Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A comparison of RAFT and ATRP methods for controlled radical polymerization

Abstract

Reversible addition–fragmentation chain-transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) are the two most common controlled radical polymerization methods. Both methods afford functional polymers with a predefined length, composition, dispersity and end group. Further, RAFT and ATRP tame radicals by reversibly converting active polymeric radicals into dormant chains. However, the mechanisms by which the ATRP and RAFT methods control chain growth are distinct, so each method presents unique opportunities and challenges, depending on the desired application. This Perspective compares RAFT and ATRP by identifying their mechanistic strengths and weaknesses, and their latest synthetic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of ATRP and RAFT.
Fig. 2: Common monomers and reagents used in RAFT and ATRP.
Fig. 3: Synthesis of complex multiblock copolymers with ATRP and RAFT.
Fig. 4: There are diverse methods to remove or functionalize an end group.

Similar content being viewed by others

References

  1. Staudinger, H. Über polymerisation. Ber. Dtsch. Chem. Ges. 53, 1073–1085 (1920).

    Article  Google Scholar 

  2. Kato, M., Kamigaito, M., Sawamoto, M. & Higashimura, T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(ii)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 28, 1721–1723 (1995).

    Article  CAS  Google Scholar 

  3. Wang, J.-S. & Matyjaszewski, K. Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 117, 5614–5615 (1995).

    Article  CAS  Google Scholar 

  4. Chiefari, J. et al. Living free-radical polymerization by reversible addition–fragmentation chain transfer: the RAFT process. Macromolecules 31, 5559–5562 (1998).

    Article  CAS  Google Scholar 

  5. Matyjaszewski, K. & Xia, J. Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Moad, G., Rizzardo, E. & Thang, S. H. Living radical polymerization by the RAFT process. Aust. J. Chem. 58, 379–410 (2005).

    Article  CAS  Google Scholar 

  7. Konkolewicz, D., Krys, P. & Matyjaszewski, K. Explaining unexpected data via competitive equilibria and processes in radical reactions with reversible deactivation. Acc. Chem. Res. 47, 3028–3036 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Lin, C. Y., Coote, M. L., Gennaro, A. & Matyjaszewski, K. Ab initio evaluation of the thermodynamic and electrochemical properties of alkyl halides and radicals and their mechanistic implications for atom transfer radical polymerization. J. Am. Chem. Soc. 130, 12762–12774 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Tang, W. et al. Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants. J. Am. Chem. Soc. 130, 10702–10713 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Tang, W. & Matyjaszewski, K. Effects of initiator structure on activation rate constants in ATRP. Macromolecules 40, 1858–1863 (2007).

    Article  CAS  Google Scholar 

  11. Fang, C. et al. Mechanistically guided predictive models for ligand and initiator effects in copper-catalyzed atom transfer radical polymerization (Cu-ATRP). J. Am. Chem. Soc. 141, 7486–7497 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Whitfield, R., Parkatzidis, K., Rolland, M., Truong, N. P. & Anastasaki, A. Tuning dispersity by photoinduced atom transfer radical polymerisation: monomodal distributions with ppm copper concentration. Angew. Chem. Int. Ed. 58, 13323–13328 (2019).

    Article  CAS  Google Scholar 

  13. Ribelli, T. G. et al. Disproportionation or combination? The termination of acrylate radicals in ATRP. Macromolecules 50, 7920–7929 (2017).

    Article  CAS  Google Scholar 

  14. Ribelli, T. G., Wahidur Rahaman, S. M., Krys, P., Matyjaszewski, K. & Poli, R. Effect of ligand structure on the Cuii–R OMRP dormant species and its consequences for catalytic radical termination in ATRP. Macromolecules 49, 7749–7757 (2016).

    Article  CAS  Google Scholar 

  15. Xie, G. et al. Benefits of catalyzed radical termination: high-yield synthesis of polyacrylate molecular bottlebrushes without gelation. Macromolecules 51, 6218–6225 (2018).

    Article  CAS  Google Scholar 

  16. Matyjaszewski, K. et al. Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. Proc. Natl Acad. Sci. USA 103, 15309–15314 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Percec, V. et al. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C. J. Am. Chem. Soc. 128, 14156–14165 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Anastasaki, A. et al. Cu(0)-mediated living radical polymerization: a versatile tool for materials synthesis. Chem. Rev. 116, 835–877 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Anastasaki, A. et al. Copper(ii)/tertiary amine synergy in photoinduced living radical polymerization: accelerated synthesis of ω-functional and α,ω-heterofunctional poly(acrylates). J. Am. Chem. Soc. 136, 1141–1149 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Ribelli, T. G., Konkolewicz, D., Bernhard, S. & Matyjaszewski, K. How are radicals (re)generated in photochemical ATRP? J. Am. Chem. Soc. 136, 13303–13312 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Konkolewicz, D., Schröder, K., Buback, J., Bernhard, S. & Matyjaszewski, K. Visible light and sunlight photoinduced ATRP with ppm of Cu catalyst. ACS Macro Lett. 1, 1219–1223 (2012).

    Article  CAS  Google Scholar 

  22. Magenau, A. J. D., Strandwitz, N. C., Gennaro, A. & Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization. Science 332, 81–84 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Mohapatra, H., Kleiman, M. & Esser-Kahn, A. P. Mechanically controlled radical polymerization initiated by ultrasound. Nat. Chem. 9, 135–139 (2017).

    Article  CAS  Google Scholar 

  24. Leibfarth, F. A., Mattson, K. M., Fors, B. P., Collins, H. A. & Hawker, C. J. External regulation of controlled polymerizations. Angew. Chem. Int. Ed. 52, 199–210 (2013).

    Article  CAS  Google Scholar 

  25. Poelma, J. E., Fors, B. P., Meyers, G. F., Kramer, J. W. & Hawker, C. J. Fabrication of complex three-dimensional polymer brush nanostructures through light-mediated living radical polymerization. Angew. Chem. Int. Ed. 52, 6844–6848 (2013).

    Article  CAS  Google Scholar 

  26. Wang, Y. et al. Improving the “livingness” of ATRP by reducing Cu catalyst concentration. Macromolecules 46, 683–691 (2013).

    Article  CAS  Google Scholar 

  27. Treat, N. J. et al. Metal-free atom transfer radical polymerization. J. Am. Chem. Soc. 136, 16096–16101 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Theriot, J. C. et al. Organocatalyzed atom transfer radical polymerization driven by visible light. Science 352, 1082–1086 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Moad, C. L., Moad, G., Rizzardo, E. & Thang, S. H. Chain transfer activity of ω-unsaturated methyl methacrylate oligomers. Macromolecules 29, 7717–7726 (1996).

    Article  CAS  Google Scholar 

  30. Engelis, N. G. et al. Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization. Nat. Chem. 9, 171–178 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Perrier, S. 50th anniversary perspective: RAFT polymerization — a user guide. Macromolecules 50, 7433–7447 (2017).

    Article  CAS  Google Scholar 

  32. Whitfield, R., Parkatzidis, K., Truong, N. P., Junkers, T. & Anastasaki, A. Tailoring polymer dispersity by RAFT polymerization: a versatile approach. Chem 6, 1340–1352 (2020).

    Article  CAS  Google Scholar 

  33. Zhang, B. et al. Enzyme-initiated reversible addition–fragmentation chain transfer polymerization. Macromolecules 48, 7792–7802 (2015).

    Article  CAS  Google Scholar 

  34. Carmean, R. N., Becker, T. E., Sims, M. B. & Sumerlin, B. S. Ultra-high molecular weights via aqueous reversible-deactivation radical polymerization. Chem 2, 93–101 (2017).

    Article  CAS  Google Scholar 

  35. Rizzardo, E. & Moad, G. Synthesis of dithioester chain transfer agents and use of bis(thioacyl) disulfides or dithioesters as chain transfer agents. Patent WO/1999/005099 (1999).

  36. Carmean, R. N. et al. Ultrahigh molecular weight hydrophobic acrylic and styrenic polymers through organic-phase photoiniferter-mediated polymerization. ACS Macro Lett. 9, 613–618 (2020).

    Article  CAS  Google Scholar 

  37. Xu, J., Jung, K., Atme, A., Shanmugam, S. & Boyer, C. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance. J. Am. Chem. Soc. 136, 5508–5519 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Allegrezza, M. L. & Konkolewicz, D. PET-RAFT polymerization: mechanistic perspectives for future materials. ACS Macro Lett. 10, 433–446 (2021).

    Article  CAS  Google Scholar 

  39. Lorandi, F. et al. Toward electrochemically mediated reversible addition–fragmentation chain-transfer (eRAFT) polymerization: can propagating radicals be efficiently electrogenerated from RAFT agents? Macromolecules 52, 1479–1488 (2019).

    Article  CAS  Google Scholar 

  40. McKenzie, T. G., Colombo, E., Fu, Q., Ashokkumar, M. & Qiao, G. G. Sono-RAFT polymerization in aqueous medium. Angew. Chem. Int. Ed. 56, 12302–12306 (2017).

    Article  CAS  Google Scholar 

  41. An, Z. 100th anniversary of macromolecular science viewpoint: achieving ultrahigh molecular weights with reversible deactivation radical polymerization. ACS Macro Lett. 9, 350–357 (2020).

    Article  CAS  Google Scholar 

  42. Asua, J. M. et al. Critically evaluated rate coefficients for free-radical polymerization, 5. Macromol. Chem. Phys. 205, 2151–2160 (2004).

    Article  CAS  Google Scholar 

  43. Jones, G. R. et al. Copper-mediated reversible deactivation radical polymerization in aqueous media. Angew. Chem. Int. Ed. 57, 10468–10482 (2018).

    Article  CAS  Google Scholar 

  44. Averick, S. et al. ATRP under biologically relevant conditions: grafting from a protein. ACS Macro Lett. 1, 6–10 (2012).

    Article  CAS  Google Scholar 

  45. Simakova, A., Averick, S. E., Konkolewicz, D. & Matyjaszewski, K. Aqueous ARGET ATRP. Macromolecules 45, 6371–6379 (2012).

    Article  CAS  Google Scholar 

  46. Appel, E. A., Del Barrio, J., Loh, X. J., Dyson, J. & Scherman, O. A. High molecular weight polyacrylamides by atom transfer radical polymerization: enabling advancements in water-based applications. J. Polym. Sci. A Polym. Chem. 50, 181–186 (2012).

    Article  CAS  Google Scholar 

  47. Kwiatkowski, P. et al. High molecular weight polymethacrylates by AGET ATRP under high pressure. Macromolecules 41, 1067–1069 (2008).

    Article  CAS  Google Scholar 

  48. Mueller, L. et al. Synthesis of high molecular weight polystyrene using AGET ATRP under high pressure. Eur. Polym. J. 47, 730–734 (2011).

    Article  CAS  Google Scholar 

  49. Truong, N. P., Dussert, M. V., Whittaker, M. R., Quinn, J. F. & Davis, T. P. Rapid synthesis of ultrahigh molecular weight and low polydispersity polystyrene diblock copolymers by RAFT-mediated emulsion polymerization. Polym. Chem. 6, 3865–3874 (2015).

    Article  CAS  Google Scholar 

  50. Zhang, Q. et al. Aqueous copper-mediated living polymerization: exploiting rapid disproportionation of CuBr with Me6TREN. J. Am. Chem. Soc. 135, 7355–7363 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Raus, V. & Kostka, L. Optimizing the Cu-RDRP of N-(2-hydroxypropyl) methacrylamide toward biomedical applications. Polym. Chem. 10, 564–568 (2019).

    Article  CAS  Google Scholar 

  52. Pan, X. et al. Effect of solvents on the RAFT polymerization of N-(2-hydroxypropyl) methacrylamide. Eur. Polym. J. 115, 166–172 (2019).

    Article  CAS  Google Scholar 

  53. Dong, H., Tang, W. & Matyjaszewski, K. Well-defined high-molecular-weight polyacrylonitrile via activators regenerated by electron transfer ATRP. Macromolecules 40, 2974–2977 (2007).

    Article  CAS  Google Scholar 

  54. Niu, S. et al. Synthesis of high molecular weight and narrow molecular weight distribution poly(acrylonitrile) via RAFT polymerization. J. Polym. Sci. A Polym. Chem. 51, 1197–1204 (2013).

    Article  CAS  Google Scholar 

  55. Mittal, A., Sivaram, S. & Baskaran, D. Unfavorable coordination of copper with methyl vinyl ketone in atom transfer radical polymerization. Macromolecules 39, 5555–5558 (2006).

    Article  CAS  Google Scholar 

  56. Lee, I.-H., Discekici, E. H., Anastasaki, A., de Alaniz, J. R. & Hawker, C. J. Controlled radical polymerization of vinyl ketones using visible light. Polym. Chem. 8, 3351–3356 (2017).

    Article  CAS  Google Scholar 

  57. Cheng, C., Sun, G., Khoshdel, E. & Wooley, K. L. Well-defined vinyl ketone-based polymers by reversible addition–fragmentation chain transfer polymerization. J. Am. Chem. Soc. 129, 10086–10087 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Reeves, J. A., Allegrezza, M. L. & Konkolewicz, D. Rise and fall: poly(phenyl vinyl ketone) photopolymerization and photodegradation under visible and UV radiation. Macromol. Rapid Commun. 38, 1600623 (2017).

    Article  Google Scholar 

  59. Enciso, A. E. et al. p-Substituted tris(2-pyridylmethyl)amines as ligands for highly active ATRP catalysts: facile synthesis and characterization. Angew. Chem. Int. Ed. 59, 14910–14920 (2020).

    Article  CAS  Google Scholar 

  60. Ribelli, T. G. et al. Synthesis and characterization of the most active copper ATRP catalyst based on tris[(4-dimethylaminopyridyl)methyl]amine. J. Am. Chem. Soc. 140, 1525–1534 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Lu, X. et al. Controllable synthesis of poly(N-vinylpyrrolidone) and its block copolymers by atom transfer radical polymerization. Polymer 48, 2835–2842 (2007).

    Article  CAS  Google Scholar 

  62. Harrisson, S. et al. RAFT polymerization of vinyl esters: synthesis and applications. Polymers 6, 1437–1488 (2014).

    Article  Google Scholar 

  63. Ding, C. et al. Photocatalyst-free and blue light-induced RAFT polymerization of vinyl acetate at ambient temperature. Macromol. Rapid Commun. 36, 2181–2185 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Stace, S. J., Moad, G., Fellows, C. M. & Keddie, D. J. The effect of Z-group modification on the RAFT polymerization of N-vinylpyrrolidone controlled by “switchable” N-pyridyl-functional dithiocarbamates. Polym. Chem. 6, 7119–7126 (2015).

    Article  CAS  Google Scholar 

  65. Guinaudeau, A., Mazières, S., Wilson, D. J. & Destarac, M. Aqueous RAFT/MADIX polymerisation of N-vinyl pyrrolidone at ambient temperature. Polym. Chem. 3, 81–84 (2012).

    Article  CAS  Google Scholar 

  66. Dommanget, C., D’Agosto, F. & Monteil, V. Polymerization of ethylene through reversible addition–fragmentation chain transfer (RAFT). Angew. Chem. Int. Ed. 53, 6683–6686 (2014).

    Article  CAS  Google Scholar 

  67. Fantin, M., Isse, A. A., Venzo, A., Gennaro, A. & Matyjaszewski, K. Atom transfer radical polymerization of methacrylic acid: a won challenge. J. Am. Chem. Soc. 138, 7216–7219 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Lorandi, F. et al. Atom transfer radical polymerization of acrylic and methacrylic acids: preparation of acidic polymers with various architectures. ACS Macro Lett. 9, 693–699 (2020).

    Article  CAS  Google Scholar 

  69. Willcock, H. & O’Reilly, R. K. End group removal and modification of RAFT polymers. Polym. Chem. 1, 149–157 (2010).

    Article  CAS  Google Scholar 

  70. Bates, C. M. & Bates, F. S. 50th anniversary perspective: block polymers — pure potential. Macromolecules 50, 3–22 (2017).

    Article  CAS  Google Scholar 

  71. Keddie, D. J. A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization. Chem. Soc. Rev. 43, 496–505 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Peng, C.-H., Kong, J., Seeliger, F. & Matyjaszewski, K. Mechanism of halogen exchange in ATRP. Macromolecules 44, 7546–7557 (2011).

    Article  CAS  Google Scholar 

  73. Easterling, C. P., Xia, Y., Zhao, J., Fanucci, G. E. & Sumerlin, B. S. Block copolymer sequence inversion through photoiniferter polymerization. ACS Macro Lett. 8, 1461–1466 (2019).

    Article  CAS  Google Scholar 

  74. Gody, G., Zetterlund, P. B., Perrier, S. & Harrisson, S. The limits of precision monomer placement in chain growth polymerization. Nat. Commun. 7, 10514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Anastasaki, A. et al. One-pot synthesis of ABCDE multiblock copolymers with hydrophobic, hydrophilic, and semi-fluorinated segments. Angew. Chem. Int. Ed. 56, 14483–14487 (2017).

    Article  CAS  Google Scholar 

  76. Soeriyadi, A. H., Boyer, C., Nyström, F., Zetterlund, P. B. & Whittaker, M. R. High-order multiblock copolymers via iterative Cu(0)-mediated radical polymerizations (SET-LRP): toward biological precision. J. Am. Chem. Soc. 133, 11128–11131 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Anastasaki, A. et al. Photoinduced sequence-control via one pot living radical polymerization of acrylates. Chem. Sci. 5, 3536–3542 (2014).

    Article  CAS  Google Scholar 

  78. Gody, G., Maschmeyer, T., Zetterlund, P. B. & Perrier, S. Rapid and quantitative one-pot synthesis of sequence-controlled polymers by radical polymerization. Nat. Commun. 4, 2505 (2013).

    Article  PubMed  Google Scholar 

  79. Fischer, H. The persistent radical effect: A principle for selective radical reactions and living radical polymerizations. Chem. Rev. 101, 3581–3610 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Clothier, G. K. K. et al. Exploitation of the nanoreactor concept for efficient synthesis of multiblock copolymers via macroRAFT-mediated emulsion polymerization. ACS Macro Lett. 8, 989–995 (2019).

    Article  CAS  Google Scholar 

  81. Martin, L., Gody, G. & Perrier, S. Preparation of complex multiblock copolymers via aqueous RAFT polymerization at room temperature. Polym. Chem. 6, 4875–4886 (2015).

    Article  CAS  Google Scholar 

  82. Gauthier, M. A., Gibson, M. I. & Klok, H.-A. Synthesis of functional polymers by post-polymerization modification. Angew. Chem. Int. Ed. 48, 48–58 (2009).

    Article  CAS  Google Scholar 

  83. Tao, L., Mantovani, G., Lecolley, F. & Haddleton, D. M. α-Aldehyde terminally functional methacrylic polymers from living radical polymerization: application in protein conjugation “pegylation”. J. Am. Chem. Soc. 126, 13220–13221 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Pauloehrl, T. et al. Adding spatial control to click chemistry: phototriggered Diels–Alder surface (bio)functionalization at ambient temperature. Angew. Chem. Int. Ed. 51, 1071–1074 (2012).

    Article  CAS  Google Scholar 

  85. Laurent, B. A. & Grayson, S. M. An efficient route to well-defined macrocyclic polymers via “click” cyclization. J. Am. Chem. Soc. 128, 4238–4239 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Altintas, O. et al. ATRP-based polymers with modular ligation points under thermal and thermomechanical stress. Polym. Chem. 6, 2854–2868 (2015).

    Article  CAS  Google Scholar 

  87. Anastasaki, A., Willenbacher, J., Fleischmann, C., Gutekunst, W. R. & Hawker, C. J. End group modification of poly(acrylates) obtained via ATRP: a user guide. Polym. Chem. 8, 689–697 (2017).

    Article  CAS  Google Scholar 

  88. Huang, X., Nakagawa, S., Li, X., Shibayama, M. & Yoshie, N. A simple and versatile method for the construction of nearly ideal polymer networks. Angew. Chem. Int. Ed. 59, 9646–9652 (2020).

    Article  CAS  Google Scholar 

  89. Lutz, J.-F., Börner, H. G. & Weichenhan, K. Combining ATRP and “click” chemistry: a promising platform toward functional biocompatible polymers and polymer bioconjugates. Macromolecules 39, 6376–6383 (2006).

    Article  CAS  Google Scholar 

  90. Adzima, B. J. et al. Spatial and temporal control of the alkyne–azide cycloaddition by photoinitiated Cu(ii) reduction. Nat. Chem. 3, 256–259 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  92. Renterghem, L. M. V. et al. Design and use of organic nanoparticles prepared from star-shaped polymers with reactive end groups. J. Am. Chem. Soc. 130, 10802–10811 (2008).

    Article  PubMed  Google Scholar 

  93. Wager, C. M., Haddleton, D. M. & Bon, S. A. A simple method to convert atom transfer radical polymerization (ATRP) initiators into reversible addition fragmentation chain-transfer (RAFT) mediators. Eur. Polym. J. 40, 641–645 (2004).

    Article  CAS  Google Scholar 

  94. Kulis, J., Bell, C. A., Micallef, A. S., Jia, Z. & Monteiro, M. J. Rapid, selective, and reversible nitroxide radical coupling (NRC) reactions at ambient temperature. Macromolecules 42, 8218–8227 (2009).

    Article  CAS  Google Scholar 

  95. Harvison, M. A. & Lowe, A. B. Combining RAFT radical polymerization and click/highly efficient coupling chemistries: a powerful strategy for the preparation of novel materials. Macromol. Rapid Commun. 32, 779–800 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Inglis, A. J., Sinnwell, S., Stenzel, M. H. & Barner-Kowollik, C. Ultrafast click conjugation of macromolecular building blocks at ambient temperature. Angew. Chem. Int. Ed. 48, 2411–2414 (2009).

    Article  CAS  Google Scholar 

  97. Hansell, C. F. et al. Additive-free clicking for polymer functionalization and coupling by tetrazine–norbornene chemistry. J. Am. Chem. Soc. 133, 13828–13831 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Nebhani, L. et al. Efficient surface modification of divinylbenzene microspheres via a combination of RAFT and hetero Diels–Alder chemistry. Macromol. Rapid Commun. 29, 1431–1437 (2008).

    Article  CAS  Google Scholar 

  99. Inglis, A. J., Sinnwell, S., Davis, T. P., Barner-Kowollik, C. & Stenzel, M. H. Reversible addition fragmentation chain transfer (RAFT) and hetero-Diels–Alder chemistry as a convenient conjugation tool for access to complex macromolecular designs. Macromolecules 41, 4120–4126 (2008).

    Article  CAS  Google Scholar 

  100. Dietrich, M. et al. Facile conversion of RAFT polymers into hydroxyl functional polymers: a detailed investigation of variable monomer and RAFT agent combinations. Polym. Chem. 1, 634–644 (2010).

    Article  CAS  Google Scholar 

  101. Lunn, D. J., Discekici, E. H., Read de Alaniz, J., Gutekunst, W. R. & Hawker, C. J. Established and emerging strategies for polymer chain-end modification. J. Polym. Sci. A Polym. Chem. 55, 2903–2914 (2017).

    Article  CAS  Google Scholar 

  102. Destarac, M. Industrial development of reversible-deactivation radical polymerization: is the induction period over? Polym. Chem. 9, 4947–4967 (2018).

    Article  CAS  Google Scholar 

  103. Theodorou, A. et al. Protein–polymer bioconjugates via a versatile oxygen tolerant photoinduced controlled radical polymerization approach. Nat. Commun. 11, 1486 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. De, P., Li, M., Gondi, S. R. & Sumerlin, B. S. Temperature-regulated activity of responsive polymer–protein conjugates prepared by grafting-from via RAFT polymerization. J. Am. Chem. Soc. 130, 11288–11289 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Bontempo, D., Heredia, K. L., Fish, B. A. & Maynard, H. D. Cysteine-reactive polymers synthesized by atom transfer radical polymerization for conjugation to proteins. J. Am. Chem. Soc. 126, 15372–15373 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Panganiban, B. et al. Random heteropolymers preserve protein function in foreign environments. Science 359, 1239–1243 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Niu, J. et al. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat. Chem. 9, 537–545 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Kim, J. Y. et al. Cytocompatible polymer grafting from individual living cells by atom-transfer radical polymerization. Angew. Chem. Int. Ed. 55, 15306–15309 (2016).

    Article  CAS  Google Scholar 

  109. Warren, N. J. & Armes, S. P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 136, 10174–10185 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yan, J. et al. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol. 14, 684–690 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Ramírez-García, P. D. et al. A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain. Nat. Nanotechnol. 14, 1150–1159 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Jung, K. et al. Designing with light: advanced 2D, 3D, and 4D materials. Adv. Mater. 32, 1903850 (2020).

    Article  CAS  Google Scholar 

  113. Zhang, Z., Corrigan, N., Bagheri, A., Jin, J. & Boyer, C. A versatile 3D and 4D printing system through photocontrolled RAFT polymerization. Angew. Chem. Int. Ed. 58, 17954–17963 (2019).

    Article  CAS  Google Scholar 

  114. Convertine, A. J., Benoit, D. S., Duvall, C. L., Hoffman, A. S. & Stayton, P. S. Development of a novel endosomolytic diblock copolymer for siRNA delivery. J. Control. Release 133, 221–229 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Hedir, G. G. et al. Functional degradable polymers by xanthate-mediated polymerization. Macromolecules 47, 2847–2852 (2014).

    Article  CAS  Google Scholar 

  116. Benaglia, M. et al. Universal (switchable) RAFT agents. J. Am. Chem. Soc. 131, 6914–6915 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Lawrence, J. et al. A versatile and scalable strategy to discrete oligomers. J. Am. Chem. Soc. 138, 6306–6310 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Holerca, M. N. et al. Monodisperse macromolecules by self-interrupted living polymerization. J. Am. Chem. Soc. 142, 15265–15270 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Lutz, J.-F., Neugebauer, D. & Matyjaszewski, K. Stereoblock copolymers and tacticity control in controlled/living radical polymerization. J. Am. Chem. Soc. 125, 6986–6993 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Shanmugam, S. & Boyer, C. Stereo-, temporal and chemical control through photoactivation of living radical polymerization: synthesis of block and gradient copolymers. J. Am. Chem. Soc. 137, 9988–9999 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Rubens, M., Vrijsen, J. H., Laun, J. & Junkers, T. Precise polymer synthesis by autonomous self-optimizing flow reactors. Angew. Chem. Int. Ed. 58, 3183–3187 (2019).

    Article  CAS  Google Scholar 

  122. Coates, G. W. & Getzler, Y. D. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.A. gratefully acknowledges ETH Zürich for financial support. N.P.T. acknowledges the award of a DECRA Fellowship from the ARC (DE180100076). D.K. acknowledges the National Science Foundation under grant no. DMR-1749730 and the Robert H. and Nancy J. Blayney Professorship.

Author information

Authors and Affiliations

Authors

Contributions

N.P.T., G.R.J., K.G.E.B., D.K. and A.A. co-wrote the manuscript. Key concepts were developed by A.A. and D.K.

Corresponding authors

Correspondence to Dominik Konkolewicz or Athina Anastasaki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks G. Moad, C. Barner-Kowollik and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, N.P., Jones, G.R., Bradford, K.G.E. et al. A comparison of RAFT and ATRP methods for controlled radical polymerization. Nat Rev Chem 5, 859–869 (2021). https://doi.org/10.1038/s41570-021-00328-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00328-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing