Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Asymmetric reactions involving aryne intermediates

Abstract

Although arynes are usually considered fleeting intermediates, they are highly valuable synthons because they enable the introduction of aromatic rings and the simultaneous formation of new bonds at two sites. Although catalytic reactions using transition metals are excellent method for constructing complex polycyclic aromatic molecules in a single step, the use of asymmetric catalysis for the capture of arynes remains a crucial goal for the progress of aryne chemistry. Catalytic asymmetric reactions of arenes are challenging, requiring sufficient interactions between the neutral and highly reactive short-lived aryne intermediates in a stereo-controlled fashion. In addition, spontaneous decomposition, as well as side reactions, has hindered their development and, until recently, highly enantioselective reactions using arynes had remained elusive. This Review highlights asymmetric reactions using arynes, featuring diastereoselective, enantioselective and catalytic enantioselective reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General strategies for stereoselective reactions involving aryne intermediates.
Fig. 2: Diastereoselective intermolecular or intramolecular cycloaddition reactions of arynes and arynophiles.
Fig. 3: Tandem cycloaddition reactions.
Fig. 4: Intramolecular cycloadditions with concomitant formation of a single carbon–carbon bond.
Fig. 5: Arene ene reaction with concomitant formation of a single carbon–carbon bond.
Fig. 6: α-Arylations by chiral nucleophiles.
Fig. 7: Diastereoselective and enantioselective synthesis of axially chiral biaryls.
Fig. 8: Catalytic enantioselective synthesis of helicene and α-arylation of ketone.

Similar content being viewed by others

References

  1. Hoffmann, R. W. Dehydrobenzene and Cycloalkynes (Academic Press, 1967).

  2. Yoshida, H. in Multicomponent Reactions in Organic Synthesis (eds. Zhu, J., Wang, Q., & Wang, M.-X.) 39–72 (Wiley-VCH, 2015).

  3. Kumamoto, T. & Katakawa, K. in Cycloaddition Reactions: Advances in Research and Applications (ed. Margetić, D.) Ch. 1 (Nova, 2019).

  4. Stoermer, R. & Kahlert, B. Ueber das 1- und 2-Brom-type 1cumaron. Ber. Dtsch. Chem. Ges. 35, 1633–1640 (1902). 

    Article  CAS  Google Scholar 

  5. Bachmann, W. E. & Clarke, H. T. The mechanism of the Wurtz–Fittig reaction. J. Am. Chem. Soc. 49, 2089–2098 (1927). 

    Article  CAS  Google Scholar 

  6. Wittig, G. Phenyl-Lithium, der Schlüssel zu einer neuen Chemie Metallorganischer Verbindungen. Naturwissenschaften 30, 696–703 (1942). 

    Article  CAS  Google Scholar 

  7. Roberts, J. D., Simmons, H. E. Jr, Carlsmith, L. A. & Vaughan, C. W. Rearrangement in the reaction of chlorobenzene-1-C14 with potassium amide. J. Am. Chem. Soc. 75, 3290–3291 (1953).

    Article  CAS  Google Scholar 

  8. Himeshima, Y., Sonoda, T. & Kobayashi, H. Fluoride-induced 1,2-elimination of o-trimethylsilylphenyl triflate to benzyne under mild conditions. Chem. Lett. 12, 1211–1214 (1983).

    Article  Google Scholar 

  9. Sanz, R. Recent applications of aryne chemistry to organic synthesis. A review. Org. Prep. Proced. Int. 40, 215–291 (2008).

    Article  CAS  Google Scholar 

  10. García-López, J.-A. & Greaney, M. F. Synthesis of biaryls using aryne intermediates. Chem. Soc. Rev. 45, 6766–6798 (2016).

    Article  PubMed  Google Scholar 

  11. Buchwald, S. L. & Nielsen, R. B. Group 4 metal complexes of benzynes, cycloalkynes, acyclic alkynes, and alkenes. Chem. Rev. 88, 1047–1058 (1988).

    Article  CAS  Google Scholar 

  12. Bennett, M. A. & Schwemlein, H. P. Metal complexes of small cycloalkynes and arynes. Angew. Chem. Int. Ed. Engl. 28, 1296–1320 (1989).

    Article  Google Scholar 

  13. Bennett, M. A. & Wenger, E. The reactivity of complexes of nickel(0) and platinum(0) containing benzyne and related small-ring alkynes. Chem. Ber. 130, 1029–1042 (1997).

    Article  CAS  Google Scholar 

  14. Barluenga, J., Rodríguez, F., Álvarez-Rodrigo, L. & Fañanás, F. J. Coupling reactions of zirconocene complexes and heterosubstituted alkenes. Chem. Soc. Rev. 34, 762–768 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Dyke, A. M., Hester, A. J. & Lloyd-Jones, G. C. Organometallic generation and capture of ortho-arynes. Synthesis 2006, 4093–4112 (2006).

    Article  Google Scholar 

  16. Bennett, M. A. Aryne complexes of zerovalent metals of the nickel triad. Aust. J. Chem. 63, 1066–1075 (2010).

    Article  CAS  Google Scholar 

  17. Shi, J., Li, L. & Li, Y. o-Silylaryl triflates: a journey of kobayashi aryne precursors. Chem. Rev. 121, 3892–4044 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Peña, D., Escudero, S., Pérez, D., Guitián, E. & Castedo, L. Efficient palladium-catalyzed cyclotrimerization of arynes: synthesis of triphenylenes. Angew. Chem. Int. Ed. 37, 2659–2661 (1998).

    Article  Google Scholar 

  19. Caeiro, J., Peña, D., Cobas, A., Pérez, D. & Guitián, E. Asymmetric catalysis in the [2+2+2] cycloaddition of arynes and alkynes: enantioselective synthesis of a pentahelicene. Adv. Synth. Catal. 348, 2466–2474 (2006). The first paper to show the potential of catalytic asymmetric synthesis using arynes.

    Article  CAS  Google Scholar 

  20. Yubuta, A. et al. Enantioselective synthesis of triple helicenes by cross-cyclotrimerization of a helicenyl aryne and alkynes via dynamic kinetic resolution. J. Am. Chem. Soc. 142, 10025–10033 (2020). The first paper to achieve high enantioselectivities in excess of 90% ee in catalytic asymmetric synthesis using arynes.

    Article  CAS  PubMed  Google Scholar 

  21. Pierrot, D. & Marek, I. Synthesis of enantioenriched vicinal tertiary and quaternary carbon stereogenic centers within an acyclic chain. Angew. Chem. Int. Ed. 59, 36–49 (2020).

    Article  CAS  Google Scholar 

  22. Zhou, F. et al. Catalytic enantioselective construction of vicinal quaternary carbon stereocenters. Chem. Sci. 11, 9341–9365 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ping, Y., Li, Y., Zhu, J. & Kong, W. Construction of quaternary stereocenters by palladium-catalyzed carbopalladation-initiated cascade reactions. Angew. Chem. Int. Ed. 58, 1562–1573 (2019).

    Article  CAS  Google Scholar 

  24. Li, Y. & Xu, S. Transition-metal-catalyzed C−H functionalization for construction of quaternary carbon center. Chemistry 24, 16218–16245 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Feng, J., Holmes, M. & Krische, M. J. Acyclic quaternary carbon stereocenters via enantioselective transition metal catalysis. Chem. Rev. 117, 12564–12580 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eitzinger, A., Winter, M., Schörgenhumer, J. & Waser, M. Quaternary β2,2-amino acid derivatives by asymmetric addition of isoxazolidin-5-ones to para-quinone methides. Chem. Commun. 56, 579–582 (2020).

    Article  CAS  Google Scholar 

  27. Harada, K. et al. Asymmetric construction of vicinal stereocenters containing quaternary and tertiary carbons: application to the formal synthesis of (–)-chenopodene. Eur. J. Org. Chem. 2020, 420–423 (2020).

    Article  CAS  Google Scholar 

  28. Qiu, J. et al. Construction of all-carbon chiral quaternary centers through CuI-catalyzed enantioselective reductive hydroxymethylation of 1,1-disubstituted allenes with CO2. Chem. Eur. J. 25, 13874–13878 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Bratt, E., Suárez-Pantiga, S., Johansson, M. J. & Mendoza, A. Mechanism and regioselectivity of the anionic oxidative rearrangement of 1,3-diketones towards all-carbon quaternary carboxylates. Chem. Commun. 55, 8844–8847 (2019).

    Article  CAS  Google Scholar 

  30. Zhang, Q.-Q. et al. Regio- and stereoselective alkenylation of allenoates with gem-difluoroalkenes: facile access to fluorinated 1,4-enynes bearing an all-carbon quaternary center. Org. Lett. 21, 3123–3126 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Fujita, T. et al. Chemo- and enantioselective Pd/B hybrid catalysis for the construction of acyclic quaternary carbons: migratory allylation of O-allyl esters to α-C-allyl carboxylic acids. J. Am. Chem. Soc. 140, 5899–5903 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Yu, K. et al. Lithium enolates in the enantioselective construction of tetrasubstituted carbon centers with chiral lithium amides as noncovalent stereodirecting auxiliaries. J. Am. Chem. Soc. 139, 527–533 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Anthony, S. M., Wonilowicz, L. G., McVeigh, M. S. & Garg, N. K. Leveraging fleeting strained intermediates to access complex scaffolds. JACS Au 1, 897–912 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fluegel, L. L. & Hoye, T. R. Hexadehydro-Diels–Alder reaction: benzyne generation via cycloisomerization of tethered triynes. Chem. Rev. 121, 2413–2444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsuzawa, T., Yoshida, S. & Hosoya, T. Recent advances in reactions between arynes and organosulfur compounds. Tetrahedron Lett. 59, 4197–4208 (2018).

    Article  CAS  Google Scholar 

  36. Takikawa, H., Nishii, A., Sakai, T. & Suzuki, K. Aryne-based strategy in the total synthesis of naturally occurring polycyclic compounds. Chem. Soc. Rev. 47, 8030–8056 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Roy, T. & Biju, A. T. Recent advances in molecular rearrangements involving aryne intermediates. Chem. Commun. 54, 2580–2594 (2018).

    Article  CAS  Google Scholar 

  38. Shi, J., Li, Y. & Li, Y. Aryne multifunctionalization with benzdiyne and benztriyne equivalents. Chem. Soc. Rev. 46, 1707–1719 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Idiris, F. I. M. & Jones, C. R. Recent advances in fluoride-free aryne generation from arene precursors. Org. Biomol. Chem. 15, 9044–9056 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Bhojgude, S. S., Bhunia, A. & Biju, A. T. Employing arynes in Diels–Alder reactions and transition-metal-free multicomponent coupling and arylation reactions. Acc. Chem. Res. 49, 1658–1670 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Goetz, A. E., Shah, T. K. & Garg, N. K. Pyridynes and indolynes as building blocks for functionalized heterocycles and natural products. Chem. Commun. 51, 34–45 (2015).

    Article  CAS  Google Scholar 

  42. Dubrovskiy, A. V., Markina, N. A. & Larock, R. C. Use of benzynes for the synthesis of heterocycles. Org. Biomol. Chem. 11, 191–218 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Tadross, P. M. & Stoltz, B. M. A comprehensive history of arynes in natural product total synthesis. Chem. Rev. 112, 3550–3577 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Gampe, C. M. & Carreira, E. M. Arynes and cyclohexyne in natural product synthesis. Angew. Chem. Int. Ed. 51, 3766–3778 (2012).

    Article  CAS  Google Scholar 

  45. Wittig, G. & Dürr, H. Dehydrobenzol und acyclische Diene. Justus Liebigs Ann. Chem. 672, 55–62 (1964).

    Article  CAS  Google Scholar 

  46. Dockendorff, C., Sahli, S., Olsen, M., Milhau, L. & Lautens, M. Synthesis of dihydronaphthalenes via aryne Diels–Alder reactions: scope and diastereoselectivity. J. Am. Chem. Soc. 127, 15028–15029 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Webster, R. & Lautens, M. Conformational effects in diastereoselective aryne Diels–Alder reactions: synthesis of benzo-fused [2.2.1] heterobicycles. Org. Lett. 11, 4688–4691 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Perecim, G. P. et al. Stereoselective total synthesis of (S)- and (R)-nuciferine using benzyne chemistry. Tetrahedron 76, 131461 (2020).

    Article  CAS  Google Scholar 

  49. Bilodeau, D. A., Margison, K. D., Serhan, M. & Pezacki, J. P. Bioorthogonal reactions utilizing nitrones as versatile dipoles in cycloaddition reactions. Chem. Rev. 121, 6699–6717 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Berthet, M., Cheviet, T., Dujardin, G., Parrot, I. & Martinez, J. Isoxazolidine: a privileged scaffold for organic and medicinal chemistry. Chem. Rev. 116, 15235–15283 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Khangarot, R. K. & Kaliappan, K. P. A stereoselective route to Aza-C-aryl glycosides from arynes and chiral nitrones. Eur. J. Org. Chem. 2012, 5844–5854 (2012).

    Article  CAS  Google Scholar 

  52. Ye, W., Zhang, L., Ni, C., Rong, J. & Hu, J. Stereoselective [3+2] cycloaddition of N-tert-butanesulfinyl imines to arynes facilitated by a removable PhSO2CF2 group: synthesis and transformation of cyclic sulfoximines. Chem. Commun. 50, 10596–10599 (2014).

    Article  CAS  Google Scholar 

  53. Corsello, M. A., Kim, J. & Garg, N. K. Total synthesis of (–)-tubingensin B enabled by the strategic use of an aryne cyclization. Nat. Chem. 9, 944–949 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. TePaske, M. R., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. Tubingensin A: an antiviral carbazole alkaloid from the sclerotia of Aspergillus tubingensis. J. Org. Chem. 54, 4743–4746 (1989).

    Article  CAS  Google Scholar 

  55. TePaske, M. R., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. The structure of tubingensin B: a cytotoxic carbazole alkaloid from the sclerotia of Aspergillus tubingensis. Tetrahedron Lett. 30, 5965–5968 (1989).

    Article  CAS  Google Scholar 

  56. Caubere, P. Applications of sodamide-containing complex bases in organic synthesis. Acc. Chem. Res. 7, 301–308 (1974).

    Article  CAS  Google Scholar 

  57. Gregoire, B., Carre, M. C. & Caubere, P. Arynic condensation of ketone enolates. 17. New general access to benzocyclobutene derivatives. J. Org. Chem. 51, 1419–1427 (1986).

    Article  CAS  Google Scholar 

  58. Ishida, N., Sawano, S., Masuda, Y. & Murakami, M. Rhodium-catalyzed ring opening of benzycyclobutenols with site-selectivity complementary to thermal ring opening. J. Am. Chem. Soc. 134, 17502–17504 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Bhojgude, S. S., Thangaraj, M., Suresh, E. & Biju, A. T. Tandem [4 + 2]/[2 + 2] cycloaddition reactions involving indene or benzofurans and arynes. Org. Lett. 16, 3576–3579 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Alsherimi, A. S. et al. Synthesis of spirocyclic 1-pyrrolines from nitrones and arynes through a dearomative [3,3ʹ]-sigmatropic rearrangement. Angew. Chem. Int. Ed. 59, 15244–15248 (2020).

    Article  Google Scholar 

  61. He, J. et al. Arene trifunctionalization with highly fused ring systems through a domino aryne nucleophilic and Diels–Alder cascade. Angew. Chem. Int. Ed. 58, 18513–18518 (2019).

    Article  CAS  Google Scholar 

  62. Swain, S. P. et al. Aryne-induced novel tandem 1,2-addition/(3+2) cycloaddition to generate imidazolidines and pyrrolidines. Angew. Chem. Int. Ed. 54, 9926–9930 (2015).

    Article  CAS  Google Scholar 

  63. Jia, H. et al. Tandem nucleophilic addition–cycloaddition of arynes with α-iminoesters: two concurrent pathways to imidazolidines. Chem. Commun. 54, 7050–7053 (2018).

    Article  CAS  Google Scholar 

  64. Chen, Z. et al. Aryne 1,4-disubstitution and remote diastereoselective 1,2,4-trisubstitution via a nucleophilic annulation-[5,5]-sigmatropic rearrangement process. Angew. Chem. Int. Ed. 61, e202212160 (2022).

    CAS  Google Scholar 

  65. Zhang, J. et al. Aryne-mediated [2,3]-sigmatropic rearrangement of tertiary allylic amines. Org. Lett. 18, 4872–4875 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Roy, T. et al. The aryne [2,3] Stevens rearrangement. Org. Lett. 18, 5428–5431 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Huters, A. D., Quasdorf, K. W., Styduhar, E. D. & Garg, N. K. Total synthesis of (−)-N-methylwelwitindolinone C isothiocyanate. J. Am. Chem. Soc. 133, 15797–15799 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Goetz, A. E., Silberstein, A. L., Corsello, M. A. & Garg, N. K. Concise enantiospecific total synthesis of tubingensin A. J. Am. Chem. Soc. 136, 3036–3039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Watsona, I. D. G. & Toste, F. D. Catalytic enantioselective carbon–carbon bond formation using cycloisomerization reactions. Chem. Sci. 3, 2899–2919 (2012).

    Article  Google Scholar 

  70. Trost, B. M., Toste, F. D. & Pinkerton, A. B. Non-metathesis ruthenium-catalyzed C−C bond formation. Chem. Rev. 101, 2067–2096 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Aubert, C., Buisine, O. & Malacria, M. The behavior of 1,n-enynes in the presence of transition metals. Chem. Rev. 102, 813–834 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Yang, Y. & Jones, C. R. The arene ene reaction. Synthesis 54, 5042–5054 (2022).

    Article  CAS  Google Scholar 

  73. Xu, H. et al. Domino aryne annulation via a nucleophilic–ene process. J. Am. Chem. Soc. 140, 3555–3559 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Chen, Z., Liang, J., Yin, J., Yu, G.-A. & Liu, S. H. Alder-ene reaction of aryne with olefins. Tetrahedron Lett. 54, 5785–5787 (2013).

    Article  CAS  Google Scholar 

  75. Karmakar, R., Mamidipalli, P., Yun, S. Y. & Lee, D. Alder-ene reactions of arynes. Org. Lett. 15, 1938–1941 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Jayanth, T. T., Jeganmohan, M., Cheng, M.-J., Chu, S.-Y. & Cheng, C.-H. Ene reaction of arynes with alkynes. J. Am. Chem. Soc. 128, 2232–2233 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Aly, A. A. & Shaker, R. M. 5-Benzyl-1H-tetrazols from the reaction of 1-aryl-5-methyl-1H-tetrazoles with 1,2-dehydrobenzene. Tetrahedron Lett. 46, 2679–2682 (2005).

    Article  CAS  Google Scholar 

  78. Aly, A. A., Mohamed, N. K., Hassan, A. A. & Mourad, A. F. E. E. Reaction of diimines and benzyne. Tetrahedron 55, 1111–1118 (1999).

    Article  CAS  Google Scholar 

  79. Garsky, V., Koster, D. F. & Arnold, R. T. Studies of the stereochemistry and mechanism of the ene reaction using specifically deuterated pinenes. J. Am. Chem. Soc. 96, 4207–4210 (1974).

    Article  CAS  Google Scholar 

  80. Crews, P. & Beard, J. Cycloadditions of benzyne with cyclic olefins. Competition between 2 + 4, ene, and 2 + 2 reaction pathways. J. Org. Chem. 38, 522–528 (1973).

    Article  CAS  Google Scholar 

  81. Candito, D. A., Panteleev, J. & Lautens, M. Intramolecular aryne-ene reaction: synthetic and mechanistic studies. J. Am. Chem. Soc. 133, 14200–14203 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Candito, D. A., Dobrovolsky, D. & Lautens, M. Development of an intramolecular aryne ene reaction and application to the formal synthesis of (±)-crinine. J. Am. Chem. Soc. 134, 15572–15580 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Cheong, P. H.-Y. et al. Indolyne and aryne distortions and nucleophilic regioselectivites. J. Am. Chem. Soc. 132, 1267–1269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Im, G.-Y. J. et al. Indolyne experimental and computational studies: synthetic applications and origins of selectivities of nucleophilic additions. J. Am. Chem. Soc. 132, 17933–17944 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Goetz, A. E. et al. An efficient computational model to predict the synthetic utility of heterocyclic arynes. Angew. Chem. Int. Ed. 51, 2758–2762 (2012).

    Article  CAS  Google Scholar 

  86. Gupta, S., Xie, P., Xia, Y. & Lee, D. Reactivity and selectivity in the intermolecular Alder-ene reactions of arynes with functionalized alkenes. Org. Lett. 19, 5162–5165 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Hao, Y.-J., Hu, X.-S., Zhou, Y., Zhou, J. & Yu, J.-S. Catalytic enantioselective α-arylation of carbonyl enolates and related compounds. ACS Catal. 10, 955–993 (2020).

    Article  CAS  Google Scholar 

  88. Johansson, C. C. C. & Colacot, T. J. Metal-catalyzed α-arylation of carbonyl and related molecules: novel trends in C–C bond formation by C–H bond functionalization. Angew. Chem. Int. Ed. 49, 676–707 (2010).

    Article  CAS  Google Scholar 

  89. Jones, E. P., Jones, P. & Barrett, A. G. M. Asymmetric synthesis of α-aryl amino acids; aryne-mediated diastereoselective arylation. Org. Lett. 13, 1012–1015 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Jones, E. P., Jones, P., White, A. J. P. & Barrett, A. G. M. Asymmetric synthesis of quaternary aryl amino acid derivatives via a three-component aryne coupling reaction. Beilstein J. Org. Chem. 7, 1570–1576 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schöllkopf, U. Enantioselective synthesis of non-proteinogenic amino acids via metallated bis-lactim ethers of 2,5-diketopiperazines. Tetrahedron 39, 2085–2091 (1983).

    Article  Google Scholar 

  92. Picazo, E. et al. Arynes and cyclic alkynes as synthetic building blocks for stereodefined quaternary centers. J. Am. Chem. Soc. 140, 7605–7610 (2018). A paper on diastereoselective α-arylation using enamines leading to catalytic asymmetric synthesis in α-arylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kasamatsu, K. et al. α-Arylation of α-amino acid derivatives with arynes via memory of chirality: asymmetric synthesis of benzocyclobutenones with tetrasubstituted carbon. Org. Lett. 19, 352–355 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Alezra, V. & Kawabata, T. Recent progress in memory of chirality (MOC): an advanced chiral pool. Synthesis 48, 2997–3016 (2016).

    Article  CAS  Google Scholar 

  95. Tomohara, K., Yoshimura, T., Hyakutake, R., Yang, P. & Kawabata, T. Asymmetric α-arylation of amino acid derivatives by Clayden rearrangement of ester enolates via memory of chirality. J. Am. Chem. Soc. 135, 13294–13297 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Kawabata, T., Moriyama, K., Kawakami, S. & Tsubaki, K. Powdered KOH in DMSO: an efficient base for asymmetric cyclization via memory of chirality at ambient temperature. J. Am. Chem. Soc. 130, 4153–4157 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Kawabata, T., Yahiro, K. & Fuji, K. Memory of chirality: enantioselective alkylation reactions at an asymmetric carbon adjacent to a carbonyl group. J. Am. Chem. Soc. 113, 9694–9696 (1991).

    Article  CAS  Google Scholar 

  98. Zhao, H., Hsu, D. C. & Carlier, P. R. Memory of chirality: an emerging strategy for asymmetric synthesis. Synthesis 2005, 1–16 (2005).

    Google Scholar 

  99. Bringmann, G. et al. Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384–5427 (2005).

    Article  CAS  Google Scholar 

  100. Tanaka, K. Transition-metal-catalyzed enantio-selective [2+2+2] cycloadditions for the synthesis of axially chiral biaryls. Chem. Asian J. 4, 508–518 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Wencel-Delord, J., Panossian, A., Leroux, F. R. & Colobert, F. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls. Chem. Soc. Rev. 44, 3418–3430 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Zilate, B., Castrogiovanni, A. & Sparr, C. Catalyst-controlled stereoselective synthesis of atropisomers. ACS Catal. 8, 2981–2988 (2018).

    Article  CAS  Google Scholar 

  103. Liao, G., Zhou, T., Yao, Q.-J. & Shi, B.-F. Recent advances in the synthesis of axially chiral biaryls via transition metal-catalysed asymmetric C–H functionalization. Chem. Commun. 55, 8514–8523 (2019).

    Article  CAS  Google Scholar 

  104. Bao, X., Rodriguez, J. & Bonne, D. Enantioselective synthesis of atropisomers with multiple stereogenic axes. Angew. Chem. Int. Ed. 59, 12623–12634 (2020).

    Article  CAS  Google Scholar 

  105. Zhao, Q., Peng, C., Wang, Y.-T., Zhan, G. & Han, B. Recent progress on the construction of axial chirality through transition-metal-catalyzed benzannulation. Org. Chem. Front. 8, 2772–2785 (2021).

    Article  CAS  Google Scholar 

  106. Wittig, G., Pieper, G. & Fuhrmann, G. Über die bildung von diphenyl aus fluorbenzol und phenyl-lithium (IV. Mitteil. über Austauschreaktionen mit phenyl-lithium). Ber. Dtsch. Chem. Ges. A B 73, 1193–1197 (1940).

    Article  Google Scholar 

  107. Gilman, H. & Gaj, B. Coupling reactions with some organolithium compounds in tetrahydrofuran. J. Org. Chem. 22, 447–449 (1957).

    Article  CAS  Google Scholar 

  108. Leroux, F. & Schlosser, M. The ‘aryne’ route to biaryls featuring uncommon substituent patterns. Angew. Chem. Int. Ed. 41, 4272–4274 (2002).

    Article  CAS  Google Scholar 

  109. Berthelot-Bréhier, A., Panossian, A., Colobert, F. & Leroux, F. R. Atroposelective synthesis of axially chiral P,S-ligands based on arynes. Org. Chem. Front. 2, 634–644 (2015).

    Article  Google Scholar 

  110. Leroux, F. R., Berthelot, A., Bonnafoux, L., Panossian, A. & Colobert, F. Transition-metal-free atropo-selective synthesis of biaryl compounds based on arynes. Chemistry 18, 14232–14236 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Augros, D. et al. Atropo-diastereoselective coupling of aryllithiums and arynes — variations around the chiral auxiliary. Tetrahedron 72, 5208–5220 (2016).

    Article  CAS  Google Scholar 

  112. Yalcouye, B. et al. Access to atropisomerically enriched biaryls by the coupling of aryllithiums with arynes under control by homochiral oxazolines. Eur. J. Org. Chem. 2016, 725–732 (2016).

    Article  CAS  Google Scholar 

  113. Augros, D. et al. Transition-metal-free synthesis of a known intermediate in the formal synthesis of (–)-steganacin. Eur. J. Org. Chem. 2017, 497–503 (2017).

    Article  CAS  Google Scholar 

  114. Augros, D. et al. The winding road towards an atropo-enantioselective ‘ARYNE coupling’. Eur. J. Org. Chem. 2021, 1971–1978 (2021).

    Article  CAS  Google Scholar 

  115. Wei, Y.-L., Dauvergne, G., Rodriguez, J. & Coquerel, Y. Enantiospecific generation and trapping reactions of aryne atropisomers. J. Am. Chem. Soc. 142, 16921–16925 (2020). The first example showing that an aryne with an axially chiral biaryl skeleton can be used in a reaction while retaining its axial chirality.

    Article  CAS  PubMed  Google Scholar 

  116. Dauvergne, G. et al. Determination of the rate constant of the [4 + 2] cycloaddition between an aryne atropisomer and furan in solution. J. Org. Chem. 87, 11141–11147 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Mohanan, K., Coquerel, Y. & Rodriguez, J. Transition-metal-free α-arylation of β-keto amides via an interrupted insertion reaction of arynes. Org. Lett. 14, 4686–4689 (2012). The first paper showing the possibility of catalytic asymmetric synthesis in α-arylation of β-keto amide.

    Article  CAS  PubMed  Google Scholar 

  118. Li, L., Li, Y., Fu, N., Zhang, L. & Luo, S. Catalytic asymmetric electrochemical α-arylation of cyclic β-ketocarbonyls with anodic benzyne intermediates. Angew. Chem. Int. Ed. 59, 14347–14351 (2020). The second paper on catalytic asymmetric synthesis using arynes to achieve high enantioselectivities in excess of 90% ee and the first example in central asymmetry control.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges a Grant-in-Aid for Scientific Research (B) (22H02081), a Grant-in-Aid for Challenging Exploratory Research (22K19035) and a Toshiaki Ogasawara Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Kamikawa.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Christopher Jones and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamikawa, K. Asymmetric reactions involving aryne intermediates. Nat Rev Chem 7, 496–510 (2023). https://doi.org/10.1038/s41570-023-00485-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00485-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing