Engwerda, A. H. J. & Fletcher, S. P. A molecular assembler that produces polymers. Nat. Commun. 11, 4156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Babu, D. et al. Acceleration of lipid reproduction by emergence of microscopic motion. Nat. Commun. 12, 2959 (2021). Discussion of the roles of self-reproducing lipids beyond autocatalysis and the origin of life.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Izri, Z., Van Der Linden, M. N., Michelin, S. & Dauchot, O. Self-propulsion of pure water droplets by spontaneous Marangoni-stress-driven motion. Phys. Rev. Lett. 113, 248302 (2014).

    Article  PubMed  Google Scholar 

  93. Schmitt, M. & Stark, H. Marangoni flow at droplet interfaces: three-dimensional solution and applications. Phys. Fluids 28, 012106 (2016).

    Article  Google Scholar 

  94. Schwarz, P. S., Tebcharani, L., Heger, J. E., Müller-Buschbaum, P. & Boekhoven, J. Chemically fueled materials with a self-immolative mechanism: transient materials with a fast on/off response. Chem. Sci. 12, 9969–9976 (2021). Discussion of the roles of self-reproducing lipids beyond autocatalysis and the origin of life.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rieß, B. et al. Dissipative assemblies that inhibit their deactivation. Soft Matter 14, 4852–4859 (2018).

    Article  PubMed  Google Scholar 

  96. Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wanzke, C., Tena-Solsona, M., Rieß, B., Tebcharani, L. & Boekhoven, J. Active droplets in a hydrogel release drugs with a constant and tunable rate. Mater. Horiz. 7, 1397–1403 (2020).

    Article  CAS  Google Scholar 

  98. Chizmadzhew, Y. A., Maestro, M. & Mavelli, F. A simplified kinetic model for an autopoietic synthesis of micelles. Chem. Phys. Lett. 226, 56–62 (1994).

    Article  CAS  Google Scholar 

  99. Billingham, J. & Coveney, P. V. Kinetics of self-replicating micelles. J. Chem. Soc. Faraday Trans. 90, 1953 (1994).

    Article  CAS  Google Scholar 

  100. Coveney, P. V. & Wattis, J. A. D. Becker–Döring model of self-reproducing vesicles. J. Chem. Soc. Faraday Trans. 94, 233–246 (1998).

    Article  CAS  Google Scholar 

  101. Nguyen, R., Allouche, L., Buhler, E. & Giuseppone, N. Dynamic combinatorial evolution within self-replicating supramolecular assemblies. Angew. Chem. Int. Ed. 48, 1093–1096 (2009).

    Article  CAS  Google Scholar 

  102. Morrow, S. M., Bissette, A. J. & Fletcher, S. P. Potential for minimal self-replicating systems in a dynamic combinatorial library of equilibrating imines. Tetrahedron 73, 5005–5010 (2017).

    Article  CAS  Google Scholar 

  103. Yang, S. et al. Chemical fueling enables molecular complexification of self-replicators. Angew. Chem. Int. Ed. 60, 11344–11349 (2021).

    Article  CAS  Google Scholar 

  104. Bonfio, C. et al. Length-selective synthesis of acylglycerol-phosphates through energy-dissipative cycling. J. Am. Chem. Soc. 141, 3934–3939 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tena-Solsona, M., Wanzke, C., Riess, B., Bausch, A. R. & Boekhoven, J. Self-selection of dissipative assemblies driven by primitive chemical reaction networks. Nat. Commun. 9, 2044 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Howlett, M. G., Engwerda, A. H. J., Scanes, R. J. H. & Fletcher, S. P. An autonomously oscillating supramolecular self-replicator. Nat. Chem. 14, 805–810 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Eliel, E. L. Infelicitous stereochemical nomenclature. Chirality 9, 428–430 (1997).

    Article  CAS  Google Scholar 

  108. Eliel, E. L., Wilen, S. H. & Mander, L. N. Stereochemistry of Organic Compounds (Wiley, 1994).

  109. Fleischaker, G. R. Self-Production of Supramolecular Structures: From Synthetic Structures to Models of Minimal Living Systems (eds Fleischaker, G. R., Colonna, S. & Luisi, P. L.) 33–41 (Springer Netherlands, 1994).

  110. Ruiz-Mirazo, K., Umerez, J. & Moreno, A. Enabling conditions for ‘open-ended evolution’. Biol. Philos. 23, 67–85 (2008).

    Article  Google Scholar 

  111. Dyson, F. Origins of Life 2nd edn (Cambridge Univ. Press, 1999).

  112. Szathmáry, E. The origin of replicators and reproducers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1761–1776 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Griesemer, J. The units of evolutionary transition. Selection 1, 67–80 (2001).

    Article  Google Scholar 

  114. Wintner, E. A., Conn, M. M. & Rebek, J. Jr. Studies in molecular replication. Acc. Chem. Res. 27, 198–203 (1994).

    Article  CAS  Google Scholar 

  115. “Replication”. Merriam-Webster https://www.merriam-webster.com/dictionary/replication (accessed 23 November 2022).

  116. Viruses. National Geographic https://education.nationalgeographic.org/resource/viruses (accessed 23 November 2022).

  117. Von Neumann, J. & Burks, A. W. Theory of Self-reproducing Automata (Univ. of Illinois Press, 1966).

  118. Moore, E. F. Artificial living plants. Sci. Am. 195, 118–126 (1956).

    Article  Google Scholar 

  119. Orgel, L. E. Molecular replication. Nature 358, 203–209 (1992).

    Article  CAS  PubMed  Google Scholar 

  120. Walde, P., Umakoshi, H., Stano, P. & Mavelli, F. Emergent properties arising from the assembly of amphiphiles. Artificial vesicle membranes as reaction promoters and regulators. Chem. Commun. 50, 10177–10197 (2014).

    Article  CAS  Google Scholar 

  121. Bell, T. N., Feng, K., Calvin, G., Van Winkle, D. H. & Lenhert, S. Organic composomes as supramolecular aptamers. ACS Omega 5, 27393–27400 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kawasaki, T. et al. Asymmetric autocatalysis triggered by carbon isotope (13C/12C) Chirality. Science 324, 492–495 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Szathmáry, E. & Maynard Smith, J. From replicators to reproducers: the first major transitions leading to life. J. Theor. Biol. 187, 555–571 (1997).

    Article  PubMed  Google Scholar 

  124. Donau, C. et al. Active coacervate droplets as a model for membraneless organelles and protocells. Nat. Commun. 11, 5167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Albertsen, A. N., Szymański, J. K. & Pérez-Mercader, J. Emergent properties of giant vesicles formed by a polymerization-induced self-assembly (PISA) reaction. Sci. Rep. 7, 41534 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cheng, G. & Perez-Mercader, J. Dissipative self-assembly of dynamic multicompartmentalized microsystems with light-responsive behaviors. Chem 6, 1160–1171 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to L. Cunningham and A. Engwerda for helpful discussions and comments on the manuscript.

Funding

The authors thank the ERC (Consolidator Grant, Autocat, 681491) and the EPSRC Centre for Doctoral Training in Synthesis for Biology and Medicine (EP/L015838/1) for funding, generously supported by AstraZeneca, Diamond Light Source, Defence Science and Technology Laboratory, Evotec, GlaxoSmithKline, Janssen, Novartis, Pfizer, Syngenta, Takeda, UCB and Vertex.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the manuscript.

Corresponding author

Correspondence to Stephen P. Fletcher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howlett, M.G., Fletcher, S.P. From autocatalysis to survival of the fittest in self-reproducing lipid systems. Nat Rev Chem 7, 673–691 (2023). https://doi.org/10.1038/s41570-023-00524-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00524-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing