Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interrogating biological systems using visible-light-powered catalysis

Abstract

Light-powered catalysis has found broad utility as a chemical transformation strategy, with widespread impact on energy, environment, drug discovery and human health. A noteworthy application impacting human health is light-induced sensitization of cofactors for photodynamic therapy in cancer treatment. The clinical adoption of this photosensitization approach has inspired the search for other photochemical methods, such as photoredox catalysis, to influence biological discovery. Over the past decade, light-mediated catalysis has enabled the discovery of valuable synthetic transformations, propelling it to become a highly utilized chemical synthesis strategy. The reaction components required to achieve a photoredox reaction are identical to photosensitization (catalyst, light source and substrate), making it ideally suited for probing biological environments. In this Review, we discuss the therapeutic application of photosensitization and advancements made in developing next-generation catalysts. We then highlight emerging uses of photoredox catalytic methods for protein bioconjugation and probing complex cellular environments in living cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Photoredox catalysis and photosensitization are ideally suited for probing biological environments.
Fig. 2: Photophysical chemistry of photosensitizers and photoredox catalysts.
Fig. 3: Clinical and emerging applications of photodynamic therapy.
Fig. 4: Biomolecule modification and crosslinking via photocatalysis.
Fig. 5: Visible-light-mediated in vivo crosslinking.
Fig. 6: Visible-light-mediated uncaging strategies.
Fig. 7: Ligand-directed photocatalytic protein labelling or degradation.
Fig. 8: Proximity-driven photocatalytic labelling in live cells.

References

  1. 1.

    Van der Horst, M. & Hellingwerf, K. Photoreceptor proteins, “star actors of modern times”: a review of the functional dynamics in the structure of representative members of six different photoreceptor families. Acc. Chem. Res. 37, 13–20 (2004).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  2. 2.

    Conrad, K. S., Manahan, C. C. & Crane, B. R. Photochemistry of flavoprotein light sensors. Nat. Chem. Biol. 10, 801–809 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Pathak, G., Vrana, J. & Tucker, C. L. Optogenetic control of cell function using engineered photoreceptors. Biol. Cell 105, 59–72 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. 4.

    Liu, Q. & Tucker, C. L. Engineering genetically-encoded tools for optogenetic control of protein activity. Curr. Opin. Chem. Biol. 40, 17–23 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Krueger, D. et al. Principles and applications of optogenetics in developmental biology. Development 146, dev175067 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Ozgen, F. F., Runda, M. E. & Schmidt, S. Photo-biocatalytic cascades: combining chemical and enzymatic transformations fueled by light. ChemBioChem https://doi.org/10.1002/cbic.202000587 (2020).

  7. 7.

    Bottecchia, C. & Noel, T. Photocatalytic modification of amino acids, peptides, and proteins. Chem. Eur. J. 25, 26–42 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Shi, X., Zhang, C., Gao, J. & Wang, Z. Recent advances in photodynamic therapy for cancer and infectious diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11, e1560 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Rodger, A. in Encyclopedia of Biophysics (ed. Roberts, G. C. K.) 2714-2718 (Springer, 2013).

  10. 10.

    Rovio, S., Yli-Kauhaluoma, J. & Siren, H. Determination of neutral carbohydrates by CZE with direct UV detection. Electrophoresis 28, 3129–3135 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Ghosh, S. Visible-Light-Active Photocatalysis: Nanostructured Catalyst Design, Mechanisms, and Applications (Wiley, 2018).

  12. 12.

    Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L. & Glorius, F. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem. Soc. Rev. 47, 7190–7202 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Kwiatkowski, S. et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 106, 1098–1107 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Baptista, M. S. et al. Type I and type II photosensitized oxidation reactions: guidelines and mechanistic pathways. Photochem. Photobiol. 93, 912–919 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Laustriat, G. Molecular mechanisms of photosensitization. Biochimie 68, 771–778 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Kriska, T. et al. Type III photosensitization: attempt for quantification and a way toward new sensitizers. Proc. SPIE 3563, 11–17 (1999).

    CAS  Article  Google Scholar 

  17. 17.

    Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Close, D. M. & Wardman, P. Calculation of standard reduction potentials of amino acid radicals and the effects of water and incorporation into peptides. J. Phys. Chem. A 122, 439–445 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Kitaguchi, H., Ohkubo, K., Ogo, S. & Fukuzumi, S. Electron-transfer oxidation properties of unsaturated fatty acids and mechanistic insight into lipoxygenases. J. Phys. Chem. A 110, 1718–1725 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Lakhno, V. D. Sequence dependent hole evolution in DNA. J. Biol. Phys. 30, 123–138 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Di Mascio, P. et al. Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chem. Rev. 119, 2043–2086 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  22. 22.

    Moller, K. I., Kongshoj, B., Philipsen, P. A., Thomsen, V. O. & Wulf, H. C. How Finsen’s light cured lupus vulgaris. Photodermatol. Photoimmunol. Photomed. 21, 118–124 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Dolmans, D. E., Fukumura, D. & Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380–387 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    Castano, A. P., Mroz, P. & Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6, 535–545 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Allison, R. R. et al. Photosensitizers in clinical PDT. Photodiagnosis Photodyn. Ther. 1, 27–42 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Baskaran, R., Lee, J. & Yang, S. G. Clinical development of photodynamic agents and therapeutic applications. Biomater. Res. 22, 25 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. 27.

    Dougherty, T. J. Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 38, 2628–2635 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Gullin, P. M. The interstitial fluid of solid tumors. Cancer Res. 24, 780–797 (1964).

    Google Scholar 

  29. 29.

    Thistletiiwait, A. J. pH Distribution in human tumors. Int. J. Rad. Oncol. Biol. Phys. 11, 1647–1652 (1985).

    Article  Google Scholar 

  30. 30.

    Peng, Q. The effect of glucose administration on the uptake of photofrin II in a human tumor xenograft. Cancer Lett. 58, 29–35 (1991).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Spikes, J. D. Photodynamic therapy of tumours and other diseases using porphyrins. Lasers Med. Sci. 2, 3–15 (1987).

    Article  Google Scholar 

  32. 32.

    Kou, J. Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget 8, 81603 (2017).

    Google Scholar 

  33. 33.

    Ronn, A. M. Human tissue levels and plasma pharmacokinetics of temoporfin (Foscan®, mTHPC). Lasers Med. Sci. 11, 267–272 (1996).

    Article  Google Scholar 

  34. 34.

    Azzouzi, A. R., Lebdai, S., Benzaghou, F. & Stief, C. Vascular-targeted photodynamic therapy with TOOKAD® Soluble in localized prostate cancer: standardization of the procedure. World J. Urol. 33, 937–944 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Kornman, K., Page, R. & Tonetti, M. The host response to the microbial challenge in periodontitis: assembling the players. Peridontology 2000 14, 33–53 (1997).

    CAS  Article  Google Scholar 

  36. 36.

    Alvarenga, L. H. et al. Parameters for antimicrobial photodynamic therapy on periodontal pocket—Randomized clinical trial. Photodiagnosis Photodyn. Ther. 27, 132–136 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Shrestha, A., Hamblin, M. R. & Kishen, A. Characterization of a conjugate between Rose Bengal and chitosan for targeted antibiofilm and tissue stabilization effects as a potential treatment of infected dentin. Antimicrob. Agents Chemother. 56, 4876–4884 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Dovigo, L. N. et al. Fungicidal effect of photodynamic therapy against fluconazole-resistant Candida albicans and Candida glabrata. Mycoses 54, 123–130 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Asilian, A. & Davami, M. Comparison between the efficacy of photodynamic therapy and topical paromomycin in the treatment of Old World cutaneous leishmaniasis: a placebo-controlled, randomized clinical trial. Clin. Exp. Dermatol. 31, 634–637 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Borelli, C. et al. In vivo porphyrin production by P. acnes in untreated acne patients and its modulation by acne treatment. Acta Derm. Venereol. 86, 316–319 (2006).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Papageorgiou, D. Phototherapy with blue (415 nm) and red (660 nm) light in the treatment of acne vulgaris. Br. J. Dermatol. 142, 973–978 (2000).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Tegos, G. P. et al. Protease-stable polycationic photosensitizer conjugates between polyethyleneimine and chlorin(e6) for broad-spectrum antimicrobial photoinactivation. Antimicrob. Agents Chemother. 50, 1402–1410 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Valduga, G. Effect of extracellularly generated singlet oxygen on gram-positive and gram-negative bacteria. J. Photochem. Photobiol. 21, 81–86 (1993).

    CAS  Article  Google Scholar 

  44. 44.

    Soukos, N. S. Photodynamic effects of toluidine blue on human oral keratinocytes and fibroblasts and Streptococcus sanguis evaluated in vitro. Lasers Surg. Med. 18, 253–259 (1996).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Zhang, J. et al. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm. Sin. B 8, 137–146 (2018).

    PubMed  Article  Google Scholar 

  46. 46.

    Zhang, Q. et al. Rapid synthesis of γ-halide/pseudohalide-substituted cyanine sensors with programmed generation of singlet oxygen. Org. Lett. 21, 2121–2125 (2019).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Zhao, X. et al. A cyanine-derivative photosensitizer with enhanced photostability for mitochondria-targeted photodynamic therapy. Chem. Commun. 55, 13542–13545 (2019).

    CAS  Article  Google Scholar 

  48. 48.

    Birchler, M. Selective targeting and photocoagulation of ocular angiogenesis mediated by a phage-derived human antibody fragment. Nat. Biotechnol. 17, 984–988 (1999).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Li, D. H., Diao, J. L., Yu, K. G. & Zhou, C. H. Synthesis and anticancer activities of porphyrin induced anticancer drugs. Chin. Chem. Lett. 18, 1331–1334 (2007).

    CAS  Article  Google Scholar 

  50. 50.

    Brunner, H. & Gruber, N. Carboplatin-containing porphyrin–platinum complexes as cytotoxic and phototoxic antitumor agents. Inorganica Chim. Acta 357, 4423–4451 (2004).

    CAS  Article  Google Scholar 

  51. 51.

    Huang, H., Banerjee, S. & Sadler, P. J. Recent advances in the design of targeted iridium(III) photosensitizers for photodynamic therapy. ChemBioChem 19, 1574–1589 (2018).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Wang, C., Tao, H., Cheng, L. & Liu, Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32, 6145–6154 (2011).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Wang, Z. et al. Near-infrared photocontrolled therapeutic release via upconversion nanocomposites. J. Control. Rel. 324, 104–123 (2020).

    CAS  Article  Google Scholar 

  54. 54.

    Cates, E. L., Cho, M. & Kim, J. H. Converting visible light into UVC: microbial inactivation by Pr3+-activated upconversion materials. Environ. Sci. Technol. 45, 3680–3686 (2011).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Fan, W. et al. A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging. Biomaterials 35, 8992–9002 (2014).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Fan, W. et al. Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles. Biomaterials 69, 89–98 (2015).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Zhang, Z. et al. Upconversion superballs for programmable photoactivation of therapeutics. Nat. Commun. 10, 4586 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. 58.

    Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38–47 (2002).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Zhang, W. et al. Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with Cu(II) as the active center. Angew. Chem. Int. Ed. 57, 4891–4896 (2018).

    CAS  Article  Google Scholar 

  60. 60.

    Suzuki, S. et al. Principles of aggregation-induced emission: design of deactivation pathways for advanced AIEgens and applications. Angew. Chem. Int. Ed. 59, 9856–9867 (2020).

    CAS  Article  Google Scholar 

  61. 61.

    Zhu, D. et al. Tumor-exocytosed exosome/aggregation-induced emission luminogen hybrid nanovesicles facilitate efficient tumor penetration and photodynamic therapy. Angew. Chem. Int. Ed. 132, 13940–13947 (2020).

    Article  Google Scholar 

  62. 62.

    Cai, X. et al. Multifunctional liposome: a bright AIEgen–lipid conjugate with strong photosensitization. Angew. Chem. Int. Ed. 57, 16396–16400 (2018).

    CAS  Article  Google Scholar 

  63. 63.

    Wang, S. et al. Polymerization-enhanced two-photon photosensitization for precise photodynamic therapy. ACS Nano 13, 3095–3105 (2019).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Fang, L. et al. An inner light integrated metal-organic framework photodynamic therapy system for effective elimination of deep-seated tumor cells. J. Solid State Chem. 276, 205–209 (2019).

    CAS  Article  Google Scholar 

  65. 65.

    Lu, K., He, C. & Lin, W. Nanoscale metal–organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 136, 16712–16715 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Lu, K., He, C. & Lin, W. A chlorin-based nanoscale metal–organic framework for photodynamic therapy of colon cancers. J. Am. Chem. Soc. 137, 7600–7603 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Park, J., Jiang, Q., Feng, D., Mao, L. & Zhou, H. C. Size-controlled synthesis of porphyrinic metal–organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 138, 3518–3525 (2016).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Lan, G. et al. Nanoscale metal–organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc. 140, 5670–5673 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Cheng, Y. et al. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 6, 8785 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Scheer, A., Kirsch, M. & Ferenz, K. B. Perfluorocarbons in photodynamic and photothermal therapy. J. Nanosci. Nanomed. 1, 21–27 (2017).

    Google Scholar 

  71. 71.

    Chang, K. et al. Incorporation of porphyrin to π-conjugated backbone for polymer-dot-sensitized photodynamic therapy. Biomacromolecules 17, 2128–2136 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Meng, Z. et al. Therapeutic considerations and conjugated polymer-based photosensitizers for photodynamic therapy. Macromol. Rapid Commun. 39, 1700614 (2018).

    Article  CAS  Google Scholar 

  73. 73.

    Sah, U., Sharma, K., Chaudhri, N., Sankar, M. & Gopinath, P. Antimicrobial photodynamic therapy: single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus. Colloids Surf. B Biointerfaces 162, 108–117 (2018).

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Wang, L. et al. Photodynamic effect of functionalized single-walled carbon nanotubes: a potential sensitizer for photodynamic therapy. Nanoscale 6, 4642–4651 (2014).

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Huang, H. et al. Targeted photoredox catalysis in cancer cells. Nat. Chem. 11, 1041–1048 (2019).

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Pattison, D. I., Rahmanto, A. S. & Davies, M. J. Photo-oxidation of proteins. Photochem. Photobiol. Sci. 11, 38–53 (2012).

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Liu, J. Q., Shatskiy, A., Matsuura, B. S. & Karkas, M. D. Recent advances in photoredox catalysis enabled functionalization of α-amino acids and peptides: concepts, strategies and mechanisms. Synthesis 51, 2759–2791 (2019).

    CAS  Article  Google Scholar 

  78. 78.

    Rahman, M. et al. Recent advances on diverse decarboxylative reactions of amino acids. Adv. Synth. Catal. 361, 2161–2214 (2019).

    CAS  Article  Google Scholar 

  79. 79.

    Sato, S. & Nakamura, H. Ligand-directed selective protein modification based on local single-electron-transfer catalysis. Angew. Chem. Int. Ed. 52, 8681–8684 (2013).

    CAS  Article  Google Scholar 

  80. 80.

    Ichiishi, N. et al. Protecting group free radical C–H trifluoromethylation of peptides. Chem. Sci. 9, 4168–4175 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Yu, Y. et al. Chemoselective peptide modification via photocatalytic tryptophan β-position conjugation. J. Am. Chem. Soc. 140, 6797–6800 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Lee, M., Neukirchen, S., Cabrele, C. & Reiser, O. Visible-light photoredox-catalyzed desulfurization of thiol- and disulfide-containing amino acids and small peptides. J. Pept. Sci. 23, 556–562 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Gao, X. F., Du, J. J., Liu, Z. & Guo, J. Visible-light-induced specific desulfurization of cysteinyl peptide and glycopeptide in aqueous solution. Org. Lett. 18, 1166–1169 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Bottecchia, C., Wei, X. J., Kuijpers, K. P. L., Hessel, V. & Noel, T. Visible light-induced trifluoromethylation and perfluoroalkylation of cysteine residues in batch and continuous flow. J. Org. Chem. 81, 7301–7307 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    DeForest, C. A. & Anseth, K. S. Photoreversible patterning of biomolecules within click-based hydrogels. Angew. Chem. Int. Ed. 51, 1816–1819 (2012).

    CAS  Article  Google Scholar 

  86. 86.

    Bottecchia, C. et al. Visible-light-mediated selective arylation of cysteine in batch and flow. Angew. Chem. Int. Ed. 56, 12702–12707 (2017).

    CAS  Article  Google Scholar 

  87. 87.

    Vara, B. A. et al. Scalable thioarylation of unprotected peptides and biomolecules under Ni/photoredox catalysis. Chem. Sci. 9, 336–344 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Choi, H., Kim, M., Jang, J. & Hong, S. Visible-light-induced cysteine-specific bioconjugation: biocompatible thiol–ene click chemistry. Angew. Chem. Int. Ed. 59, 22514–22522 (2020).

    CAS  Article  Google Scholar 

  89. 89.

    Chen, X. et al. Histidine-specific peptide modification via visible-light-promoted C–H alkylation. J. Am. Chem. Soc. 141, 18230–18237 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Wang, C. et al. Visible-light-driven, copper-catalyzed decarboxylative C(sp3)–H alkylation of glycine and peptides. Angew. Chem. Int. Ed. 57, 15841–15846 (2018).

    CAS  Article  Google Scholar 

  91. 91.

    Wang, C. et al. Visible-light-promoted C(sp3)–H alkylation by intermolecular charge transfer: preparation of unnatural α-amino acids and late-stage modification of peptides. Angew. Chem. Int. Ed. 59, 7461–7466 (2020).

    CAS  Article  Google Scholar 

  92. 92.

    Taylor, M. T., Nelson, J. E., Suero, M. G. & Gaunt, M. J. A protein functionalization platform based on selective reactions at methionine residues. Nature 562, 563–568 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Jori, G., Galiazzo, G., Marzotto, A. & Scoffone, E. Dye-sensitized selective photooxidation of methioxine. Biochem. Biophys. Acta 154, 1–9 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Clarke, A. K., Parkin, A., Taylor, R. J. K., Unsworth, W. P. & Rossi-Ashton, J. A. Photocatalytic deoxygenation of sulfoxides using visible light: mechanistic investigations and synthetic applications. ACS Catal. 10, 5814–5820 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Aycock, R. A., Pratt, C. J. & Jui, N. T. Aminoalkyl radicals as powerful intermediates for the synthesis of unnatural amino acids and peptides. ACS Catal. 8, 9115–9119 (2018).

    CAS  Article  Google Scholar 

  96. 96.

    de Bruijn, A. D. & Roelfes, G. Chemical modification of dehydrated amino acids in natural antimicrobial peptides by photoredox catalysis. Chem. Eur. J. 24, 11314–11318 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  97. 97.

    Josephson, B. et al. Light-driven post-translational installation of reactive protein side chains. Nature 585, 530–537 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Talla, A. et al. Metal-free photocatalytic aerobic oxidation of thiols to disulfides in batch and continuous-flow. Adv. Synth. Catal. 357, 2180–2186 (2015).

    CAS  Article  Google Scholar 

  99. 99.

    Bottecchia, C. et al. Batch and flow synthesis of disulfides by visible-light-induced TiO2 photocatalysis. ChemSusChem 9, 1781–1785 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Lee, H. et al. Photoredox Ni-catalyzed peptide C(sp2)–O cross-coupling: from intermolecular reactions to side chain-to-tail macrocyclization. Chem. Sci. 10, 5073–5078 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Olson, R. A., Korpusik, A. B. & Sumerlin, B. S. Enlightening advances in polymer bioconjugate chemistry: light-based techniques for grafting to and from biomacromolecules. Chem. Sci. 11, 5142–5156 (2020).

    CAS  Article  Google Scholar 

  102. 102.

    Malins, L. R. Peptide modification and cyclization via transition-metal catalysis. Curr. Opin. Chem. Biol. 46, 25–32 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Garreau, M., Le Vaillant, F. & Waser, J. C-terminal bioconjugation of peptides through photoredox catalyzed decarboxylative alkynylation. Angew. Chem. Int. Ed. 58, 8182–8186 (2019).

    CAS  Article  Google Scholar 

  104. 104.

    Bloom, S. et al. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials. Nat. Chem. 10, 205–211 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Goodnow, R. A. Jr., Dumelin, C. E. & Keefe, A. D. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat. Rev. Drug Discov. 16, 131–147 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Kölmel, D. K., Loach, R. P., Knauber, T. & Flanagan, M. E. Employing photoredox catalysis for DNA-encoded chemistry: decarboxylative alkylation of α-amino acids. ChemMedChem 13, 2159–2165 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  107. 107.

    Kölmel, D. K. et al. On-DNA decarboxylative arylation: merging photoredox with nickel catalysis in water. ACS Comb. Sci. 21, 588–597 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  108. 108.

    Kölmel, D. K. et al. Photocatalytic [2 + 2] cycloaddition in DNA-encoded chemistry. Org. Lett. 22, 2908–2913 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  109. 109.

    Phelan, J. P. et al. Open-air alkylation reactions in photoredox-catalyzed DNA-encoded library synthesis. J. Am. Chem. Soc. 141, 3723–3732 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Badir, S. O. et al. Multifunctional building blocks compatible with photoredox-mediated alkylation for DNA-encoded library synthesis. Org. Lett. 22, 1046–1051 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Fancy, D. A. & Kodadek, T. Chemistry for the analysis of protein–protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proc. Natl Acad. Sci. USA 96, 6020–6024 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    DuRoux-Richard, I. et al. Crosslinking photosensitized by a ruthenium chelate as a tool for labeling and topographical studies of G-protein-coupled receptors. Chem. Biol. 12, 15–24 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Kim, K., Fancy, D. A., Carney, D. & Kodadek, T. Photoinduced protein cross-linking mediated by palladium porphyrins. J. Am. Chem. Soc. 121, 11896–11897 (1999).

    CAS  Article  Google Scholar 

  114. 114.

    Preston, G. W. & Wilson, A. J. Photo-induced covalent cross-linking for the analysis of biomolecular interactions. Chem. Soc. Rev. 42, 3289–3301 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Sato, S., Tsushima, M. & Nakamura, H. Target-protein-selective inactivation and labelling using an oxidative catalyst. Org. Biomol. Chem. 16, 6168–6179 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Bitan, G. & Teplow, D. B. Rapid photochemical cross-linking – a new tool for studies of metastable, amyloidogenic protein assemblies. Acc. Chem. Res. 37, 357–364 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. 117.

    Bitan, G., Lomakin, A. & Teplow, D. B. Amyloid β-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J. Biol. Chem. 276, 35176–35184 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Clerico, E. M., Szymanska, A. & Gierasch, L. M. Exploring the interactions between signal sequences and E. coli SRP by two distinct and complementary crosslinking methods. Biopolymers 92, 201–211 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Lin, H. J. & Kodadek, T. Photo-induced oxidative cross-linking as a method to evaluate the specificity of protein–ligand interactions. J. Pept. Res. 65, 221–228 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Tong, M. H. et al. Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements. Sci. Rep. 6, 20063 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Basu, S. & Campagnola, P. J. Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation. J. Biomed. Mater. Res. A 71, 359–368 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Pitts, J. D. et al. New photoactivators for multiphoton excited three-dimensional submicron crosslinking of proteins: bovine serum albumin and Type 1 collagen. Photochem. Photobiol. 76, 135–144 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. 123.

    Pitts, J. D., Campagnola, P. J., Epling, A. & Goodman, S. L. Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release. Macromolecules 33, 1514–1523 (2000).

    CAS  Article  Google Scholar 

  124. 124.

    Carrette, L. L., Gyssels, E., De Laet, N. & Madder, A. Furan oxidation based cross-linking: a new approach for the study and targeting of nucleic acid and protein interactions. Chem. Commun. 52, 1539–1554 (2016).

    CAS  Article  Google Scholar 

  125. 125.

    Favre, A. et al. 4-Thiouridine photosensitized RNA-protein crosslinking in mammalian cells. Biochem. Biophys. Res. Commun. 141, 847–854 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Stevens, K. et al. Furan-oxidation-triggered inducible DNA cross-linking: acyclic versus cyclic furan-containing building blocks—on the benefit of restoring the cyclic sugar backbone. Chem. Eur. J. 17, 6940–6953 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    Stevens, K. & Madder, A. Furan-modified oligonucleotides for fast, high-yielding and site-selective DNA inter-strand cross-linking with non-modified complements. Nucleic Acids Res. 37, 1555–1565 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Op de Beeck, M. & Madder, A. Sequence specific DNA cross-linking triggered by visible light. J. Am. Chem. Soc. 134, 10737–10740 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    De Laet, N. & Madder, A. Synthesis and evaluation of methylene blue oligonucleotide conjugates for DNA interstrand cross-linking. J. Photochem. Photobiol. A Chem. 318, 64–70 (2016).

    Article  CAS  Google Scholar 

  130. 130.

    Llamas, E. M., Tome, J. P. C., Rodrigues, J. M. M., Torres, T. & Madder, A. Porphyrin-based photosensitizers and their DNA conjugates for singlet oxygen induced nucleic acid interstrand crosslinking. Org. Biomol. Chem. 15, 5402–5409 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Schmidt, M. J. & Summerer, D. Red-light-controlled protein–RNA crosslinking with a genetically encoded furan. Angew. Chem. Int. Ed. 52, 4690–4693 (2013).

    CAS  Article  Google Scholar 

  132. 132.

    Liu, Z., Wilkie, A., Clemens, M. & Smith, C. Detection of double-stranded RNA-protein interactions by methylene blue-mediated photo-crosslinking. RNA 2, 611–621 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Ye, S. et al. Red light-initiated cross-linking of NIR probes to cytoplasmic RNA: an innovative strategy for prolonged imaging and unexpected tumor suppression. J. Am. Chem. Soc. 142, 21502–21512 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  134. 134.

    Ark, M., Cosman, P. H., Boughton, P. & Dunstan, C. R. Review: Photochemical tissue bonding (PTB) methods for sutureless tissue adhesion. Int. J. Adhes. Adhes 71, 87–98 (2016).

    CAS  Article  Google Scholar 

  135. 135.

    Shen, H., Spikes, J., Kopecekova, P. & Kopecek, J. Photodynamic crosslinking of proteins. I. Model studies using histidine- and lysine-containing N-(2-hydroxypropyl) methacrylamide copolymers. J. Photochem. Photobiol. B Biol. 34, 203–210 (1995).

    Article  Google Scholar 

  136. 136.

    Spikes, J., Shen, H., Kopecekova, P. & Kopecek, J. Photodynamic crosslinking of proteins. III. Kinetics of the FMN- and rose bengal-sensitized photooxidation and intermolecular crosslinking of model tyrosine containing N-(2-hydroxypropyl)methacrylamide copolymers. Photochem. Photobiol. 70, 130–137 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    Shen, H., Spikes, J., smith, C. J. & Kopecek, J. Photodynamic cross-linking of proteins: V. Nature of the tyrosine–tyrosine bonds formed in the FMN-sensitized intermolecular cross-linking of N-acetyl-l-tyrosine. J. Photochem. Photobiol. A Chem. 133, 115–122 (2000).

    CAS  Article  Google Scholar 

  138. 138.

    Shen, H., Spikes, J., Smith, C. J. & Kopecek, J. Photodynamic cross-linking of proteins: IV. Nature of the His–His bond(s) formed in the rose bengal-photosensitized cross-linking of N-benzoyl-L-histidine. J. Photochem. Photobiol. A Chem. 130, 1–6 (2000).

    Article  Google Scholar 

  139. 139.

    Vanerio, N., Stijnen, M., de Mol, B. & Kock, L. M. Biomedical applications of photo- and sono-activated Rose Bengal: a review. Photobiomodul. Photomed. Laser Surg. 37, 383–394 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  140. 140.

    Bekesi, N. et al. Biomechanical changes after in vivo collagen cross-linking with rose bengal–green light and riboflavin-UVA. Invest. Ophthalmol. Vis. Sci. 58, 1612–1620 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. 141.

    Jeon, E. Y. et al. Rapidly light-activated surgical protein glue inspired by mussel adhesion and insect structural crosslinking. Biomaterials 67, 11–19 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  142. 142.

    Wertheimer, C. M. et al. Enhancing rose bengal-photosensitized protein crosslinking in the cornea. Invest. Ophthalmol. Vis. Sci. 60, 1845–1852 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143.

    Fuentes-Lemus, E. et al. Binding of rose bengal to lysozyme modulates photooxidation and cross-linking reactions involving tyrosine and tryptophan. Free Radic. Biol. Med. 143, 375–386 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  144. 144.

    Alarcon, E. I. et al. Rose Bengal binding to collagen and tissue photobonding. ACS Omega 2, 6646–6657 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. 145.

    Mancini, M., Edwards, A. M., Becker, A. I., de Ioannes, A. & Silva, E. Reactivity of monoclonal antibodies against a tryptophan–riboflavin adduct toward irradiated and non-irradiated bovine-eye-lens protein fractions: an indicator of in vivo visible-light-mediated phototransformations. Photochem. Photobiol. B Biol. 55, 9–15 (2000).

    CAS  Article  Google Scholar 

  146. 146.

    Keutemeyer, K. et al. Two-photon induced collagen cross-linking in bioartificial cardiac tissue. Opt. Express 19, 15996–16007 (2011).

    Article  CAS  Google Scholar 

  147. 147.

    Redmond, R. W. & Kochevar, I. E. Medical applications of rose bengal- and riboflavin-photosensitized protein crosslinking. Photochem. Photobiol. 95, 1097–1115 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  148. 148.

    Vashi, A. V., Werkmeister, J. A., Vuocolo, T., Elvin, C. M. & Ramshaw, J. A. Stabilization of collagen tissues by photocrosslinking. J. Biomed. Mater. Res. A 100, 2239–2243 (2012).

    PubMed  PubMed Central  Google Scholar 

  149. 149.

    Sando, L. et al. Photochemical crosslinking of soluble wool keratins produces a mechanically stable biomaterial that supports cell adhesion and proliferation. J. Biomed. Mater. Res. A 95, 901–911 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  150. 150.

    Elvin, C. M. et al. Evaluation of photo-crosslinked fibrinogen as a rapid and strong tissue adhesive. J. Biomed. Mater. Res. A 93, 687–695 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Bjork, J. W., Johnson, S. L. & Tranquillo, R. T. Ruthenium-catalyzed photo cross-linking of fibrin-based engineered tissue. Biomaterials 32, 2479–2488 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  152. 152.

    Bahney, C. S. et al. Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur. Cell. Mater. 22, 43–55 (2016).

    Article  Google Scholar 

  153. 153.

    Ellis-Davies, G. C. Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat. Methods 4, 619–628 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Ryu, K. A. et al. Light guided in-vivo activation of innate immune cells with photocaged TLR 2/6 agonist. Sci. Rep. 7, 8074 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  155. 155.

    Ryu, K. A., Stutts, L., Tom, J. K., Mancini, R. J. & Esser-Kahn, A. P. Stimulation of innate immune cells by light-activated TLR7/8 agonists. J. Am. Chem. Soc. 136, 10823–10825 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  156. 156.

    Peterson, J. A. et al. Family of BODIPY photocages cleaved by single photons of visible/near-infrared light. J. Am. Chem. Soc. 140, 7343–7346 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  157. 157.

    Sitkowska, K. et al. Red-light-sensitive BODIPY photoprotecting groups for amines and their biological application in controlling heart rhythm. Chem. Commun. 56, 5480–5483 (2020).

    CAS  Article  Google Scholar 

  158. 158.

    Slanina, T. et al. In search of the perfect photocage: structure–reactivity relationships in meso-methyl BODIPY photoremovable protecting groups. J. Am. Chem. Soc. 139, 15168–15175 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  159. 159.

    Kim, K. T., Angerani, S., Chang, D. & Winssinger, N. Coupling of DNA circuit and templated reactions for quadratic amplification and release of functional molecules. J. Am. Chem. Soc. 141, 16288–16295 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  160. 160.

    Sadhu, K. K., Eierhoff, T., Romer, W. & Winssinger, N. Photoreductive uncaging of fluorophore in response to protein oligomers by templated reaction in vitro and in cellulo. J. Am. Chem. Soc. 134, 20013–20016 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  161. 161.

    Rothlingshofer, M., Gorska, K. & Winssinger, N. Nucleic acid templated uncaging of fluorophores using Ru-catalyzed photoreduction with visible light. Org. Lett. 14, 482–485 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  162. 162.

    Holtzer, L. et al. Nucleic acid templated chemical reaction in a live vertebrate. ACS Cent. Sci. 2, 394–400 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. 163.

    Sadhu, K. K. & Winssinger, N. Detection of miRNA in live cells by using templated RuII-catalyzed unmasking of a fluorophore. Chem. Eur. J. 19, 8182–8189 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  164. 164.

    Lindberg, E., Angerani, S., Anzola, M. & Winssinger, N. Luciferase-induced photoreductive uncaging of small-molecule effectors. Nat. Commun. 9, 3539 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  165. 165.

    Klausen, M., Dubois, V., Verlhac, J. B. & Blanchard-Desce, M. Tandem systems for two-photon uncaging of bioactive molecules. ChemPlusChem 84, 589–598 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  166. 166.

    Korzycka, K. A. et al. Two-photon sensitive protecting groups operating via intramolecular electron transfer: uncaging of GABA and tryptophan. Chem. Sci. 6, 2419–2426 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. 167.

    Gorka, A. P. & Schnermann, M. J. Harnessing cyanine photooxidation: from slowing photobleaching to near-IR uncaging. Curr. Opin. Chem. Biol. 33, 117–125 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  168. 168.

    Nani, R. R. et al. In vivo activation of duocarmycin–antibody conjugates by near-infrared light. ACS Cent. Sci. 3, 329–337 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. 169.

    Nani, R. R., Gorka, A. P., Nagaya, T., Kobayashi, H. & Schnermann, M. J. Near-IR light-mediated cleavage of antibody–drug conjugates using cyanine photocages. Angew. Chem. Int. Ed. 54, 13635–13638 (2015).

    CAS  Article  Google Scholar 

  170. 170.

    Arian, D., Kovbasyuk, L. & Mokhir, A. 1,9-Dialkoxyanthracene as a 1O2-sensitive linker. J. Am. Chem. Soc. 133, 3972–3980 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  171. 171.

    Meyer, A. & Mokhir, A. RNA interference controlled by light of variable wavelength. Angew. Chem. Int. Ed. 53, 12840–12843 (2014).

    CAS  Article  Google Scholar 

  172. 172.

    Patil, S. P. et al. Supramolecular self-assembly of histidine-capped-dialkoxy-anthracene: a visible-light-triggered platform for facile siRNA delivery. Chem. Eur. J. 22, 13789–13793 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  173. 173.

    Wang, H. et al. Photocatalysis enables visible-light uncaging of bioactive molecules in live cells. Angew. Chem. Int. Ed. 58, 561–565 (2019).

    CAS  Article  Google Scholar 

  174. 174.

    Klan, P. et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem. Rev. 113, 119–191 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  175. 175.

    Smirnova, J., Woll, D., Pfleiderer, W. & Steiner, U. E. Synthesis of caged nucleosides with photoremovable protecting groups linked to intramolecular antennae. Helv. Chim. Acta 88, 891–904 (2005).

    CAS  Article  Google Scholar 

  176. 176.

    Woll, D., Smirnova, J., Pfleiderer, W. & Steiner, U. E. Highly efficient photolabile protecting groups with intramolecular energy transfer. Angew. Chem. Int. Ed. 45, 2975–2978 (2006).

    Article  CAS  Google Scholar 

  177. 177.

    Woll, D. et al. Intramolecular sensitization of photocleavage of the photolabile 2-(2-nitrophenyl)propoxycarbonyl (NPPOC) protecting group: photoproducts and photokinetics of the release of nucleosides. Chem. Eur. J. 14, 6490–6497 (2008).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  178. 178.

    Röthlingshöfer, M., Gorska, K. & Winssinger, N. Nucleic acid-templated energy transfer leading to a photorelease reaction and its application to a system displaying a nonlinear response. J. Am. Chem. Soc. 133, 18110–18113 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  179. 179.

    Papageorgiou, D., Ogden, D. & Corrie, J. E. T. An antenna-sensitised 1-acyl-7-nitroindoline that has good solubility properties in the presence of calcium ions and is suitable for use as a caged l-glutamate in neuroscience. Photochem. Photobiol. Sci. 7, 423–432 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  180. 180.

    Gug, S. et al. Molecular engineering of photoremovable protecting groups for two-photon uncaging. Angew. Chem. Int. Ed. 47, 9525–9529 (2008).

    CAS  Article  Google Scholar 

  181. 181.

    Picard, S. et al. Tandem triad systems based on FRET for two-photon induced release of glutamate. Chem. Commun. 49, 10805–10807 (2013).

    CAS  Article  Google Scholar 

  182. 182.

    Cueto Diaz, E. et al. Cooperative veratryle and nitroindoline cages for two-photon uncaging in the NIR. Chem. Eur. J. 22, 10848–10859 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  183. 183.

    Yang, Y. et al. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem. Int. Ed. 51, 3125–3129 (2012).

    CAS  Article  Google Scholar 

  184. 184.

    Chu, H., Zhao, J., Mi, Y., Zhao, Y. & Li, L. Near-infrared light-initiated hybridization chain reaction for spatially and temporally resolved signal amplification. Angew. Chem. Int. Ed. 58, 14877–14881 (2019).

    CAS  Article  Google Scholar 

  185. 185.

    Yang, Y., Liu, F., Liu, X. & Xing, B. NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion nanoparticles. Nanoscale 5, 231–238 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  186. 186.

    Zhao, L. et al. Near-infrared photoregulated drug release in living tumor tissue via yolk-shell upconversion nanocages. Adv. Funct. Mater. 24, 363–371 (2013).

    Article  CAS  Google Scholar 

  187. 187.

    Yanai, N. & Kimizuka, N. New triplet sensitization routes for photon upconversion: thermally activated delayed fluorescence molecules, inorganic nanocrystals, and singlet-to-triplet absorption. Acc. Chem. Res. 50, 2487–2495 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  188. 188.

    Huang, L. et al. Expanding anti-Stokes shifting in triplet–triplet annihilation upconversion for in vivo anticancer prodrug activation. Angew. Chem. Int. Ed. 56, 14400–14404 (2017).

    CAS  Article  Google Scholar 

  189. 189.

    Budayeva, H. G. & Kirkpatrick, D. S. Monitoring protein communities and their responses to therapeutics. Nat. Rev. Drug Discov. 19, 414–426 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  190. 190.

    Budayeva, H. G. & Cristea, I. M. in Advancements of Mass Spectrometry in Biomedical Research (eds Woods, A. G. & Darie, C. C.) 263–282 (Springer, 2014).

  191. 191.

    Kim, D. I. & Roux, K. J. Filling the void: proximity-based labeling of proteins in living cells. Trends Cell Biol. 26, 804–817 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  192. 192.

    Sato, S., Hatano, K., Tsushima, M. & Nakamura, H. 1-Methyl-4-aryl-urazole (MAUra) labels tyrosine in proximity to ruthenium photocatalysts. Chem. Commun. 54, 5871–5874 (2018).

    CAS  Article  Google Scholar 

  193. 193.

    Beard, H. A. et al. Photocatalytic proximity labelling of MCL-1 by a BH3 ligand. Commun. Chem. 2, 133 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  194. 194.

    Tsushima, M., Sato, S., Niwa, T., Taguchi, H. & Nakamura, H. Catalyst-proximity protein chemical labelling on affinity beads targeting endogenous lectins. Chem. Commun. 55, 13275–13278 (2019).

    CAS  Article  Google Scholar 

  195. 195.

    To, T. L. et al. Photoactivatable protein labeling by singlet oxygen mediated reactions. Bioorg Med. Chem. Lett. 26, 3359–3363 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  196. 196.

    Jacobson, K., Rajfur, Z., Vitriol, E. & Hahn, K. Chromophore-assisted laser inactivation in cell biology. Trends Cell Biol. 18, 443–450 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  197. 197.

    McLean, M. A. et al. Mechanism of chromophore assisted laser inactivation of employing fluorescent proteins. Anal. Chem. 81, 1755–1761 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  198. 198.

    Sano, Y., Watanabe, W. & Matsunaga, S. Chromophore-assisted laser inactivation - towards a spatiotemporal-functional analysis of proteins, and the ablation of chromatin, organelle and cell function. J. Cell Sci. 127, 1621–1629 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  199. 199.

    Jay, D. G. Selective destruction of protein function by chromophore-assisted laser inactivation. Proc. Natl Acad. Sci. USA 85, 5454–5458 (1988).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  200. 200.

    Lepock, J. R., Thompson, J. E. & Kruuv, J. Photoinduced crosslinking of membrane proteins by fluorescein isothiocyanate. Biochem. Biophys. Res. Commun. 85, 344–350 (1978).

    CAS  PubMed  Article  Google Scholar 

  201. 201.

    Liao, J. & Jay, D. G. Chromophore-assisted laser inactivation of subunits of the T-cell receptor in living cells is spatially restricted. Photochem. Photobiol. 62, 923–929 (1995).

    CAS  PubMed  Article  Google Scholar 

  202. 202.

    Wang, F., Wolenski, J., Cheney, R., Mooseker, M. & Jay, D. G. Function of myosin-V in filopodial extension of neuronal growth cones. Science 273, 660–663 (1996).

    CAS  PubMed  Article  Google Scholar 

  203. 203.

    Buchstaller, A. & Jay, D. G. Micro-scale chromophore-assisted laser inactivation of nerve growth cone proteins. Microsc. Res. Tech. 48, 97–106 (2000).

    CAS  PubMed  Article  Google Scholar 

  204. 204.

    Lee, J. S., Lee, B. I. & Park, C. B. Photo-induced inhibition of Alzheimer’s β-amyloid aggregation in vitro by rose bengal. Biomaterials 38, 43–49 (2015).

    CAS  PubMed  Article  Google Scholar 

  205. 205.

    Leshem, G. et al. Photoactive chlorin e6 is a multifunctional modulator of amyloid-β aggregation and toxicity via specific interactions with its histidine residues. Chem. Sci. 10, 208–217 (2019).

    CAS  PubMed  Article  Google Scholar 

  206. 206.

    Lee, B. I., Suh, Y. S., Chung, Y. J., Yu, K. & Park, C. B. Shedding light on Alzheimer’s β-amyloidosis: photosensitized methylene blue inhibits self-assembly of β-amyloid peptides and disintegrates their aggregates. Sci. Rep. 7, 7523 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  207. 207.

    Ni, J. et al. Near-infrared photoactivatable oxygenation catalysts of amyloid peptide. Chem 4, 807–820 (2018).

    CAS  Article  Google Scholar 

  208. 208.

    Horstkotte, E. et al. Toward understanding the mechanism of chromophore-assisted laser inactivation–evidence for the primary photochemical steps. Photochem. Photobiol. 81, 358–366 (2005).

    CAS  PubMed  Article  Google Scholar 

  209. 209.

    Sato, S., Morita, K. & Nakamura, H. Regulation of target protein knockdown and labeling using ligand-directed Ru(bpy)3 photocatalyst. Bioconjug. Chem. 26, 250–256 (2015).

    CAS  PubMed  Article  Google Scholar 

  210. 210.

    Lee, J., Udugamasooriya, D. G., Lim, H. S. & Kodadek, T. Potent and selective photo-inactivation of proteins with peptoid-ruthenium conjugates. Nat. Chem. Biol. 6, 258–260 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  211. 211.

    Davies, M. J. Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun. 305, 761–770 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  212. 212.

    Wang, F. & Jay, D. G. Chromophore-assisted laser inactivation (CALI): probing protein function in situ with a high degree of spatial and temporal resolution. Trends Cell Biol. 6, 442–445 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  213. 213.

    Yasueda, Y. et al. A set of organelle-localizable reactive molecules for mitochondrial chemical proteomics in living cells and brain tissues. J. Am. Chem. Soc. 138, 7592–7602 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  214. 214.

    Fujisawa, A., Tamura, T., Yasueda, Y., Kuwata, K. & Hamachi, I. Chemical profiling of the endoplasmic reticulum proteome using designer labeling reagents. J. Am. Chem. Soc. 140, 17060–17070 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  215. 215.

    Tamura, T., Takato, M., Shiono, K. & Hamachi, I. Development of a photoactivatable proximity labeling method for the identification of nuclear proteins. Chem. Lett. 49, 145–148 (2020).

    CAS  Article  Google Scholar 

  216. 216.

    Couzens, A. L. et al. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci. Signal. 6, rs15 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  217. 217.

    Loh, K. H. et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell 166, 1295–1307 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  218. 218.

    Phelan, J. D. et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature 560, 387–391 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  219. 219.

    Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Troy Moore and Sharon Wilhelm for helpful discussion during manuscript preparation. The authors also thank Yi Zheng of Yizheng Illustrations for figure design work.

Author information

Affiliations

Authors

Contributions

C.M.K. and N.B.B. researched data for the article. All authors contributed to discussion of content. K.R., R.C.O. and O.O.F. contributed to writing, reviewing and editing the manuscript before submission.

Corresponding authors

Correspondence to Rob C. Oslund or Olugbeminiyi O. Fadeyi.

Ethics declarations

Competing interests

K.R., C.M.K., N.B.B., R.C.O. and O.O.F. are/were employees of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA, during the preparation of this manuscript.

Additional information

Peer review information

Nature Reviews Chemistry thanks M. Oderinde and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ryu, K.A., Kaszuba, C.M., Bissonnette, N.B. et al. Interrogating biological systems using visible-light-powered catalysis. Nat Rev Chem 5, 322–337 (2021). https://doi.org/10.1038/s41570-021-00265-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing