Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tailoring passivators for highly efficient and stable perovskite solar cells

Abstract

There is an ongoing global effort to advance emerging perovskite solar cells (PSCs), and many of these endeavours are focused on developing new compositions, processing methods and passivation strategies. In particular, the use of passivators to reduce the defects in perovskite materials has been demonstrated to be an effective approach for enhancing the photovoltaic performance and long-term stability of PSCs. Organic passivators have received increasing attention since the late 2010s as their structures and properties can readily be modified. First, this Review discusses the main types of defect in perovskite materials and reviews their properties. We examine the deleterious impact of defects on device efficiency and stability and highlight how defects facilitate extrinsic degradation pathways. Second, the proven use of different passivator designs to mitigate these negative effects is discussed, and possible defect passivation mechanisms are presented. Finally, we propose four specific directions for future research, which, in our opinion, will be crucial for unlocking the full potential of PSCs using the concept of defect passivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Introduction to metal halide perovskites and the concept of passivation.
Fig. 2: Point and extended defects in metal halide perovskites.
Fig. 3: Defect passivation mechanisms in perovskite materials.
Fig. 4: Molecular structures of representative examples of organic small molecules used as passivators.
Fig. 5: Molecular structures of representative examples of organic ammonium salts used as passivators.
Fig. 6: Molecular structures of representative polymeric passivators.

Similar content being viewed by others

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). The first study of halide perovskites in solar cells.

    Article  CAS  PubMed  Google Scholar 

  2. Rühle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016).

    Article  Google Scholar 

  3. Köster, U. Crystallization of amorphous silicon films. Phys. Status Sol. A 48, 313–321 (1978).

    Article  Google Scholar 

  4. Moore, D. T. et al. Crystallization kinetics of organic–inorganic trihalide perovskites and the role of the lead anion in crystal growth. J. Am. Chem. Soc. 137, 2350–2358 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Xiao, Z., Zhou, Y., Hosono, H., Kamiya, T. & Padture, N. P. Bandgap optimization of perovskite semiconductors for photovoltaic applications. Chem. Eur. J. 24, 2305–2316 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Akkerman, Q. A. et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276–10281 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Song, J. et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162–7167 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Leguy, A. M. et al. Experimental and theoretical optical properties of methylammonium lead halide perovskites. Nanoscale 8, 6317–6327 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    Article  CAS  Google Scholar 

  11. Lee, J.-W., Tan, S., Seok, S. I., Yang, Y. & Park, N.-G. Rethinking the A cation in halide perovskites. Science 375, eabj1186 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brivio, F., Butler, K. T., Walsh, A. & Van Schilfgaarde, M. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204 (2014).

    Article  Google Scholar 

  14. Grote, C., Ehrlich, B. & Berger, R. F. Tuning the near-gap electronic structure of tin–halide and lead–halide perovskites via changes in atomic layering. Phys. Rev. B 90, 205202 (2014).

    Article  Google Scholar 

  15. Umari, P., Mosconi, E. & De Angelis, F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zakutayev, A. et al. Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117–1125 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Goldschmidt, V. M. Die gesetze der krystallochemie. Naturwissenschaften 14, 477–485 (1926).

    Article  CAS  Google Scholar 

  18. Stoumpos, C. C. & Kanatzidis, M. G. The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc. Chem. Res. 48, 2791–2802 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, H., Liu, X. & Zhang, Z. M. Absorption coefficients of crystalline silicon at wavelengths from 500 nm to 1000 nm. Int. J. Thermophys. 34, 213–225 (2013).

    Article  Google Scholar 

  20. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014).

    Article  CAS  Google Scholar 

  21. Rai, M., Wong, L. H. & Etgar, L. Effect of perovskite thickness on electroluminescence and solar cell conversion efficiency. J. Phys. Chem. Lett. 11, 8189–8194 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sai, H. et al. Impact of silicon wafer thickness on photovoltaic performance of crystalline silicon heterojunction solar cells. Jpn. J. Appl. Phys. 57, 08RB10 (2018).

    Article  Google Scholar 

  23. Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nat. Photon. 9, 106–112 (2015).

    Article  CAS  Google Scholar 

  24. D’innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014).

    Article  PubMed  Google Scholar 

  25. Shaklee, K. Á. & Nahory, R. Valley-orbit splitting of free excitons? The absorption edge of Si. Phys. Rev. Lett. 24, 942 (1970).

    Article  CAS  Google Scholar 

  26. Fehrenbach, G., Schäfer, W. & Ulbrich, R. Excitonic versus plasma screening in highly excited gallium arsenide. J. Lumin. 30, 154–161 (1985).

    Article  CAS  Google Scholar 

  27. De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Article  PubMed  Google Scholar 

  28. Johnson, S. & Tiedje, T. Temperature dependence of the Urbach edge in GaAs. J. Appl. Phys. 78, 5609–5613 (1995).

    Article  CAS  Google Scholar 

  29. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Singh, S., Banappanavar, G. & Kabra, D. Correlation between charge transport length scales and dielectric relaxation time constant in hybrid halide perovskite semiconductors. ACS Energy Lett. 5, 728–735 (2020).

    Article  CAS  Google Scholar 

  32. Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015).

    Article  CAS  Google Scholar 

  33. Yin, W. J., Shi, T. & Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).

    Article  CAS  Google Scholar 

  35. Lim, J. et al. Long-range charge carrier mobility in metal halide perovskite thin-films and single crystals via transient photo-conductivity. Nat. Commun. 13, 4201 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, Y. et al. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements. Nat. Commun. 7, 12253 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Akin, S. et al. Organic ammonium halide modulators as effective strategy for enhanced perovskite photovoltaic performance. Adv. Sci. 8, 2004593 (2021).

    Article  CAS  Google Scholar 

  38. Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, B., Wang, S., Song, Y., Li, C. & Hao, F. A critical review on the moisture stability of halide perovskite films and solar cells. Chem. Eng. J. 430, 132701 (2022).

    Article  CAS  Google Scholar 

  41. Aristidou, N. et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8, 15218 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Meggiolaro, D., Mosconi, E. & De Angelis, F. Formation of surface defects dominates ion migration in lead–halide perovskites. ACS Energy Lett. 4, 779–785 (2019).

    Article  CAS  Google Scholar 

  43. Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2, 1416–1424 (2017).

    Article  CAS  Google Scholar 

  44. Yoon, S. J., Kuno, M. & Kamat, P. V. Shift happens. How halide ion defects influence photoinduced segregation in mixed halide perovskites. ACS Energy Lett. 2, 1507–1514 (2017).

    Article  CAS  Google Scholar 

  45. Sánchez, S., Pfeifer, L., Vlachopoulos, N. & Hagfeldt, A. Rapid hybrid perovskite film crystallization from solution. Chem. Soc. Rev. 50, 7108–7131 (2021).

    Article  PubMed  Google Scholar 

  46. Nie, W. et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 7, 11574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng, Y. et al. Revealing the degradation and self-healing mechanisms in perovskite solar cells by sub-bandgap external quantum efficiency spectroscopy. Adv. Mater. 33, 2006170 (2021).

    Article  CAS  Google Scholar 

  48. Siekmann, J., Ravishankar, S. & Kirchartz, T. Apparent defect densities in halide perovskite thin films and single crystals. ACS Energy Lett. 6, 3244–3251 (2021).

    Article  CAS  Google Scholar 

  49. Ayres, J. Characterization of trapping states in polycrystalline-silicon thin film transistors by deep level transient spectroscopy. J. Appl. Phys. 74, 1787–1792 (1993).

    Article  CAS  Google Scholar 

  50. Schricker, A. D., Davidson, F. M., Wiacek, R. J. & Korgel, B. A. Space charge limited currents and trap concentrations in GaAs nanowires. Nanotechnology 17, 2681 (2006).

    Article  CAS  Google Scholar 

  51. Balcioglu, A., Ahrenkiel, R. & Hasoon, F. Deep-level impurities in CdTe/CdS thin-film solar cells. J. Appl. Phys. 88, 7175–7178 (2000).

    Article  CAS  Google Scholar 

  52. Kerr, L. et al. Investigation of defect properties in Cu (In, Ga) Se2 solar cells by deep-level transient spectroscopy. Solid State Electron. 48, 1579–1586 (2004).

    Article  CAS  Google Scholar 

  53. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014). The first study on the unusual defect physics in perovskite solar cells.

    Article  Google Scholar 

  54. Meggiolaro, D. & De Angelis, F. First-principles modeling of defects in lead halide perovskites: best practices and open issues. ACS Energy Lett. 3, 2206–2222 (2018).

    Article  CAS  Google Scholar 

  55. Jin, H. et al. It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Mater. Horiz. 7, 397–410 (2020).

    Article  CAS  Google Scholar 

  56. Steirer, K. X. et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett. 1, 360–366 (2016).

    Article  CAS  Google Scholar 

  57. Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).

    Article  CAS  Google Scholar 

  58. Luo, D., Su, R., Zhang, W., Gong, Q. & Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2020).

    Article  CAS  Google Scholar 

  59. Zhang, X., Shen, J.-X., Turiansky, M. E. & Van de Walle, C. G. Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites. Nat. Mater. 20, 971–976 (2021). This study unveiled the critical but overlooked role of hydrogen vacancies in hybrid perovskites and rationalized why FA is essential for high-efficiency perovskite solar cells.

    Article  CAS  PubMed  Google Scholar 

  60. Meggiolaro, D. et al. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy Environ. Sci. 11, 702–713 (2018).

    Article  CAS  Google Scholar 

  61. Motti, S. G. et al. Defect activity in lead halide perovskites. Adv. Mater. 31, 1901183 (2019).

    Article  CAS  Google Scholar 

  62. Leijtens, T. et al. Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells. Energy Environ. Sci. 9, 3472–3481 (2016).

    Article  CAS  Google Scholar 

  63. Meggiolaro, D., Mosconi, E. & De Angelis, F. Modeling the interaction of molecular iodine with MAPbI3: a probe of lead-halide perovskites defect chemistry. ACS Energy Lett. 3, 447–451 (2018).

    Article  CAS  Google Scholar 

  64. Liu, N. & Yam, C. First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys. Chem. Chem. Phys. 20, 6800–6804 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Dunfield, S. P. et al. From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv. Energy Mater. 10, 1904054 (2020).

    Article  CAS  Google Scholar 

  66. Kang, J. & Wang, L.-W. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489–493 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Xu, P., Chen, S., Xiang, H.-J., Gong, X.-G. & Wei, S.-H. Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3. Chem. Mater. 26, 6068–6072 (2014).

    Article  CAS  Google Scholar 

  68. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Huang, Y., Yin, W.-J. & He, Y. Intrinsic point defects in inorganic cesium lead iodide perovskite CsPbI3. J. Phys. Chem. C 122, 1345–1350 (2018).

    Article  CAS  Google Scholar 

  70. Shi, T. et al. Effects of organic cations on the defect physics of tin halide perovskites. J. Mater. Chem. A 5, 15124–15129 (2017).

    Article  CAS  Google Scholar 

  71. Zhang, X., Turiansky, M. E. & Van de Walle, C. G. Correctly assessing defect tolerance in halide perovskites. J. Phys. Chem. C 124, 6022–6027 (2020).

    Article  CAS  Google Scholar 

  72. Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    Article  CAS  Google Scholar 

  73. Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S.-H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 54, 1791–1794 (2015).

    Article  CAS  Google Scholar 

  74. Yuan, Y. et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 5, 1500615 (2015).

    Article  Google Scholar 

  75. Sezen, E., Oner, S. M., Deger, C. & Yavuz, I. Defect pair formation in FAPbI3 perovskite solar cell absorbers. J. Phys. Chem. Lett. 13, 9718–9724 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).

    Article  CAS  Google Scholar 

  77. Ming, W., Yang, D., Li, T., Zhang, L. & Du, M. H. Formation and diffusion of metal impurities in perovskite solar cell material CH3NH3PbI3: implications on solar cell degradation and choice of electrode. Adv. Sci. 5, 1700662 (2018).

    Article  Google Scholar 

  78. Domanski, K. et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Poindexter, J. R. et al. High tolerance to iron contamination in lead halide perovskite solar cells. ACS Nano 11, 7101–7109 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Schmidt, J. et al. in 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) Part 2. 1–5 (IEEE, 2012).

  81. Klug, M. T. et al. Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy Environ. Sci. 10, 236–246 (2017).

    Article  CAS  Google Scholar 

  82. Yavari, M. et al. How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers. J. Mater. Chem. A 7, 23838–23853 (2019).

    Article  CAS  Google Scholar 

  83. Wu, B. et al. Discerning the surface and bulk recombination kinetics of organic–inorganic halide perovskite single crystals. Adv. Energy Mater. 6, 1600551 (2016).

    Article  Google Scholar 

  84. Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020). This study provides insight into the spatial distributions of trap states in perovskite single-crystalline and polycrystalline solar cells and proves that the interface trap densities are up to five orders of magnitude higher than the bulk trap densities.

    Article  CAS  PubMed  Google Scholar 

  85. Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells. J. Phys. Chem. Lett. 5, 2903–2909 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Lee, J.-W. et al. Solid-phase hetero epitaxial growth of α-phase formamidinium perovskite. Nat. Commun. 11, 5514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee, J.-W. et al. A bifunctional Lewis base additive for microscopic homogeneity in perovskite solar cells. Chem 3, 290–302 (2017).

    Article  CAS  Google Scholar 

  88. Heo, J. H. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 7, 486–491 (2013).

    Article  CAS  Google Scholar 

  89. Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. Surface properties of CH3NH3PbI3 for perovskite solar cells. Acc. Chem. Res. 49, 554–561 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. She, L., Liu, M. & Zhong, D. Atomic structures of CH3NH3PbI3 (001) surfaces. ACS Nano 10, 1126–1131 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Ohmann, R. et al. Real-space imaging of the atomic structure of organic–inorganic perovskite. J. Am. Chem. Soc. 137, 16049–16054 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Mirzehmet, A. et al. Surface termination of solution-processed CH3NH3PbI3 perovskite film examined using electron spectroscopies. Adv. Mater. 33, 2004981 (2021).

    Article  CAS  Google Scholar 

  93. Oner, S. et al. Surface defect formation and passivation in formamidinium lead triiodide (FAPbI3) perovskite solar cell absorbers. J. Phys. Chem. Lett. 13, 324–330 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Rakita, Y., Cohen, S. R., Kedem, N. K., Hodes, G. & Cahen, D. Mechanical properties of APbX3 (A = Cs or CH3NH3; X= I or Br) perovskite single crystals. MRS Commun. 5, 623–629 (2015).

    Article  CAS  Google Scholar 

  95. Svane, K. L. et al. How strong is the hydrogen bond in hybrid perovskites? J. Phys. Chem. Lett. 8, 6154–6159 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ambrosio, F., Meggiolaro, D., Mosconi, E. & De Angelis, F. Charge localization and trapping at surfaces in lead-iodide perovskites: the role of polarons and defects. J. Mater. Chem. A 8, 6882–6892 (2020).

    Article  CAS  Google Scholar 

  97. Uratani, H. & Yamashita, K. Charge carrier trapping at surface defects of perovskite solar cell absorbers: a first-principles study. J. Phys. Chem. Lett. 8, 742–746 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Alberti, A. et al. Pb clustering and PbI2 nanofragmentation during methylammonium lead iodide perovskite degradation. Nat. Commun. 10, 2196 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Agiorgousis, M. L., Sun, Y.-Y., Zeng, H. & Zhang, S. Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. J. Am. Chem. Soc. 136, 14570–14575 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Sadoughi, G. et al. Observation and mediation of the presence of metallic lead in organic–inorganic perovskite films. ACS Appl. Mater. Interfaces 7, 13440–13444 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Yun, J. S. et al. Benefit of grain boundaries in organic–inorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6, 875–880 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. de Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    Article  Google Scholar 

  103. An, Q. et al. Small grains as recombination hot spots in perovskite solar cells. Matter 4, 1683–1701 (2021).

    Article  CAS  Google Scholar 

  104. Yin, W.-J., Chen, H., Shi, T., Wei, S.-H. & Yan, Y. Origin of high electronic quality in structurally disordered CH3NH3PbI3 and the passivation effect of Cl and O at grain boundaries. Adv. Electron. Mater. 1, 1500044 (2015).

    Article  Google Scholar 

  105. Doherty, T. A. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Wu, X. et al. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089–2096 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Wang, L., McCleese, C., Kovalsky, A., Zhao, Y. & Burda, C. Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J. Am. Chem. Soc. 136, 12205–12208 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Edri, E. et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14, 1000–1004 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Zhao, Y.-C. et al. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light. Sci. Appl. 6, e16243 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ahn, N. et al. Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 13422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kim, G. Y. et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 17, 445–449 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Aristidou, N. et al. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem. Int. Ed. 54, 8208–8212 (2015).

    Article  CAS  Google Scholar 

  113. Pont, S. et al. Tuning CH3NH3Pb(I1−xBrx)3 perovskite oxygen stability in thin films and solar cells. J. Mater. Chem. A 5, 9553–9560 (2017).

    Article  CAS  Google Scholar 

  114. Bi, C., Zheng, X., Chen, B., Wei, H. & Huang, J. Spontaneous passivation of hybrid perovskite by sodium ions from glass substrates: mysterious enhancement of device efficiency revealed. ACS Energy Lett. 2, 1400–1406 (2017).

    Article  CAS  Google Scholar 

  115. Chen, Q. et al. The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nat. Commun. 6, 7269 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019). This study suggests that the fluoride ions can effectively suppress the formation of halide anion and organic cation vacancies, through a unique strengthening of the chemical bonds with the surrounding lead and organic cations.

    Article  CAS  Google Scholar 

  117. Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). This work highlights the importance of pseudo-halide anion engineering for achieving high-efficiency FAPbI3 solar cells.

    Article  CAS  PubMed  Google Scholar 

  118. Lin, Y.-H. et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369, 96–102 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).

    Article  CAS  Google Scholar 

  120. Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017). This study suggests that quaternary ammonium halides can effectively passivate ionic defects in several different types of hybrid perovskite with their negatively charged and positively charged components.

    Article  CAS  Google Scholar 

  121. Abate, A. et al. Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett. 14, 3247–3254 (2014). The first study of supramolecular agent for defect passivation in metal halide perovskite solar cells.

    Article  CAS  PubMed  Google Scholar 

  122. Ruiz-Preciado, M. A. et al. Supramolecular modulation of hybrid perovskite solar cells via bifunctional halogen bonding revealed by two-dimensional 19F solid-state NMR spectroscopy. J. Am. Chem. Soc. 142, 1645–1654 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Su, T.-S. et al. Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells. J. Am. Chem. Soc. 142, 19980–19991 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Gao, P. et al. Crown ether-induced supramolecular passivation and two-dimensional crystal interlayer formation in perovskite photovoltaics. Cell Rep. Phys. Sci. 2, 100450 (2021).

    Article  CAS  Google Scholar 

  125. Chen, R. et al. Crown ether-assisted growth and scaling up of FACsPbI3 films for efficient and stable perovskite solar modules. Adv. Funct. Mater. 31, 2008760 (2021).

    Article  CAS  Google Scholar 

  126. Krishna, A. et al. Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energy Environ. Sci. 14, 5552–5562 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Masi, S. et al. Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites. Chem. Sci. 9, 3200–3208 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang, H. et al. Multimodal host–guest complexation for efficient and stable perovskite photovoltaics. Nat. Commun. 12, 3383 (2021). The first study of host–guest complexation supramolecular agent for defect passivation in perovskite solar cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ge, C., Liu, X., Yang, Z., Li, H. & Dong, Q. Thermal dynamic self-healing supramolecular dopant towards efficient and stable flexible perovskite solar cells. Angew. Chem. Int. Ed. 61, e2021166 (2022).

    Article  Google Scholar 

  130. Berhe, T. A. et al. Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9, 323–356 (2016).

    Article  CAS  Google Scholar 

  131. Wang, S. et al. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat. Energy 2, 16195 (2016).

    Article  Google Scholar 

  132. Qin, C., Matsushima, T., Fujihara, T. & Adachi, C. Multifunctional benzoquinone additive for efficient and stable planar perovskite solar cells. Adv. Mater. 29, 1603808 (2017).

    Article  Google Scholar 

  133. Chen, S., Xiao, X., Gu, H. & Huang, J. Iodine reduction for reproducible and high-performance perovskite solar cells and modules. Sci. Adv. 7, eabe8130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tumen-Ulzii, G. et al. Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells. Adv. Mater. 32, 1905035 (2020).

    Article  CAS  Google Scholar 

  135. Wang, L. et al. A Eu3+–Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 363, 265–270 (2019). This study proves that the europium ion pair Eu3+Eu2+ acts as the ‘redox shuttle’ that selectively oxidized Pb0 and reduced I0 defects simultaneously in a cyclical transition.

    Article  CAS  PubMed  Google Scholar 

  136. Zhang, Z. et al. Revealing superoxide-induced degradation in lead-free tin perovskite solar cells. Energy Environ. Sci. 15, 5274–5283 (2022).

    Article  CAS  Google Scholar 

  137. Saidaminov, M. I. et al. Conventional solvent oxidizes Sn(II) in perovskite inks. ACS Energy Lett. 5, 1153–1155 (2020).

    Article  CAS  Google Scholar 

  138. Lanzetta, L. et al. Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide. Nat. Commun. 12, 2853 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jokar, E., Chien, C. H., Tsai, C. M., Fathi, A. & Diau, E. W. G. Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 31, 1804835 (2019).

    Article  Google Scholar 

  140. Nakamura, T. et al. Sn(IV)-free tin perovskite films realized by in situ Sn(0) nanoparticle treatment of the precursor solution. Nat. Commun. 11, 3008 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Song, T.-B. et al. Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. J. Am. Chem. Soc. 139, 836–842 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn (II) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019). This study suggests that metallic tin powder effectively suppresses Sn2+ oxidation in mixed Pb–Sn perovskite precursor inks via a comproportionation reaction.

    Article  CAS  Google Scholar 

  143. Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Zhang, F. et al. Metastable Dion–Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71–76 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Yang, S. et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Alharbi, E. A. et al. Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells. Nat. Commun. 10, 3008 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Li, F. et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142, 20134–20142 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Ni, Z. et al. High grain boundary recombination velocity in polycrystalline metal halide perovskites. Sci. Adv. 8, eabq8345 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022). This study highlights the importance of forming the inactive impurity phase in perovskite films for stabilizing the high-performance perovskite solar cells.

    Article  CAS  PubMed  Google Scholar 

  151. Zhang, H. et al. Excess PbI2 management via multimode supramolecular complex engineering enables high-performance perovskite solar cells. Adv. Energy Mater. 12, 2201663 (2022).

    Article  CAS  Google Scholar 

  152. Singh, S. & Kabra, D. Influence of solvent additive on the chemical and electronic environment of wide bandgap perovskite thin films. J. Mater. Chem. C 6, 12052–12061 (2018).

    Article  CAS  Google Scholar 

  153. Shi, Y. et al. (3-Aminopropyl)trimethoxysilane surface passivation improves perovskite solar cell performance by reducing surface recombination velocity. ACS Energy Lett. 7, 4081–4088 (2022).

    Article  CAS  Google Scholar 

  154. Che, Y. et al. Hydrazide derivatives for defect passivation in pure CsPbI3 perovskite solar cells. Angew. Chem. Int. Ed. 61, e202205012 (2022).

    Article  CAS  Google Scholar 

  155. Zhang, W. et al. Dual-site synergistic passivation for highly efficient and stable perovskite solar cells. Adv. Energy Mater. 12, 2202189 (2022).

    Article  CAS  Google Scholar 

  156. Xue, Q. et al. Efficient and stable perovskite solar cells via dual functionalization of dopamine semiquinone radical with improved trap passivation capabilities. Adv. Funct. Mater. 28, 1707444 (2018).

    Article  Google Scholar 

  157. Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014). The first study of molecular passivation in perovskite solar cells.

    Article  CAS  PubMed  Google Scholar 

  158. Wang, F. et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28, 9986–9992 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Zhang, Z. et al. Marked passivation effect of naphthalene-1,8-dicarboximides in high-performance perovskite solar cells. Adv. Mater. 33, 2008405 (2021).

    Article  CAS  Google Scholar 

  161. Gu, X., Xiang, W., Tian, Q. & Liu, S. Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells. Angew. Chem. Int. Ed. 60, 23164–23170 (2021).

    Article  CAS  Google Scholar 

  162. Wu, W.-Q. et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci. Adv. 5, eaav8925 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kamarudin, M. A. et al. Suppression of charge carrier recombination in lead-free tin halide perovskite via Lewis base post-treatment. J. Phys. Chem. Lett. 10, 5277–5283 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Zhang, H. et al. Improving the stability and performance of perovskite solar cells via off-the-shelf post-device ligand treatment. Energy Environ. Sci. 11, 2253–2262 (2018).

    Article  CAS  Google Scholar 

  165. Zhu, L. et al. Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency. Adv. Energy Mater. 11, 2100529 (2021).

    Article  CAS  Google Scholar 

  166. Zhan, S. et al. Stable 24.29%-efficiency FA0.85MA0.15PbI3 perovskite solar cells enabled by methyl haloacetate–lead dimer complex. Adv. Energy Mater. 12, 2200867 (2022).

    Article  CAS  Google Scholar 

  167. Xiong, J. et al. Bulk restructure of perovskite films via surface passivation for high-performance solar cells. Adv. Energy Mater. 12, 2201787 (2022).

    Article  CAS  Google Scholar 

  168. Ji, X. et al. Interfacial passivation engineering for highly efficient perovskite solar cells with a fill factor over 83%. ACS Nano 16, 11902–11911 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Guo, Z. et al. A universal method of perovskite surface passivation for CsPbX3 solar cells with VOC over 90% of the S–Q limit. Adv. Funct. Mater. 32, 2207554 (2022).

    Article  CAS  Google Scholar 

  170. Cao, J. et al. Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. Nanoscale 7, 9443–9447 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Huang, G. et al. Post-healing of defects: an alternative way for passivation of carbon-based mesoscopic perovskite solar cells via hydrophobic ligand coordination. J. Mater. Chem. A 6, 2449–2455 (2018).

    Article  CAS  Google Scholar 

  173. Zeng, H. et al. Improved performance and stability of perovskite solar modules by regulating interfacial ion diffusion with nonionic cross-linked 1D lead-iodide. Adv. Energy Mater. 12, 2102820 (2022).

    Article  CAS  Google Scholar 

  174. Yang, S. et al. Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141, 5781–5787 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Yu, R. et al. Multidentate coordination induced crystal growth regulation and trap passivation enables over 24% efficiency in perovskite solar cells. Adv. Energy Mater. 13, 2203127 (2023).

    Article  CAS  Google Scholar 

  176. Zhang, Z. et al. Sequential passivation for lead-free tin perovskite solar cells with high efficiency. Angew. Chem. Int. Ed. 61, e202210101 (2022).

    Article  CAS  Google Scholar 

  177. Guo, J. et al. Indigo: a natural molecular passivator for efficient perovskite solar cells. Adv. Energy Mater. 12, 2200537 (2022).

    Article  CAS  Google Scholar 

  178. Zhuang, X. et al. Learning from plants: lycopene additive passivation toward efficient and ‘fresh’ perovskite solar cells with oxygen and ultraviolet resistance. Adv. Energy Mater. 12, 2200614 (2022).

    Article  CAS  Google Scholar 

  179. Xiong, S. et al. Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule 5, 467–480 (2021).

    Article  CAS  Google Scholar 

  180. Wang, R. et al. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3, 1464–1477 (2019).

    Article  CAS  Google Scholar 

  181. Wang, R. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509–1513 (2019). This study suggests that rational design of passivator is a powerful strategy to mitigate the certain defects in perovskite films.

    Article  CAS  PubMed  Google Scholar 

  182. Shi, Y.-R. et al. Light-triggered sustainable defect-passivation for stable perovskite photovoltaics. Adv. Mater. 34, 2205338 (2022).

    Article  CAS  Google Scholar 

  183. Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Yu, Y. et al. Synergetic regulation of oriented crystallization and interfacial passivation enables 19.1% efficient wide-bandgap perovskite solar cells. Adv. Energy Mater. 12, 2201509 (2022).

    Article  CAS  Google Scholar 

  185. Tan, S. et al. Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics. Angew. Chem. Int. Ed. 61, e202201300 (2022).

    Article  CAS  Google Scholar 

  186. Xiong, Z. et al. Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv. Mater. 34, 2106118 (2022).

    Article  CAS  Google Scholar 

  187. Du, X. et al. Synergistic crystallization and passivation by a single molecular additive for high-performance perovskite solar cells. Adv. Mater. 34, 2204098 (2022).

    Article  CAS  Google Scholar 

  188. Fu, S. et al. Tailoring in situ healing and stabilizing post-treatment agent for high-performance inverted CsPbI3 perovskite solar cells with efficiency of 16.67%. ACS Energy Lett. 5, 3314–3321 (2020).

    Article  CAS  Google Scholar 

  189. Ma, K. et al. Multifunctional conjugated ligand engineering for stable and efficient perovskite solar cells. Adv. Mater. 33, 2100791 (2021).

    Article  CAS  Google Scholar 

  190. Chen, J. et al. Highly efficient and stable perovskite solar cells enabled by low-dimensional perovskitoids. Sci. Adv. 8, eabk2722 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Yu, D. et al. Quasi-2D bilayer surface passivation for high efficiency narrow bandgap perovskite solar cells. Angew. Chem. Int. Ed. 61, e202202346 (2022).

    Article  CAS  Google Scholar 

  192. Xu, C. et al. Synergistic effects of bithiophene ammonium salt for high-performance perovskite solar cells. J. Mater. Chem. A 10, 9971–9980 (2022).

    Article  CAS  Google Scholar 

  193. Liang, Z. et al. A selective targeting anchor strategy affords efficient and stable ideal-bandgap perovskite solar cells. Adv. Mater. 34, 2110241 (2022).

    Article  CAS  Google Scholar 

  194. Zhang, K. et al. Suppressing nonradiative recombination in lead–tin perovskite solar cells through bulk and surface passivation to reduce open circuit voltage losses. ACS Energy Lett. 7, 3235–3243 (2022).

    Article  CAS  Google Scholar 

  195. Guo, H. et al. Robust self-assembled molecular passivation for high-performance perovskite solar cells. Angew. Chem. Int. Ed. 61, e202204148 (2022).

    Article  CAS  Google Scholar 

  196. Yang, L. et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv. Mater. 34, 2201681 (2022).

    Article  CAS  Google Scholar 

  197. Wu, Y., Wang, Q., Chen, Y., Qiu, W. & Peng, Q. Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically. Energy Environ. Sci. 15, 4700–4709 (2022).

    Article  CAS  Google Scholar 

  198. Wang, J. et al. An ammonium-pseudohalide ion pair for synergistic passivating surfaces in FAPbI3 perovskite solar cells. Matter 5, 2209–2224 (2022).

    Article  CAS  Google Scholar 

  199. Liu, Y., Xiang, W., Mou, S., Zhang, H. & Liu, S. Synergetic surface defect passivation towards efficient and stable inorganic perovskite solar cells. Chem. Eng. J. 447, 137515 (2022).

    Article  CAS  Google Scholar 

  200. Yoo, J. J. et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 12, 2192–2199 (2019). This study highlights the critical role of solvent in surface treatments with organic ammonium salts.

    Article  CAS  Google Scholar 

  201. Yang, G. et al. Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat. Photonics 15, 681–689 (2021).

    Article  CAS  Google Scholar 

  202. Liu, Y. et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 5, eaaw2543 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019). This study highlights the importance of the organic halide salt PEAI, rather than the 2D-layered PEA2PbI4 perovskite, which serves as a much more effective passivator for a 3D perovskite.

    Article  CAS  Google Scholar 

  204. Gharibzadeh, S. et al. Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9, 1803699 (2019).

    Article  Google Scholar 

  205. Lv, Y. et al. Hexylammonium iodide derived two-dimensional perovskite as interfacial passivation layer in efficient two-dimensional/three-dimensional perovskite solar cells. ACS Appl. Mater. Interfaces 12, 698–705 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Kim, H. et al. Optimal interfacial engineering with different length of alkylammonium halide for efficient and stable perovskite solar cells. Adv. Energy Mater. 9, 1902740 (2019).

    Article  CAS  Google Scholar 

  207. Kim, M. et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306 (2022).

    Article  CAS  PubMed  Google Scholar 

  208. Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).

    Article  CAS  Google Scholar 

  209. Liu, Y. et al. Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers. Angew. Chem. Int. Ed. 59, 15688–15694 (2020).

    Article  CAS  Google Scholar 

  210. Yang, S. et al. Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 1, 15016 (2016).

    Article  CAS  Google Scholar 

  211. Jeong, S. et al. Cyclohexylammonium-based 2D/3D perovskite heterojunction with funnel-like energy band alignment for efficient solar cells (23.91%). Adv. Energy Mater. 11, 2102236 (2021).

    Article  CAS  Google Scholar 

  212. Yang, B. et al. Interfacial passivation engineering of perovskite solar cells with fill factor over 82% and outstanding operational stability on nip architecture. ACS Energy Lett. 6, 3916–3923 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Ma, C. et al. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells. Nanoscale 8, 18309–18314 (2016).

    Article  CAS  PubMed  Google Scholar 

  214. Kim, J.-H., Kim, S.-G. & Park, N.-G. Effect of chemical bonding nature of post-treatment materials on photovoltaic performance of perovskite solar cells. ACS Energy Lett. 6, 3435–3442 (2021).

    Article  CAS  Google Scholar 

  215. Chen, M. et al. High-performance lead-free solar cells based on tin-halide perovskite thin films functionalized by a divalent organic cation. ACS Energy Lett. 5, 2223–2230 (2020).

    Article  CAS  Google Scholar 

  216. Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023). This study demonstrates that a record VOC and PCE for all-perovskite tandem can be realized by tailoring the molecular structure of organic ammonium halide.

    Article  CAS  PubMed  Google Scholar 

  217. Wu, T., Li, X., Qi, Y., Zhang, Y. & Han, L. Defect passivation for perovskite solar cells: from molecule design to device performance. ChemSusChem 14, 4354–4376 (2021).

    Article  CAS  PubMed  Google Scholar 

  218. Cho, K. T. et al. Selective growth of layered perovskites for stable and efficient photovoltaics. Energy Environ. Sci. 11, 952–959 (2018).

    Article  CAS  Google Scholar 

  219. Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).

    Article  CAS  PubMed  Google Scholar 

  220. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  CAS  PubMed  Google Scholar 

  221. Liu, C. et al. Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nat. Commun. 12, 6394 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Zhu, H. et al. Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency. Adv. Mater. 32, 1907757 (2020).

    Article  CAS  Google Scholar 

  223. Sutanto, A. A. et al. 2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. Chem 7, 1903–1916 (2021).

    Article  CAS  Google Scholar 

  224. Chen, R. et al. Conformal imidazolium 1D perovskite capping layer stabilized 3D perovskite films for efficient solar modules. Adv. Sci. 9, 2204017 (2022).

    Article  CAS  Google Scholar 

  225. Xue, J. et al. Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science 371, 636–640 (2021).

    Article  CAS  PubMed  Google Scholar 

  226. Tan, S. et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605, 268–273 (2022). This study highlights the importance of anion selection in designing effective passivator for achieving long-term stable perovskite solar cells.

    Article  CAS  PubMed  Google Scholar 

  227. Gao, D. et al. Highly efficient flexible perovskite solar cells through pentylammonium acetate modification with certified efficiency of 23.35%. Adv. Mater. 35, 2206387 (2023).

    Article  CAS  Google Scholar 

  228. Nagane, S. et al. Tetrafluoroborate-induced reduction in defect density in hybrid perovskites through halide management. Adv. Mater. 33, 2102462 (2021).

    Article  CAS  Google Scholar 

  229. Yang, G. et al. Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nat. Photon. 16, 588–594 (2022).

    Article  CAS  Google Scholar 

  230. Yang, B. et al. Outstanding passivation effect by a mixed-salt interlayer with internal interactions in perovskite solar cells. ACS Energy Lett. 5, 3159–3167 (2020).

    Article  CAS  Google Scholar 

  231. Tan, S. et al. Surface reconstruction of halide perovskites during post-treatment. J. Am. Chem. Soc. 143, 6781–6786 (2021).

    Article  CAS  PubMed  Google Scholar 

  232. Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022).

    Article  CAS  PubMed  Google Scholar 

  233. Choi, Y. et al. A vertically oriented two-dimensional Ruddlesden–Popper phase perovskite passivation layer for efficient and stable inverted perovskite solar cells. Energy Environ. Sci. 15, 3369–3378 (2022).

    Article  CAS  Google Scholar 

  234. Bi, D. et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016).

    Article  CAS  Google Scholar 

  235. Han, T.-H. et al. Perovskite–polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10, 520 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Cao, Q. et al. Environmental-friendly polymer for efficient and stable inverted perovskite solar cells with mitigating lead leakage. Adv. Funct. Mater. 32, 2201036 (2022).

    Article  CAS  Google Scholar 

  237. Cao, Q. et al. Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Sci. Adv. 7, eabg0633 (2021). This study proves that star-shaped polymers effectively improve charge transport and inhibit ion migration at the perovskite interface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Wang, M. et al. Rational selection of the polymeric structure for interface engineering of perovskite solar cells. Joule 6, 1032–1048 (2022).

    Article  CAS  Google Scholar 

  239. Qiu, S. et al. Biopolymer passivation for high-performance perovskite solar cells by blade coating. J. Energy Chem. 54, 45–52 (2021).

    Article  CAS  Google Scholar 

  240. Zhang, B. et al. Multifunctional polymer as an interfacial layer for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 62, e202213478 (2022).

    Article  Google Scholar 

  241. Zuo, L. et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3, e1700106 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Sun, X. et al. Efficient inverted perovskite solar cells with low voltage loss achieved by a pyridine-based dopant-free polymer semiconductor. Angew. Chem. Int. Ed. 60, 7227–7233 (2021).

    Article  CAS  Google Scholar 

  243. Zeng, Q. et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv. Mater. 30, 1705393 (2018).

    Article  Google Scholar 

  244. Meng, L. et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J. Am. Chem. Soc. 140, 17255–17262 (2018).

    Article  CAS  PubMed  Google Scholar 

  245. Chen, C. et al. Polyacrylonitrile-coordinated perovskite solar cell with open-circuit voltage exceeding 1.23 V. Angew. Chem. Int. Ed. 61, e202113932 (2022).

    Article  CAS  Google Scholar 

  246. Zhao, Y. et al. A polymerization-assisted grain growth strategy for efficient and stable perovskite solar cells. Adv. Mater. 32, 1907769 (2020).

    Article  CAS  Google Scholar 

  247. Caprioglio, P. et al. Bi-functional interfaces by poly (ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy Environ. Sci. 14, 4508–4522 (2021).

    Article  CAS  Google Scholar 

  248. Wang, S. et al. Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells. Energy Environ. Sci. 13, 5068–5079 (2020).

    Article  CAS  Google Scholar 

  249. Sun, C. et al. Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planar-heterojunction perovskite solar cells. Adv. Energy Mater. 6, 1501534 (2016).

    Article  Google Scholar 

  250. Zhang, F. et al. Polymeric, cost-effective, dopant-free hole transport materials for efficient and stable perovskite solar cells. J. Am. Chem. Soc. 141, 19700–19707 (2019).

    Article  CAS  PubMed  Google Scholar 

  251. Zhang, L. et al. Intensive exposure of functional rings of a polymeric hole-transporting material enables efficient perovskite solar cells. Adv. Mater. 30, 1804028 (2018).

    Article  Google Scholar 

  252. Niu, T. et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 30, 1706576 (2018).

    Article  Google Scholar 

  253. Fu, Q. et al. Multifunctional two-dimensional polymers for perovskite solar cells with efficiency exceeding 24%. ACS Energy Lett. 7, 1128–1136 (2022).

    Article  CAS  Google Scholar 

  254. Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).

    Article  CAS  PubMed  Google Scholar 

  255. Wang, Y. et al. Stabilizing heterostructures of soft perovskite semiconductors. Science 365, 687–691 (2019).

    Article  CAS  PubMed  Google Scholar 

  256. Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    Article  CAS  PubMed  Google Scholar 

  257. Ye, S. et al. A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J. Am. Chem. Soc. 139, 7504–7512 (2017).

    Article  CAS  PubMed  Google Scholar 

  258. Wu, W.-Q. et al. Reducing surface halide deficiency for efficient and stable iodide-based perovskite solar cells. J. Am. Chem. Soc. 142, 3989–3996 (2020).

    Article  CAS  PubMed  Google Scholar 

  259. Zhao, Y. et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 21, 1396–1402 (2022).

    Article  CAS  PubMed  Google Scholar 

  260. Hartono, N. T. P. et al. How machine learning can help select capping layers to suppress perovskite degradation. Nat. Commun. 11, 4172 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Article  CAS  PubMed  Google Scholar 

  262. Yuan, Y. et al. Anomalous photovoltaic effect in organic–inorganic hybrid perovskite solar cells. Sci. Adv. 3, e1602164 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015).

    Article  CAS  PubMed  Google Scholar 

  264. Shao, Y. et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 9, 1752–1759 (2016).

    Article  CAS  Google Scholar 

  265. Meloni, S. et al. Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat. Commun. 7, 10334 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Yang, D., Ming, W., Shi, H., Zhang, L. & Du, M.-H. Fast diffusion of native defects and impurities in perovskite solar cell material CH3NH3PbI3. Chem. Mater. 28, 4349–4357 (2016).

    Article  CAS  Google Scholar 

  267. Yuan, Y. & Huang, J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016). This work provides a critical overview of the progress in understanding the fundamental science on ion migration in perovskite solar cells.

    Article  CAS  PubMed  Google Scholar 

  268. Delugas, P., Caddeo, C., Filippetti, A. & Mattoni, A. Thermally activated point defect diffusion in methylammonium lead trihalide: anisotropic and ultrahigh mobility of iodine. J. Phys. Chem. Lett. 7, 2356–2361 (2016).

    Article  CAS  PubMed  Google Scholar 

  269. Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015).

    Article  CAS  PubMed  Google Scholar 

  270. Xing, J. et al. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Phys. Chem. Chem. Phys. 18, 30484–30490 (2016).

    Article  CAS  PubMed  Google Scholar 

  271. Egger, D. A., Kronik, L. & Rappe, A. M. Theory of hydrogen migration in organic–inorganic halide perovskites. Angew. Chem. Int. Ed. 54, 12437–12441 (2015).

    Article  CAS  Google Scholar 

  272. Li, Z. et al. Extrinsic ion migration in perovskite solar cells. Energy Environ. Sci. 10, 1234–1242 (2017).

    Article  CAS  Google Scholar 

  273. Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).

    Article  CAS  PubMed  Google Scholar 

  274. Chen, J., Lee, D. & Park, N.-G. Stabilizing the Ag electrode and reducing J–V hysteresis through suppression of iodide migration in perovskite solar cells. ACS Appl. Mater. Interfaces 9, 36338–36349 (2017).

    Article  CAS  PubMed  Google Scholar 

  275. Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).

    Article  CAS  PubMed  Google Scholar 

  276. Son, D.-Y. et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140, 1358–1364 (2018).

    Article  CAS  PubMed  Google Scholar 

  277. Tress, W. et al. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015).

    Article  CAS  Google Scholar 

  278. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Article  CAS  PubMed  Google Scholar 

  279. Tang, X. et al. Local observation of phase segregation in mixed-halide perovskite. Nano Lett. 18, 2172–2178 (2018).

    Article  CAS  PubMed  Google Scholar 

  280. Bischak, C. G. et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17, 1028–1033 (2017).

    Article  CAS  PubMed  Google Scholar 

  281. Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016).

    Article  CAS  Google Scholar 

  282. Carrillo, J. et al. Ionic reactivity at contacts and aging of methylammonium lead triiodide perovskite solar cells. Adv. Energy Mater. 6, 1502246 (2016).

    Article  Google Scholar 

  283. Kim, S. et al. Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions. Sci. Rep. 7, 1200 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Hermes, I. M., Hou, Y., Bergmann, V. W., Brabec, C. J. & Weber, S. A. L. The interplay of contact layers: how the electron transport layer influences interfacial recombination and hole extraction in perovskite solar cells. J. Phys. Chem. Lett. 9, 6249–6256 (2018).

    Article  CAS  PubMed  Google Scholar 

  285. Wu, S. et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Kato, Y. et al. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2, 1500195 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Shanghai Pujiang Program (22PJ1401200). M.G. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme, specifically the GRAPHENE Flagship Core 3 project (grant no. 881603).

Author information

Authors and Affiliations

Authors

Contributions

H.Z. and L.P. contributed equally to this work. M.G. and S.M.Z. contributed to the writing and editing of this manuscript. H.Z. and L.P. researched the literature for the article and contributed to the discussion of content and writing. J.C. contributed to the discussion and reviewing of the manuscript.

Corresponding authors

Correspondence to Hong Zhang, Lukas Pfeifer or Michael Grätzel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Caofeng Pan, Dinesh Kabra and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy: https://www.nrel.gov/pv/cell-efficiency.html

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Pfeifer, L., Zakeeruddin, S.M. et al. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat Rev Chem 7, 632–652 (2023). https://doi.org/10.1038/s41570-023-00510-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00510-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing