Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Decoupled aqueous batteries using pH-decoupling electrolytes

Subjects

Abstract

Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, which theoretically impedes further improvement of their energy density. However, the pH-decoupling electrolyte with an acidic catholyte and an alkaline anolyte has been verified to broaden the operating voltage window of the aqueous electrolyte to over 3 V, which goes beyond the voltage limitations of the aqueous batteries, making high-energy aqueous batteries possible. In this Review, we summarize the latest decoupled aqueous batteries based on pH-decoupling electrolytes from the perspective of ion-selective membranes, competitive redox couples and potential battery prototypes. The inherent defects and problems of these decoupled aqueous batteries are systematically analysed, and the critical scientific issues of this battery technology for future applications are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Typical strategies for widening the operating voltage window of aqueous electrolytes.
Fig. 2: Ion-selective membrane in a decoupled battery.
Fig. 3: Liquid junction potential in a decoupled battery.
Fig. 4: Redox couples in a decoupled battery.
Fig. 5: Decoupled battery prototypes.
Fig. 6: Cell configurations for decoupled batteries in the future.

Similar content being viewed by others

References

  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Pasta, M., Wessells, C. D., Huggins, R. A. & Cui, Y. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 (2012).

    Article  PubMed  Google Scholar 

  4. Kim, H. et al. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Tripathi, A. M., Su, W. N. & Hwang, B. J. In situ analytical techniques for battery interface analysis. Chem. Soc. Rev. 47, 736–851 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Chao, D. et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sui, Y. & Ji, X. Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem. Rev. 121, 6654–6695 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015). This paper reports that water-in-salt electrolytes significantly widen the operation voltage windows of aqueous electrolytes and enable high-voltage aqueous LIBs.

    Article  CAS  PubMed  Google Scholar 

  9. Yamada, Y., Wang, J., Ko, S., Watanabe, E. & Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019).

    Article  CAS  Google Scholar 

  10. Xie, J., Liang, Z. & Lu, Y. C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020). This paper reports that molecular crowding agents are able to break the hydrogen-bond network of water, thereby substantially suppressing the activity of water.

    Article  CAS  PubMed  Google Scholar 

  11. Bi, H. et al. A universal approach to aqueous energy storage via ultralow-cost electrolyte with super-concentrated sugar as hydrogen-bond-regulated solute. Adv. Mater. 32, 2000074 (2020).

    Article  CAS  Google Scholar 

  12. Zhong, C. et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat. Energy 5, 440–449 (2020). This paper reports a decoupled Zn–MnO2 battery based on the multiple IEMs, including CEM and AEM.

    Article  CAS  Google Scholar 

  13. Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. McEldrew, M., Goodwin, Z. A., Kornyshev, A. A. & Bazant, M. Z. Theory of the double layer in water-in-salt electrolytes. J. Phys. Chem. Lett. 9, 5840–5846 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, X., Chandrabose, R. S., Jian, Z., Xing, Z. & Ji, X. A 1.8 V aqueous supercapacitor with a bipolar assembly of ion-exchange membranes as the separator. J. Electrochem. Soc. 163, 1853–1858 (2016).

    Article  Google Scholar 

  16. Gu, S., Gong, K., Yan, E. Z. & Yan, Y. A multiple ion-exchange membrane design for redox flow batteries. Energy Environ. Sci. 7, 2986–2998 (2014). This paper introduces the multiple IEM designs into flow batteries to improve the working voltages of flow batteries.

    Article  CAS  Google Scholar 

  17. Chao, D. et al. Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32, 2001894 (2020).

    Article  CAS  Google Scholar 

  18. Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, X. et al. Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core–rim polycyclic aromatic hydrocarbons. Nat. Nanotechnol. 15, 307–312 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Yip, N. Y., Brogioli, D., Hamelers, H. V. M. & Nijmeijer, K. Salinity gradients for sustainable energy: primer, progress, and prospects. Environ. Sci. Technol. 50, 12072–12094 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, M., Chen, R., Shen, Y., Zhao, X. & Shen, X. A high-energy aqueous manganese–metal hydride hybrid battery. Adv. Mater. 32, 2001106 (2020).

    Article  CAS  Google Scholar 

  22. Jin, Z., Li, P. & Xiao, D. A hydrogen-evolving hybrid-electrolyte battery with electrochemical/photoelectrochemical charging from water oxidation. ChemSusChem 10, 483–488 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Ran, J. et al. Ion exchange membranes: new developments and applications. J. Membr. Sci. 522, 267–291 (2017).

    Article  CAS  Google Scholar 

  24. Luo, T., Abdu, S. & Wessling, M. Selectivity of ion exchange membranes: a review. J. Membr. Sci. 555, 429–454 (2018).

    Article  CAS  Google Scholar 

  25. Li, L. & Manthiram, A. Long-life, high-voltage acidic Zn–air batteries. Adv. Energy Mater. 6, 1502054 (2016). This paper reports a decoupled Zn–air battery based on a NASICON-type Li-ion solid electrolyte.

    Article  Google Scholar 

  26. Chen, L., Guo, Z., Xia, Y. & Wang, Y. High-voltage aqueous battery approaching 3 V using an acidic–alkaline double electrolyte. Chem. Commun. 49, 2204–2206 (2013).

    Article  CAS  Google Scholar 

  27. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  CAS  Google Scholar 

  28. Zhao, Q., Stalin, S., Zhao, C. Z. & Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020).

    Article  CAS  Google Scholar 

  29. Liu, C., Chi, X., Han, Q. & Liu, Y. A high energy density aqueous battery achieved by dual dissolution/deposition reactions separated in acid-alkaline electrolyte. Adv. Energy Mater. 10, 1903589 (2020).

    Article  CAS  Google Scholar 

  30. Yu, F. et al. Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3V voltage window. Energy Storage Mater. 19, 56–61 (2019). This paper reports a decoupled Zn–Br battery based on a bipolar membrane.

    Article  Google Scholar 

  31. Ding, Y., Cai, P. & Wen, Z. Electrochemical neutralization energy: from concept to devices. Chem. Soc. Rev. 50, 1495–1511 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Epsztein, R., Shaulsky, E., Qin, M. & Elimelech, M. Activation behavior for ion permeation in ion-exchange membranes: role of ion dehydration in selective transport. J. Membr. Sci. 580, 316–326 (2019).

    Article  CAS  Google Scholar 

  33. Feng, J. D. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Kordesh, K. & Weissenbacher, M. Rechargeable alkaline manganese dioxide/zinc batteries. J. Power Sources 51, 61–78 (1994).

    Article  Google Scholar 

  35. Ovshinsky, S. R., Fetcenko, M. A. & Ross, J. A nickel metal hydride battery for electric vehicles. Science 260, 176–181 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Putois, F. Market for nickel-cadmium batteries. J. Power Sources 57, 67–70 (1995).

    Article  CAS  Google Scholar 

  37. Ji, H. et al. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 5, 3317 (2014).

    Article  PubMed  Google Scholar 

  38. Fleischmann, S. et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, X., Xie, Y., Tang, K., Wang, C. & Yan, C. Redox chemistry of molybdenum trioxide for ultrafast hydrogen-ion storage. Angew. Chem. Int. Ed. 57, 11569–11573 (2018).

    Article  CAS  Google Scholar 

  40. Hong, J. J. et al. A dual plating battery with the iodine/[ZnIx(OH2)4−x]2−x cathode. Angew. Chem. Int. Ed. 58, 15910–15915 (2019).

    Article  CAS  Google Scholar 

  41. Choi, C. et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2020).

    Article  Google Scholar 

  42. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Sun, Y., Liu, N. & Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071 (2016).

    Article  CAS  Google Scholar 

  44. Wang, Y. et al. Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 155, 706–726 (2019).

    Article  CAS  Google Scholar 

  45. Cai, Z. et al. Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 27, 205–211 (2020).

    Article  Google Scholar 

  46. Lee, J. H. et al. High-energy efficiency membraneless flowless Zn–Br battery: utilizing the electrochemical–chemical growth of polybromides. Adv. Mater. 31, 1904524 (2019).

    Article  CAS  Google Scholar 

  47. Liu, T., Wei, X., Nie, Z., Sprenkle, V. & Wang, W. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte. Adv. Energy Mater. 6, 1501449 (2016).

    Article  Google Scholar 

  48. Lin, K. et al. Alkaline quinone flow battery. Science 349, 1529–1532 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Tian, H. et al. High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 8, 14083 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gurieff, N., Timchenko, V. & Menictas, C. Variable porous electrode compression for redox flow battery systems. Batteries 4, 53 (2018).

    Article  CAS  Google Scholar 

  51. Peng, Z., Freunberger, S. A., Chen, Y. & Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 337, 563–566 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Qiao, Y. et al. Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 1, 359–370 (2017).

    Article  CAS  Google Scholar 

  53. Ma, J. L., Bao, D., Shi, M. M., Yan, J. M. & Zhang, X. B. Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage. Chem 2, 525–532 (2017).

    Article  CAS  Google Scholar 

  54. Huang, Z. F. et al. Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Adv. Energy Mater. 7, 1700544 (2017).

    Article  Google Scholar 

  55. Xu, W., Lu, Z., Sun, X., Jiang, L. & Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 51, 1590–1598 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Maja, M., Orecchia, C., Strano, M., Tosco, P. & Vanni, M. Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries. Electrochim. Acta 46, 423–432 (2000).

    Article  CAS  Google Scholar 

  57. Lee, W. K., Ho, C. H., Van Zee, J. W. & Murthy, M. The effects of compression and gas diffusion layers on the performance of a PEM fuel cell. J. Power Sources 84, 45–51 (1999).

    Article  CAS  Google Scholar 

  58. Pan, J. et al. Advanced architectures and relatives of air electrodes in Zn–air batteries. Adv. Sci. 5, 1700691 (2018).

    Article  Google Scholar 

  59. Sun, W. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 371, 46–51 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Goodenough, J. B. & Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Yuan, L. X. et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 4, 269–284 (2011).

    Article  CAS  Google Scholar 

  62. Chao, D. & Qiao, S. Z. Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte? Joule 4, 1846–1851 (2020).

    Article  Google Scholar 

  63. Shen, Y. & Kordesch, K. The mechanism of capacity fade of rechargeable alkaline manganese dioxide zinc cells. J. Power Sources 87, 162–166 (2000).

    Article  CAS  Google Scholar 

  64. Winter, M. & Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4270 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Donne, S. W., Lawrance, G. A. & Swinkels, D. A. Redox processes at the manganese dioxide electrode: I. constant-current intermittent discharge. J. Electrochem. Soc. 144, 2949–2953 (1997).

    Article  CAS  Google Scholar 

  66. Gibson, A. J. et al. Dynamic electrodeposition of manganese dioxide: temporal variation in the electrodeposition mechanism. J. Electrochem. Soc. 163, H305 (2016).

    Article  CAS  Google Scholar 

  67. Singh, A. et al. Towards a high MnO2 loading and gravimetric capacity from proton-coupled Mn4+/Mn2+ reactions using a 3D free-standing conducting scaffold. J. Mater. Chem. A 9, 1500–1506 (2021).

    Article  CAS  Google Scholar 

  68. Xu, Y. et al. High-voltage rechargeable alkali–acid Zn–PbO2 hybrid battery. Angew. Chem. Int. Ed. 59, 23593–23597 (2020).

    Article  CAS  Google Scholar 

  69. Noack, J., Roznyatovskaya, N., Herr, T. & Fischer, P. The chemistry of redox-flow batteries. Angew. Chem. Int. Ed. 54, 9776–9809 (2015).

    Article  CAS  Google Scholar 

  70. Khor, A. et al. Review of zinc-based hybrid flow batteries: from fundamentals to applications. Mater. Today Energy 8, 80–108 (2018).

    Article  Google Scholar 

  71. Chang, Z. et al. Rechargeable Li//Br battery: a promising platform for post lithium ion batteries. J. Mater. Chem. A 2, 19444–19450 (2014).

    Article  CAS  Google Scholar 

  72. Bai, P., Viswanathan, V. & Bazant, M. Z. A dual-mode rechargeable lithium–bromine/oxygen fuel cell. J. Mater. Chem. A 3, 14165–14172 (2015).

    Article  CAS  Google Scholar 

  73. Bray, W. C. The hydrolysis of iodine and bromine. J. Am. Chem. Soc. 32, 932–938 (1910).

    Article  CAS  Google Scholar 

  74. Jones, G. & Baeckström, S. The standard potential of the bromine electrode. J. Am. Chem. Soc. 56, 1524–1528 (1934).

    Article  CAS  Google Scholar 

  75. Fischer, J. & Bingle, J. The vapor pressure of bromine from 24 to 116°. J. Am. Chem. Soc. 77, 6511–6512 (1955).

    Article  CAS  Google Scholar 

  76. Küttinger, M., Loichet Torres, P. A., Meyer, E., Fischer, P. & Tübke, J. Systematic study of quaternary ammonium cations for bromine sequestering application in high energy density electrolytes for hydrogen bromine redox flow batteries. Molecules 26, 2721 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hoobin, P. M., Cathro, K. J. & Niere, J. O. Stability of zinc/bromine battery electrolytes. J. Appl. Electrochem. 19, 943–945 (1989).

    Article  CAS  Google Scholar 

  78. Kautek, W. In situ investigations of bromine-storing complex formation in a zinc-flow battery at gold electrodes. J. Electrochem. Soc. 146, 3211–3216 (1999).

    Article  CAS  Google Scholar 

  79. Eustace, D. J. Bromine complexation in zinc-bromine circulating batteries. J. Electrochem. Soc. 127, 528–532 (1980).

    Article  CAS  Google Scholar 

  80. Li, Y. et al. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 4, 1805 (2013).

    Article  PubMed  Google Scholar 

  81. Li, Y. & Dai, H. Recent advances in zinc–air batteries. Chem. Soc. Rev. 43, 5257–5275 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Fu, J. et al. Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Adv. Mater. 29, 1604685 (2017).

    Article  Google Scholar 

  83. Lee, D. U., Choi, J. Y., Feng, K., Park, H. W. & Chen, Z. Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries. Adv. Energy Mater. 4, 1301389 (2014).

    Article  Google Scholar 

  84. Zhang, J., Zhao, Z., Xia, Z. & Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444–452 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Geng, D. et al. From lithium-oxygen to lithium-air batteries: challenges and opportunities. Adv. Energy Mater. 6, 1502164 (2016).

    Article  Google Scholar 

  86. Lin, C. et al. High-voltage asymmetric metal–air batteries based on polymeric single-Zn2+-ion conductor. Matter 4, 1287–1304 (2021). This paper designs a polymeric single-Zn2+-ion conductor, making high-voltage decoupled metal–air batteries possible.

    Article  CAS  Google Scholar 

  87. Zhang, L. & Lin, Z. Higher-voltage asymmetric-electrolyte metal-air batteries. Joule 5, 1325–1327 (2021).

    Article  Google Scholar 

  88. Matter, P. H. & Ozkan, U. S. Non-metal catalysts for dioxygen reduction in an acidic electrolyte. Catal. Lett. 109, 115–123 (2006).

    Article  CAS  Google Scholar 

  89. Li, L. & Manthiram, A. Decoupled bifunctional air electrodes for high-performance hybrid lithium-air batteries. Nano Energy 9, 94–100 (2014).

    Article  CAS  Google Scholar 

  90. Yu, X. & Manthiram, A. A voltage-enhanced, low-cost aqueous iron–air battery enabled with a mediator-ion solid electrolyte. ACS Energy Lett. 2, 1050–1055 (2017).

    Article  CAS  Google Scholar 

  91. Wen, H. et al. Ultrahigh voltage and energy density aluminum-air battery based on aqueous alkaline-acid hybrid electrolyte. Int. J. Energy Res. 44, 10652–10661 (2020).

    Article  CAS  Google Scholar 

  92. Xu, K. Diffusionless charge transfer. Nat. Energy 4, 93–94 (2019).

    Article  Google Scholar 

  93. Xie, F. et al. Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 11, 2003419 (2021).

    Article  CAS  Google Scholar 

  94. Yuan, L. et al. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14, 5669–5689 (2021).

    Article  CAS  Google Scholar 

  95. Zhao, S. et al. All-in-one and bipolar-membrane-free acid-alkaline hydrogel electrolytes for flexible high-voltage Zn-air batteries. Chem. Eng. J. 430, 132718 (2022).

    Article  CAS  Google Scholar 

  96. Gong, K. et al. A zinc–iron redox-flow battery under $100 per kW h of system capital cost. Energy Environ. Sci. 8, 2941–2945 (2015).

    Article  CAS  Google Scholar 

  97. Li, H., Weng, G., Li, C. Y. V. & Chan, K. Y. Three electrolyte high voltage acid–alkaline hybrid rechargeable battery. Electrochim. Acta 56, 9420–9425 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant nos. 21725103, 51522101, 51471075, 51631004 and 51401084), National Key R&D Program of China (grant no. 2019YFA0705700) and the China Postdoctoral Science Foundation (grant no. 2020M681035).

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and Y.Z. contributed to the writing and editing of all sections of the manuscript. All authors contributed to the research and discussion of data, figure preparation and proofreading of the manuscript.

Corresponding author

Correspondence to Xin-bo Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks W. Hu, S. Qiao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Ion-selective membrane

(ISM). A semipermeable membrane that has selective transmissibility to specific ions in solution.

Permselectivity

A term to define the preferential permeation of certain ionic species through ion-exchange membranes.

Donnan equilibrium

Also known as the Gibbs–Donnan effect, the behaviour of charged particles near a semipermeable membrane, which sometimes fail to distribute evenly across the two sides of the membrane.

Bipolar membranes

(BPMs). A special class of ion-exchange membranes constituted by a cation-exchange and an anion-exchange layer, which allows the generation of protons and hydroxide ions via a water dissociation mechanism.

Proton-exchange membrane

(PEM). A kind of semipermeable membrane generally made from ionomers and designed to conduct protons.

Grotthuss mechanism

Also known as proton-hopping mechanism, a proton transport mode in the hydrogen-bond network of water molecules or other hydrogen-bonded liquids, which is completed via the cooperative breaking and formation of hydrogen bonds and O–H covalent bonds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Yh., Cui, Yf., Xie, Zl. et al. Decoupled aqueous batteries using pH-decoupling electrolytes. Nat Rev Chem 6, 505–517 (2022). https://doi.org/10.1038/s41570-022-00397-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00397-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing