Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Haemostatic materials for wound healing applications

Abstract

Wounds are one of the most common health issues, and the cost of wound care and healing has continued to increase over the past decade. The first step in wound healing is haemostasis, and the development of haemostatic materials that aid wound healing has accelerated in the past 5 years. Numerous haemostatic materials have been fabricated, composed of different active components (including natural polymers, synthetic polymers, silicon-based materials and metal-containing materials) and in various forms (including sponges, hydrogels, nanofibres and particles). In this Review, we provide an overview of haemostatic materials in wound healing, focusing on their chemical design and operation. We describe the physiological process of haemostasis to elucidate the principles that underpin the design of haemostatic wound dressings. We also highlight the advantages and limitations of the different active components and forms of haemostatic materials. The main challenges and future directions in the development of haemostatic materials for wound healing are proposed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of primary and secondary haemostasis.
Fig. 2: Haemostatic sponges in wound healing.
Fig. 3: Haemostatic hydrogels in wound healing with different adhesive mechanisms.
Fig. 4: Haemostatic nanofibres in wound healing.
Fig. 5: Haemostatic particles in wound healing.
Fig. 6: Hybrid haemostatic materials.

Similar content being viewed by others

References

  1. Hong, Y. et al. A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds. Nat. Commun. 10, 2060 (2019).

    PubMed  PubMed Central  Google Scholar 

  2. Ong, S. Y., Wu, J., Moochhala, S. M., Tan, M. H. & Lu, J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29, 4323–4332 (2008).

    CAS  PubMed  Google Scholar 

  3. Yuan, H., Chen, L. & Hong, F. F. A biodegradable antibacterial nanocomposite based on oxidized bacterial nanocellulose for rapid hemostasis and wound healing. ACS Appl. Mater. Interfaces 12, 3382–3392 (2020).

    CAS  PubMed  Google Scholar 

  4. Behrens, A. M., Sikorski, M. J. & Kofinas, P. Hemostatic strategies for traumatic and surgical bleeding. J. Biomed. Mater. Res. A 102, 4182–4194 (2014).

    PubMed  Google Scholar 

  5. Zia, J., Kimball, J., Rolfes, C., Hahn, J. O. & Inan, O. T. Enabling the assessment of trauma-induced hemorrhage via smart wearable systems. Sci. Adv. 6, eabb1708 (2020).

    PubMed  PubMed Central  Google Scholar 

  6. Han, W. et al. Biofilm-inspired adhesive and antibacterial hydrogel with tough tissue integration performance for sealing hemostasis and wound healing. Bioact. Mater. 5, 768–778 (2020).

    PubMed  PubMed Central  Google Scholar 

  7. Hu, G. et al. Multifunctional silicon-carbon nanohybrids simultaneously featuring bright fluorescence, high antibacterial and wound healing activity. Small 15, e1803200 (2019).

    PubMed  Google Scholar 

  8. Liang, Y. et al. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small 15, e1900046 (2019).

    PubMed  Google Scholar 

  9. Liu, C. et al. Efficient antibacterial dextran-montmorillonite composite sponge for rapid hemostasis with wound healing. Int. J. Biol. Macromol. 160, 1130–1143 (2020).

    CAS  PubMed  Google Scholar 

  10. Qu, J. et al. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 183, 185–199 (2018).

    CAS  PubMed  Google Scholar 

  11. Hou, S. et al. Polysaccharide-peptide cryogels for multidrug-resistant-bacteria infected wound healing and hemostasis. Adv. Healthc. Mater. 9, e1901041 (2020).

    PubMed  Google Scholar 

  12. Bhagat, V., O’Brien, E., Zhou, J. & Becker, M. L. Caddisfly inspired phosphorylated poly(ester urea)-based degradable bone adhesives. Biomacromolecules 17, 3016–3024 (2016).

    CAS  PubMed  Google Scholar 

  13. Cheng, W. et al. Processing, characterization and hemostatic mechanism of a ultraporous collagen/ORC biodegradable composite with excellent biological effectiveness. Phys. Chem. Chem. Phys. 18, 29183–29191 (2016).

    CAS  PubMed  Google Scholar 

  14. Huang, H. et al. Degradable and bioadhesive alginate-based composites: an effective hemostatic agent. ACS Biomater. Sci. Eng. 5, 5498–5505 (2019).

    CAS  PubMed  Google Scholar 

  15. Huang, Y. et al. Degradable gelatin-based IPN cryogel hemostat for rapidly stopping deep noncompressible hemorrhage and simultaneously improving wound healing. Chem. Mater. 32, 6595–6610 (2020).

    CAS  Google Scholar 

  16. Chen, G. P. et al. Bioinspired multifunctional hybrid hydrogel promotes wound healing. Adv. Funct. Mater. 28, 1801386 (2018).

    Google Scholar 

  17. Nandi, S. et al. Ultrasound enhanced synthetic platelet therapy for augmented wound repair. ACS Biomater. Sci. Eng. 6, 3026–3036 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Park, S. I., Lee, H. R., Kim, S., Ahn, M. W. & Do, S. H. Time-sequential modulation in expression of growth factors from platelet-rich plasma (PRP) on the chondrocyte cultures. Mol. Cell. Biochem. 361, 9–17 (2012).

    CAS  PubMed  Google Scholar 

  19. Roy, S. et al. Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation. Wound Repair. Regen. 19, 753–766 (2011).

    PubMed  PubMed Central  Google Scholar 

  20. Du, X. et al. Anti-infective and pro-coagulant chitosan-based hydrogel tissue adhesive for sutureless wound closure. Biomacromolecules 21, 1243–1253 (2020).

    CAS  PubMed  Google Scholar 

  21. Gao, L. et al. A novel dual-adhesive and bioactive hydrogel activated by bioglass for wound healing. NPG Asia Mater. 11, 66 (2019).

    CAS  Google Scholar 

  22. Lokhande, G. et al. Nanoengineered injectable hydrogels for wound healing application. Acta Biomater. 70, 35–47 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Frelinger, A. L. et al. Platelet-rich plasma stimulated by pulse electric fields: platelet activation, procoagulant markers, growth factor release and cell proliferation. Platelets 27, 128–135 (2016).

    CAS  PubMed  Google Scholar 

  24. Bano, I., Arshad, M., Yasin, T., Ghauri, M. A. & Younus, M. Chitosan: a potential biopolymer for wound management. Int. J. Biol. Macromol. 102, 380–383 (2017).

    CAS  PubMed  Google Scholar 

  25. Harkins, A. L., Duri, S., Kloth, L. C. & Tran, C. D. Chitosan-cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility. J. Biomed. Mater. Res. B 102, 1199–1206 (2014).

    Google Scholar 

  26. Ueno, H., Mori, T. & Fujinaga, T. Topical formulations and wound healing applications of chitosan. Adv. Drug Deliv. Rev. 52, 105–115 (2001).

    CAS  PubMed  Google Scholar 

  27. Ebrahimi, M., Golaghaei, A., Mehramizi, A. & Morovati, A. Design and formulation of inorganic dispersed organogel for hemostasis. J. Res. Med. Dent. Sci. 6, 18–23 (2018).

    Google Scholar 

  28. Sandri, G. et al. in Wound Healing Biomaterials (ed. Agren, M. S.) 385-402 (Elsevier, 2016).

  29. Zhou, Y., Ma, X., Li, Z. & Wang, B. Efficacy, safety, and physicochemical properties of a flowable hemostatic agent made from absorbable gelatin sponge via vacuum pressure steam sterilization. J. Biomater. Appl. 35, 776–789 (2020).

    PubMed  Google Scholar 

  30. Liu, C. et al. A highly efficient, in situ wet-adhesive dextran derivative sponge for rapid hemostasis. Biomaterials 205, 23–37 (2019).

    CAS  PubMed  Google Scholar 

  31. Okamoto, S. et al. Positive effect on bone fusion by the combination of platelet-rich plasma and a gelatin beta-tricalcium phosphate sponge: a study using a posterolateral fusion model of lumbar vertebrae in rats. Tissue Eng. Part. A 18, 157–166 (2012).

    CAS  PubMed  Google Scholar 

  32. Zhao, X. et al. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater. 30, 1910748 (2020).

    CAS  Google Scholar 

  33. Wang, L. et al. A novel double-crosslinking‐double-network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment. Adv. Funct. Mater. 30, 1904156 (2019).

    Google Scholar 

  34. Leonhardt, E. E., Kang, N., Hamad, M. A., Wooley, K. L. & Elsabahy, M. Absorbable hemostatic hydrogels comprising composites of sacrificial templates and honeycomb-like nanofibrous mats of chitosan. Nat. Commun. 10, 2307 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Bu, Y. et al. Tetra-PEG based hydrogel sealants for in vivo visceral hemostasis. Adv. Mater. 31, e1901580 (2019).

    PubMed  Google Scholar 

  36. Zhao, X. et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122, 34–47 (2017).

    CAS  PubMed  Google Scholar 

  37. Pourshahrestani, S., Zeimaran, E., Kadri, N. A., Mutlu, N. & Boccaccini, A. R. Polymeric hydrogel systems as emerging biomaterial platforms to enable hemostasis and wound healing. Adv. Healthc. Mater. 9, 2000905 (2020).

    CAS  Google Scholar 

  38. Zhao, X. et al. Injectable dry cryogels with excellent blood-sucking expansion and blood clotting to cease hemorrhage for lethal deep-wounds, coagulopathy and tissue regeneration. Chem. Eng. J. 403, 126329 (2021).

    CAS  Google Scholar 

  39. Li, Z. et al. Superhydrophobic hemostatic nanofiber composites for fast clotting and minimal adhesion. Nat. Commun. 10, 5562 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao, H. et al. Construction of cellulose nanofibers/quaternized chitin/organic rectorite composites and their application as wound dressing materials. Biomater. Sci. 7, 2571–2581 (2019).

    CAS  PubMed  Google Scholar 

  41. Hoseinpour Najar, M., Minaiyan, M. & Taheri, A. Preparation and in vivo evaluation of a novel gel-based wound dressing using arginine-alginate surface-modified chitosan nanofibers. J. Biomater. Appl. 32, 689–701 (2018).

    CAS  PubMed  Google Scholar 

  42. Liu, M., Duan, X. P., Li, Y. M., Yang, D. P. & Long, Y. Z. Electrospun nanofibers for wound healing. Mater. Sci. Eng. C. Mater. Biol. Appl. 76, 1413–1423 (2017).

    CAS  PubMed  Google Scholar 

  43. Manoukian, O. S. et al. in Wound Healing Biomaterials, Vol 2: Functional Biomaterials Vol. 115 Woodhead Publishing Series in Biomaterials (ed. Agren, M. S.) 451-481 (Elsevier, 2016).

  44. Sproul, E. P. et al. Development of biomimetic antimicrobial platelet-like particles comprised of microgel nanogold composites. Regen. Eng. Transl. Med. 6, 299–309 (2020).

    CAS  PubMed  Google Scholar 

  45. Nandi, S. et al. Platelet-like particles dynamically stiffen fibrin matrices and improve wound healing outcomes. Biomater. Sci. 7, 669–682 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Nica, O., Popa, D. G., Grecu, A. F., Ciuca, E. M. & Ciurea, M. E. Histological aspects of full-thickness skin grafts augmented with platelet-rich fibrin in rat model. Rom. J. Morphol. Embryol. 60, 581–588 (2019).

    PubMed  Google Scholar 

  47. Li, N. et al. Tannic acid cross-linked polysaccharide-based multifunctional hemostatic microparticles for the regulation of rapid wound healing. Macromol. Biosci. 18, 1800209 (2018).

    Google Scholar 

  48. Biranje, S. S. et al. Hemostasis and anti-necrotic activity of wound-healing dressing containing chitosan nanoparticles. Int. J. Biol. Macromol. 121, 936–946 (2019).

    CAS  PubMed  Google Scholar 

  49. Tong, Z. R. et al. Preparation, characterization and properties of alginate/poly(γ-glutamic acid) composite microparticles. Mar. Drugs 15, 91 (2017).

    PubMed Central  Google Scholar 

  50. Yu, L. et al. A tightly-bonded and flexible mesoporous zeolite-cotton hybrid hemostat. Nat. Commun. 10, 1932 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. Zhu, J., Li, F., Wang, X., Yu, J. & Wu, D. Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing. ACS Appl. Mater. Interfaces 10, 13304–13316 (2018).

    CAS  PubMed  Google Scholar 

  52. Xu, Q. et al. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomater. 75, 63–74 (2018).

    CAS  PubMed  Google Scholar 

  53. Golafshan, N., Rezahasani, R., Esfahani, M. T., Kharaziha, M. & Khorasani, S. N. Nanohybrid hydrogels of laponite: PVA-alginate as a potential wound healing material. Carbohydr. Polym. 176, 392–401 (2017).

    CAS  PubMed  Google Scholar 

  54. Enoch, S. & Leaper, D. J. Basic science of wound healing. Surgery 26, 31–37 (2008).

    Google Scholar 

  55. Broughton, G. II, Janis, J. E. & Attinger, C. E. Wound healing: an overview. Plast. Reconstr. Surg. 117, 1e-S–32e-S (2006).

    Google Scholar 

  56. Velnar, T., Bailey, T. & Smrkoli, V. The wound healing process: an overview of the cellular and molecular mechanisms. J. Int. Med. Res. 37, 1528–1542 (2009).

    CAS  PubMed  Google Scholar 

  57. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    CAS  PubMed  Google Scholar 

  58. Reinke, J. M. & Sorg, H. Wound repair and regeneration. Eur. Surg. Res. 49, 35–43 (2012).

    CAS  PubMed  Google Scholar 

  59. Baum, C. L. & Arpey, C. J. Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol. Surg. 31, 674–686 (2005).

    CAS  PubMed  Google Scholar 

  60. Smyth, S. S. et al. Platelet functions beyond hemostasis. J. Thromb. Haemost. 7, 1759–1766 (2009).

    CAS  PubMed  Google Scholar 

  61. Laurens, N., Koolwijk, P. & de Maat, M. P. Fibrin structure and wound healing. J. Thromb. Haemost. 4, 932–939 (2006).

    CAS  PubMed  Google Scholar 

  62. Yang, S. et al. Multifunctional chitosan/polycaprolactone nanofiber scaffolds with varied dual-drug release for wound-healing applications. ACS Biomater. Sci. Eng. 6, 4666–4676 (2020).

    CAS  PubMed  Google Scholar 

  63. Zhao, X., Guo, B., Wu, H., Liang, Y. & Ma, P. X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 9, 2784 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Peng, Z.-X. et al. Adjustment of the antibacterial activity and biocompatibility of hydroxypropyltrimethyl ammonium chloride chitosan by varying the degree of substitution of quaternary ammonium. Carbohyd. Polym. 81, 275–283 (2010).

    CAS  Google Scholar 

  65. Wu, Z. et al. Antibacterial and hemostatic thiol-modified chitosan-immobilized AgNPs composite sponges. ACS Appl. Mater. Interfaces 12, 20307–20320 (2020).

    CAS  PubMed  Google Scholar 

  66. Du, X. et al. Injectable hydrogel composed of hydrophobically modified chitosan/oxidized-dextran for wound healing. Mater. Sci. Eng. C. Mater. Biol. Appl. 104, 109930 (2019).

    CAS  PubMed  Google Scholar 

  67. Lu, D. et al. Biomimetic chitosan-graft-polypeptides for improved adhesion in tissue and metal. Carbohydr. Polym. 215, 20–28 (2019).

    CAS  PubMed  Google Scholar 

  68. Chen, J. et al. Synergistic enhancement of hemostatic performance of mesoporous silica by hydrocaffeic acid and chitosan. Int. J. Biol. Macromol. 139, 1203–1211 (2019).

    CAS  PubMed  Google Scholar 

  69. Liu, C. Y. et al. Mussel-inspired degradable antibacterial polydopamine/silica nanoparticle for rapid hemostasis. Biomaterials 179, 83–95 (2018).

    CAS  PubMed  Google Scholar 

  70. Jennings, J. A. in Chitosan based biomaterials volume 1 (eds Amber Jennings J. & Bumgardner J. D.) 159-182 (Woodhead Publishing, 2017).

  71. Deng, Y. et al. Novel fenugreek gum-cellulose composite hydrogel with wound healing synergism: facile preparation, characterization and wound healing activity evaluation. Int. J. Biol. Macromol. 160, 1242–1251 (2020).

    CAS  PubMed  Google Scholar 

  72. Zheng, C. et al. Development of a novel bio-inspired “cotton-like” collagen aggregate/chitin based biomaterial with a biomimetic 3D microstructure for efficient hemostasis and tissue repair. J. Mater. Chem. B 7, 7338–7350 (2019).

    CAS  PubMed  Google Scholar 

  73. Xie, X. et al. Functionalized biomimetic composite nanfibrous scaffolds with antibacterial and hemostatic efficacy for facilitating wound healing. J. Biomed. Nanotechnol. 15, 1267–1279 (2019).

    CAS  PubMed  Google Scholar 

  74. Hamada, Y., Nagashima, Y. & Shiomi, K. Identification of collagen as a new fish allergen. Biosci. Biotech. Bioch 65, 285–291 (2001).

    CAS  Google Scholar 

  75. Pan, H. et al. Non-stick hemostasis hydrogels as dressings with bacterial barrier activity for cutaneous wound healing. Mater. Sci. Eng. C. Mater. Biol. Appl. 105, 110118 (2019).

    CAS  PubMed  Google Scholar 

  76. Pan, H. et al. Preparation and characterization of breathable hemostatic hydrogel dressings and determination of their effects on full-thickness defects. Polymers 9, 727 (2017).

    PubMed Central  Google Scholar 

  77. Wang, Z. et al. Green gas-mediated cross-linking generates biomolecular hydrogels with enhanced strength and excellent hemostasis for wound healing. ACS Appl. Mater. Interfaces 12, 13622–13633 (2020).

    CAS  PubMed  Google Scholar 

  78. Lan, G. et al. Ag improvement of platelet aggregation and rapid induction of hemostasis in chitosan dressing using silver nanoparticles. Cellulose 27, 385–400 (2020).

    CAS  Google Scholar 

  79. Kim, S. D. et al. Effectiveness of hemostatic gelatin sponge as a packing material after septoplasty: a prospective, randomized, multicenter study. Auris Nasus Larynx 45, 286–290 (2018).

    PubMed  Google Scholar 

  80. Nishiguchi, A., Kurihara, Y. & Taguchi, T. Underwater-adhesive microparticle dressing composed of hydrophobically-modified Alaska pollock gelatin for gastrointestinal tract wound healing. Acta Biomater. 99, 387–396 (2019).

    CAS  PubMed  Google Scholar 

  81. Liang, Y. et al. Injectable antimicrobial conductive hydrogels for wound disinfection and infectious wound healing. Biomacromolecules 21, 1841–1852 (2020).

    CAS  PubMed  Google Scholar 

  82. Zhang, S. et al. Oxidized cellulose-based hemostatic materials. Carbohyd. Polym. 230, 115585 (2020).

    CAS  Google Scholar 

  83. Wang, C. et al. Bioinspired, injectable, quaternized hydroxyethyl cellulose composite hydrogel coordinated by mesocellular silica foam for rapid, noncompressible hemostasis and wound healing. ACS Appl. Mater. Interfaces 11, 34595–34608 (2019).

    CAS  PubMed  Google Scholar 

  84. Mendes, B. B. et al. Intrinsically bioactive cryogels based on platelet lysate nanocomposites for hemostasis applications. Biomacromolecules 21, 3678–3692 (2020).

    CAS  PubMed  Google Scholar 

  85. Zhu, J. et al. Peptide-functionalized amino acid-derived pseudoprotein-based hydrogel with hemorrhage control and antibacterial activity for wound healing. Chem. Mater. 31, 4436–4450 (2019).

    CAS  Google Scholar 

  86. Béguin, P. & Aubert, J.-P. The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25–58 (1994).

    PubMed  Google Scholar 

  87. Preman, N. K. et al. Bioresponsive supramolecular hydrogels for hemostasis, infection control and accelerated dermal wound healing. J. Mater. Chem. B 8, 8585–8598 (2020).

    CAS  PubMed  Google Scholar 

  88. Zhang, D. et al. Elastic, persistently moisture-retentive, and wearable biomimetic film inspired by fetal scarless repair for promoting skin wound healing. ACS Appl. Mater. Interfaces 12, 5542–5556 (2020).

    CAS  PubMed  Google Scholar 

  89. Tang, Q. et al. Engineering an adhesive based on photosensitive polymer hydrogels and silver nanoparticles for wound healing. J. Mater. Chem. B 8, 5756–5764 (2020).

    CAS  PubMed  Google Scholar 

  90. Zhang, D. et al. Elastic, persistently moisture-retentive, and wearable biomimetic film inspired by fetal starless repair for promoting skin wound healing. ACS Appl. Mater. Interfaces 12, 5542–5556 (2020).

    CAS  PubMed  Google Scholar 

  91. An, S., Jeon, E. J., Jeon, J. & Cho, S. W. A serotonin-modified hyaluronic acid hydrogel for multifunctional hemostatic adhesives inspired by a platelet coagulation mediator. Mater. Horiz. 6, 1169–1178 (2019).

    CAS  Google Scholar 

  92. Li, M., Zhang, Z., Liang, Y., He, J. & Guo, B. Multifunctional tissue-adhesive cryogel wound dressing for rapid nonpressing surface hemorrhage and wound repair. ACS Appl. Mater. Interfaces 12, 35856–35872 (2020).

    CAS  PubMed  Google Scholar 

  93. Mehdizadeh, M., Weng, H., Gyawali, D., Tang, L. & Yang, J. Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 33, 7972–7983 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, C. et al. Tannic acid-loaded mesoporous silica for rapid hemostasis and antibacterial activity. Biomater. Sci. 6, 3318–3331 (2018).

    CAS  PubMed  Google Scholar 

  95. Yu, Y. L. et al. Multifunctional and recyclable photothermally responsive cryogels as efficient platforms for wound healing. Adv. Funct. Mater. 29, 1904402 (2019).

    Google Scholar 

  96. Wang, Y. C., Bai, M. Y., Hsu, W. Y. & Yu, M. H. Evaluation of a series of silk fibroin protein-based nonwoven mats for use as an anti-adhesion patch for wound management in robotic surgery. J. Biomed. Mater. Res. A 106, 221–230 (2018).

    CAS  PubMed  Google Scholar 

  97. Zhao, R. et al. Nitrofurazone-loaded electrospun PLLA/sericin-based dual-layer fiber mats for wound dressing applications. RSC Adv. 5, 16940–16949 (2015).

    CAS  Google Scholar 

  98. Hao, Y. P. et al. Bio-multifunctional alginate/chitosan/fucoidan sponges with enhanced angiogenesis and hair follicle regeneration for promoting full-thickness wound healing. Mater. Design. 193, 108863 (2020).

    CAS  Google Scholar 

  99. Biranje, S. S. et al. Cytotoxicity and hemostatic activity of chitosan/carrageenan composite wound healing dressing for traumatic hemorrhage. Carbohydr. Polym. 239, 116106 (2020).

    CAS  PubMed  Google Scholar 

  100. Zhang, Z., Wang, X., Wang, Y. & Hao, J. Rapid-forming and self-healing agarose-based hydrogels for tissue adhesives and potential wound dressings. Biomacromolecules 19, 980–988 (2018).

    CAS  PubMed  Google Scholar 

  101. Cone, S. J. et al. Inherent fibrin fiber tension propels mechanisms of network clearance during fibrinolysis. Acta Biomater. 107, 164–177 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Heher, P., Muehleder, S., Mittermayr, R., Redl, H. & Slezak, P. Fibrin-based delivery strategies for acute and chronic wound healing. Adv. Drug Deliver. Rev. 129, 134–147 (2018).

    CAS  Google Scholar 

  103. Reinertsen, E., Skinner, M., Wu, B. & Tawil, B. Concentration of fibrin and presence of plasminogen affect proliferation, fibrinolytic activity, and morphology of human fibroblasts and keratinocytes in 3D fibrin constructs. Tissue Eng. Part. A 20, 2860–2869 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bhatia, S. in Natural Polymer Drug Delivery Systems. 95–118 (Springer, 2016).

  105. Landsman, T. L. et al. A shape memory foam composite with enhanced fluid uptake and bactericidal properties as a hemostatic agent. Acta Biomater. 47, 91–99 (2017).

    CAS  PubMed  Google Scholar 

  106. Bu, Y. et al. Synthesis and properties of hemostatic and bacteria-responsive in situ hydrogels for emergency treatment in critical situations. ACS Appl. Mater. Interfaces 8, 12674–12683 (2016).

    CAS  PubMed  Google Scholar 

  107. Cui, C. Y. et al. Water-triggered hyperbranched polymer universal adhesives: from strong underwater adhesion to rapid sealing hemostasis. Adv. Mater. 31, 1905761 (2019).

    CAS  Google Scholar 

  108. Zhao, Y. F. et al. Synthetic poly(vinyl alcohol)-chitosan as a new type of highly efficient hemostatic sponge with blood-triggered swelling and high biocompatibility. J. Mater. Chem. B 7, 1855–1866 (2019).

    CAS  PubMed  Google Scholar 

  109. Zhang, K. et al. Layered nanofiber sponge with an improved capacity for promoting blood coagulation and wound healing. Biomaterials 204, 70–79 (2019).

    CAS  PubMed  Google Scholar 

  110. Picone, P. et al. Biocompatibility, hemocompatibility and antimicrobial properties of xyloglucan-based hydrogel film for wound healing application. Int. J. Biol. Macromol. 121, 784–795 (2019).

    CAS  PubMed  Google Scholar 

  111. Broekema, F. I., van Oeveren, W., Boerendonk, A., Sharma, P. K. & Bos, R. R. Hemostatic action of polyurethane foam with 55% polyethylene glycol compared to collagen and gelatin. Biomed. Mater. Eng. 27, 149–159 (2016).

    CAS  PubMed  Google Scholar 

  112. Hunt, B. J., Parratt, R., Cable, M., Finch, D. & Yacoub, M. Activation of coagulation and platelets is affected by the hydrophobicity of artificial surfaces. Blood Coagul. Fibrinolysis 8, 223–231 (1997).

    CAS  PubMed  Google Scholar 

  113. Lee, J. H., Ju, Y. M. & Kim, D. M. Platelet adhesion onto segmented polyurethane film surfaces modified by addition and crosslinking of PEO-containing block copolymers. Biomaterials 21, 683–691 (2000).

    CAS  PubMed  Google Scholar 

  114. Sagitha, P. et al. In-vitro evaluation on drug release kinetics and antibacterial activity of dextran modified polyurethane fibrous membrane. Int. J. Biol. Macromol. 126, 717–730 (2019).

    CAS  Google Scholar 

  115. Suryawanshi, Y., Sanap, P. & Wani, V. Advances in the synthesis of non-isocyanate polyurethanes. Polym. Bull. 76, 3233–3246 (2019).

    CAS  Google Scholar 

  116. Shi, X. et al. 3D printed intelligent scaffold prevents recurrence and distal metastasis of breast cancer. Theranostics 10, 10652–10664 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wyrwa, R. et al. Electrospun mucosal wound dressings containing styptics for bleeding control. Mater. Sci. Eng. C. Mater. Biol. Appl. 93, 419–428 (2018).

    CAS  PubMed  Google Scholar 

  118. Zhang, S., Li, H. L., Yuan, M. W., Yuan, M. L. & Chen, H. Y. Poly(lactic acid) blends with poly(trimethylene carbonate) as biodegradable medical adhesive material. Int. J. Mol. Sci. 18, 2041 (2017).

    PubMed Central  Google Scholar 

  119. Guo, H., Tan, S., Gao, J. & Wang, L. Sequential release of drugs form a dual-delivery system based on pH-responsive nanofibrous mats towards wound care. J. Mater. Chem. B 8, 1759–1770 (2020).

    CAS  PubMed  Google Scholar 

  120. Luo, Z. et al. Thermogelling chitosan-based polymers for the treatment of oral mucosa ulcers. Biomater. Sci. 8, 1364–1379 (2020).

    CAS  PubMed  Google Scholar 

  121. Chee, E. et al. Nanosilver composite pNIPAm microgels for the development of antimicrobial platelet-like particles. J. Biomed. Mater. Res. B 108, 2599–2609 (2020).

    CAS  Google Scholar 

  122. Jenkins, L. E. & Davis, L. S. Comprehensive review of tissue adhesives. Dermatol. Surg. 44, 1367–1372 (2018).

    CAS  PubMed  Google Scholar 

  123. Lloris-Carsi, J. M. et al. Behaviour of the biological adhesives Tachosil®, Gelitaspon®, and a new elastic cyanoacrylate (Adhflex®) in experimental renal trauma and wound healing. Eur. Surg. Res. 56, 164–179 (2016).

    CAS  PubMed  Google Scholar 

  124. Chen, J. et al. An adhesive hydrogel with “load-sharing” effect as tissue bandages for drug and cell delivery. Adv. Mater. 32, e2001628 (2020).

    PubMed  PubMed Central  Google Scholar 

  125. Nie, W. et al. One-pot synthesis of silver nanoparticle incorporated mesoporous silica granules for hemorrhage control and antibacterial treatment. ACS Biomater. Sci. Eng. 4, 3588–3599 (2018).

    CAS  PubMed  Google Scholar 

  126. Granville-Chapman, J., Jacobs, N. & Midwinter, M. J. Pre-hospital haemostatic dressings: a systematic review. Injury 42, 447–459 (2011).

    CAS  PubMed  Google Scholar 

  127. Ahuja, N. et al. Testing of modified zeolite hemostatic dressings in a large animal model of lethal groin injury. J. Trauma. 61, 1312–1320 (2006).

    PubMed  Google Scholar 

  128. Long, M. et al. Emerging nanoclay composite for effective hemostasis. Adv. Funct. Mater. 28, 1704452 (2018).

    Google Scholar 

  129. Tian, B. & Liu, Y. Antibacterial applications and safety issues of silica-based materials: a review. Int. J. Appl. Ceram. Tec. 18, 289–301 (2021).

    CAS  Google Scholar 

  130. Lan, G. et al. Improvement of platelet aggregation and rapid induction of hemostasis in chitosan dressing using silver nanoparticles. Cellulose 27, 385–400 (2019).

    Google Scholar 

  131. Liang, Y. et al. Eliminating heat injury of zeolite in hemostasis via thermal conductivity of graphene sponge. ACS Appl. Mater. Interfaces 11, 23848–23857 (2019).

    CAS  PubMed  Google Scholar 

  132. Li, G. et al. Graphene-montmorillonite composite sponge for safe and effective hemostasis. ACS Appl. Mater. Interfaces 8, 35071–35080 (2016).

    CAS  PubMed  Google Scholar 

  133. Liang, Y. et al. Graphene-kaolin composite sponge for rapid and riskless hemostasis. Colloids Surf. B 169, 168–175 (2018).

    CAS  Google Scholar 

  134. Reina, G. et al. Promises, facts and challenges for graphene in biomedical applications. Chem. Soc. Rev. 46, 4400–4416 (2017).

    CAS  PubMed  Google Scholar 

  135. Lin, H. et al. Silicene: wet-chemical exfoliation synthesis and biodegradable tumor nanomedicine. Adv. Mater. 31, e1903013 (2019).

    PubMed  Google Scholar 

  136. Zhou, Y. P. et al. Acetate chitosan with CaCO3 doping form tough hydrogel for hemostasis and wound healing. Polym. Adv. Technol. 30, 143–152 (2019).

    CAS  Google Scholar 

  137. Li, Q. et al. Self-propelling Janus particles for hemostasis in perforating and irregular wounds with massive hemorrhage. Adv. Funct. Mater. 30, 2004153 (2020).

    CAS  Google Scholar 

  138. Rao, K. M., Suneetha, M., Park, G. T., Babu, A. G. & Han, S. S. Hemostatic, biocompatible, and antibacterial non-animal fungal mushroom-based carboxymethyl chitosan-ZnO nanocomposite for wound-healing applications. Int. J. Biol. Macromol. 155, 71–80 (2020).

    CAS  PubMed  Google Scholar 

  139. Ziv-Polat, O., Topaz, M., Brosh, T. & Margel, S. Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles. Biomaterials 31, 741–747 (2010).

    CAS  PubMed  Google Scholar 

  140. Ma, X. et al. Hollow, rough, and nitric oxide-releasing cerium oxide nanoparticles for promoting multiple stages of wound healing. Adv. Healthc. Mater. 8, 1900256 (2019).

    Google Scholar 

  141. Shabanova, E. M. et al. Thrombin@Fe3O4 nanoparticles for use as a hemostatic agent in internal bleeding. Sci. Rep. 8, 233 (2018).

    PubMed  PubMed Central  Google Scholar 

  142. Tatar, C. et al. The effects of platelet-rich plasma on wound healing in rats. Int. J. Clin. Exp. Med. 10, 7698–7706 (2017).

    CAS  Google Scholar 

  143. Mudalal, M. & Zhou, Y. M. Biological additives and platelet concentrates for tissue engineering on regenerative dentistry: basic science and concise review. Asian J. Pharm. 11, 255–263 (2017).

    CAS  Google Scholar 

  144. Fernandez-Moure, J. S. et al. Platelet-rich plasma: a biomimetic approach to enhancement of surgical wound healing. J. Surg. Res. 207, 33–44 (2017).

    PubMed  Google Scholar 

  145. Modery-Pawlowski, C. L. et al. Approaches to synthetic platelet analogs. Biomaterials 34, 526–541 (2013).

    CAS  PubMed  Google Scholar 

  146. Sproul, E. P., Nandi, S., Roosa, C., Schreck, L. & Brown, A. C. Biomimetic microgels with controllable deformability improve healing outcomes. Adv. Biosyst. 2, 1800042 (2018).

    PubMed  PubMed Central  Google Scholar 

  147. Hsu, B. B. et al. Clotting mimicry from robust hemostatic bandages based on self-assembling peptides. ACS Nano 9, 9394–9406 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Shakya, S. et al. Ultrafine silver nanoparticles embedded in cyclodextrin metal-organic frameworks with GRGDS functionalization to promote antibacterial and wound healing application. Small 15, e1901065 (2019).

    PubMed  Google Scholar 

  149. Zhai, Z. et al. Co-assembled supramolecular hydrogels of cell adhesive peptide and alginate for rapid hemostasis and efficacious wound healing. Soft Matter 15, 8603–8610 (2019).

    CAS  PubMed  Google Scholar 

  150. Jenkins, H. P. & Janda, R. Studies on the use of gelatin sponge or foam as a hemostatis agent. Surgery 20, 432–433 (1946).

    Google Scholar 

  151. Jenkins, H. P. & Clarke, J. S. Gelatin sponge, a new hemostatic substance; studies on absorbability. Arch. Surg. 51, 253–261 (1945).

    CAS  PubMed  Google Scholar 

  152. Hajosch, R. et al. A novel gelatin sponge for accelerated hemostasis. J. Biomed. Mater. Res. B 94, 372–379 (2010).

    Google Scholar 

  153. Yonemitsu, T. et al. Comparison of hemostatic durability between N-butyl cyanoacrylate and gelatin sponge particles in transcatheter arterial embolization for acute arterial hemorrhage in a coagulopathic condition in a swine model. Cardiovasc. Intervent. Radiol. 33, 1192–1197 (2010).

    PubMed  Google Scholar 

  154. Lin, J. Y. et al. Efficient synthesis, characterization, and application of biobased scab-bionic hemostatic polymers. Polym. J. 52, 615–627 (2020).

    CAS  Google Scholar 

  155. Du, L. et al. A multifunctional in situ-forming hydrogel for wound healing. Wound Repair. Regen. 20, 904–910 (2012).

    PubMed  Google Scholar 

  156. Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017).

    PubMed  PubMed Central  Google Scholar 

  157. He, J. H., Shi, M. T., Liang, Y. P. & Guo, B. L. Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem. Eng. J. 394, 124888 (2020).

    CAS  Google Scholar 

  158. Lu, D. et al. Mussel-inspired thermoresponsive polypeptide-pluronic copolymers for versatile surgical adhesives and hemostasis. ACS Appl. Mater. Interfaces 9, 16756–16766 (2017).

    CAS  PubMed  Google Scholar 

  159. Saiz-Poseu, J., Mancebo-Aracil, J., Nador, F., Busque, F. & Ruiz-Molina, D. The chemistry behind catechol-based adhesion. Angew. Chem. Int. Ed. 58, 696–714 (2019).

    CAS  Google Scholar 

  160. Ryu, J. H., Hong, S. & Lee, H. Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications: a mini review. Acta Biomater. 27, 101–115 (2015).

    CAS  PubMed  Google Scholar 

  161. Xu, J., Liu, Y. & Hsu, S. H. Hydrogels based on Schiff base linkages for biomedical applications. Molecules 24, 3005 (2019).

    CAS  PubMed Central  Google Scholar 

  162. Li, Y. R. & Cao, Y. The molecular mechanisms underlying mussel adhesion. Nanoscale Adv. 1, 4246–4257 (2019).

    CAS  Google Scholar 

  163. Li, J. et al. Tough adhesives for diverse wet surfaces. Science 357, 378–381 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Cui, C. Y. et al. An autolytic high strength instant adhesive hydrogel for emergency self-rescue. Adv. Funct. Mater. 28, 1804925 (2018).

    Google Scholar 

  165. Liu, X. F. et al. Bifunctional CuS composite nanofibers via in situ electrospinning for outdoor rapid hemostasis and simultaneous ablating superbug. Chem. Eng. J. 401, 126096 (2020).

    CAS  Google Scholar 

  166. Zhao, Y. et al. Preparation of nanofibers with renewable polymers and their application in wound dressing. Int. J. Polym. Sci. 2016, 4672839 (2016).

    Google Scholar 

  167. Li, R. et al. Novel SA@Ca2+/RCSPs core–shell structure nanofibers by electrospinning for wound dressings. RSC Adv. 8, 15558–15566 (2018).

    CAS  Google Scholar 

  168. Sasaki, K., Tenjimbayashi, M., Manabe, K. & Shiratori, S. Asymmetric superhydrophobic/superhydrophilic cotton fabrics designed by spraying polymer and nanoparticles. ACS Appl. Mater. Interfaces 8, 651–659 (2016).

    CAS  PubMed  Google Scholar 

  169. Meddahi-Pelle, A. et al. Organ repair, hemostasis, and in vivo bonding of medical devices by aqueous solutions of nanoparticles. Angew. Chem. Int. Ed. 53, 6369–6373 (2014).

    CAS  Google Scholar 

  170. Nishiguchi, A. et al. Multifunctional hydrophobized microparticles for accelerated wound healing after endoscopic submucosal dissection. Small 15, e1901566 (2019).

    PubMed  Google Scholar 

  171. Vaiana, C. A. et al. Epidermal growth factor: layered silicate nanocomposites for tissue regeneration. Biomacromolecules 12, 3139–3146 (2011).

    CAS  PubMed  Google Scholar 

  172. Ren, X. X. et al. Silk fibroin/chitosan/halloysite composite medical dressing with antibacterial and rapid haemostatic properties. Mater. Res. Express 6, 125409 (2019).

    CAS  Google Scholar 

  173. Sandri, G. et al. Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater. 57, 216–224 (2017).

    CAS  PubMed  Google Scholar 

  174. Brown, A. C. et al. Ultrasoft microgels displaying emergent platelet-like behaviours. Nat. Mater. 13, 1108–1114 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Yang, X. et al. Choline phosphate functionalized cellulose membrane: a potential hemostatic dressing based on a unique bioadhesion mechanism. Acta Biomater. 40, 212–225 (2016).

    CAS  PubMed  Google Scholar 

  176. Verma, Y. K., Verma, R., Sing, A. K. & Gangenahalli, G. LiCl containing thermosensitive formulation improves hemostasis, wound healing, and hair regrowth. Regen. Eng. Transl. Med. https://doi.org/10.1007/s40883-020-00148-0 (2020).

    Article  Google Scholar 

  177. Barroso, J. et al. Safety evaluation of a lyophilized platelet-derived hemostatic product. Transfusion 58, 2969–2977 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Yu, L. et al. Fibrin sealant provides superior hemostasis for sternotomy compared with bone wax. Ann. Thorac. Surg. 93, 641–644 (2012).

    PubMed  Google Scholar 

  179. Danielsen, P. L., Agren, M. S. & Jorgensen, L. N. Platelet-rich fibrin versus albumin in surgical wound repair: a randomized trial with paired design. Ann. Surg. 251, 825–831 (2010).

    PubMed  Google Scholar 

  180. Pippi, R., Santoro, M. & Cafolla, A. The use of a chitosan-derived hemostatic agent for postextraction bleeding control in patients on antiplatelet treatment. J. Oral. Maxillofac. 75, 1118–1123 (2017).

    Google Scholar 

  181. Broekema, F. I. et al. In vivo hemostatic efficacy of polyurethane foam compared to collagen and gelatin. Clin. Oral. Investig. 17, 1273–1278 (2013).

    PubMed  Google Scholar 

  182. Velyvis, J. H. Gelatin matrix use reduces postoperative bleeding after total knee arthroplasty. Orthopedics 38, E118–E123 (2015).

    PubMed  Google Scholar 

  183. Polidoro, D. P. & Kass, P. H. Evaluation of a gelatin matrix as a topical hemostatic agent for hepatic bleeding in the dog. J. Am. Anim. Hosp. Assoc. 49, 308–317 (2013).

    PubMed  Google Scholar 

  184. Ahmadian, Z. et al. A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for pH-responsive wound healing acceleration. Adv. Healthc. Mater. 10, 2001122 (2021).

    CAS  Google Scholar 

  185. Wang, S. Q. et al. Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Lett. 20, 5149–5158 (2020).

    CAS  PubMed  Google Scholar 

  186. He, J. H. et al. Injectable self-healing adhesive pH-responsive hydrogels accelerate gastric hemostasis and wound healing. Nano-Micro Lett. 13, 80 (2021).

    CAS  Google Scholar 

  187. Parani, M., Lokhande, G., Singh, A. & Gaharwar, A. K. Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Appl. Mater. Interfaces 8, 10049–10069 (2016).

    CAS  PubMed  Google Scholar 

  188. Hickman, D. A., Pawlowski, C. L., Sekhon, U. D. S., Marks, J. & Gupta, A. S. Biomaterials and advanced technologies for hemostatic management of bleeding. Adv. Mater. 30, 1700859 (2018).

    Google Scholar 

  189. Litvinov, R. I. & Weisel, J. W. What is the biological and clinical relevance of fibrin? Semin. Thromb. Hemost. 42, 333–343 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Gugerell, A. et al. Thrombin as important factor for cutaneous wound healing: comparison of fibrin biomatrices in vitro and in a rat excisional wound healing model. Wound Repair. Regen. 22, 740–748 (2014).

    PubMed  Google Scholar 

  191. Ahmed, R. et al. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int. J. Biol. Macromol. 120, 385–393 (2018).

    CAS  PubMed  Google Scholar 

  192. Sang, Y. Q., Roest, M., de Laat, B., de Groot, P. G. & Huskens, D. Interplay between platelets and coagulation. Blood Rev. 46, 100733 (2021).

    CAS  PubMed  Google Scholar 

  193. Versteeg, H. H., Heemskerk, J. W., Levi, M. & Reitsma, P. H. New fundamentals in hemostasis. Physiol. Rev. 93, 327–358 (2013).

    CAS  PubMed  Google Scholar 

  194. Dahlback, B. Blood coagulation. Lancet 355, 1627–1632 (2000).

    CAS  PubMed  Google Scholar 

  195. Mutch, N. J. Polyphosphate as a haemostatic modulator. Biochem. Soc. Trans. 44, 18–24 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (grant no. 51973172), the Natural Science Foundation of Shaanxi Province (grant nos 2020JC-03 and 2019TD-020), the State Key Laboratory for Mechanical Behaviour of Materials, the Fundamental Research Funds for the Central Universities, the World-Class Universities (Disciplines) and the Characteristic Development Guidance Funds for the Central Universities and the Opening Project of the Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University (grant no. 2019LHM-KFKT008).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article and writing, reviewing and editing the article before submission.

Corresponding author

Correspondence to Baolin Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks W. Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Angiogenesis

Process leading to the formation of new blood vessels, involving sprouting and splitting from pre-existing vessels.

Fibrin

A highly insoluble protein polymer formed by spontaneous polymerization of fibrinogen upon excision of the A and B polypeptide chains by thrombin, and forms needle-like crystals.

Thrombus

A blood clot that forms within a blood vessel or inside the heart and remains at the site of its formation.

Mesocellular silica foam

Silicon-based nanomaterial with large-opening spherical mesopores and large pore volume; made by the reaction of tetraethyl orthosilicate under acidic conditions with the triblock copolymer Pluronic P123, mesitylene and NH4F.

Activated partial thromboplastin time

The most commonly used sensitive screening test in clinical practice to determine the coagulation activity of the intrinsic coagulation system; measures the time taken for coagulation upon addition of activated partial thromboplastin time reagent (factor XII activator and cephalin) and Ca2+ ions to plasma at 37 °C.

Chabazite

Tectosilicate mineral of the zeolite group with the formula (Ca,K2,Na2,Mg)Al2Si4O12·6H2O. Chabazite-type zeolites are highly absorbent, which is beneficial for increasing the concentration of components in blood to facilitate haemostasis.

Fibrinogen

A circulating glycoprotein (with a molecular mass of 340 kDa) secreted by hepatocytes and composed of two symmetrical half-molecules, each of which comprises three different polypeptide chains (Aα, Bβ and γ).

Metal–organic framework

(MOF). Class of porous materials composed of inorganic nodes (metal ions or clusters) connected by organic ligands to form 1D, 2D or 3D structures.

Bioglass

A silicon-based glass–ceramic bioactive material containing calcium and phosphorus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Dong, R., Liang, Y. et al. Haemostatic materials for wound healing applications. Nat Rev Chem 5, 773–791 (2021). https://doi.org/10.1038/s41570-021-00323-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00323-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research