Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards artificial molecular factories from framework-embedded molecular machines

Abstract

Controlling cooperativity, synchronization, amplification and translation of intermolecular and intramolecular dynamics over different length scales for applications in stimuli-responsive robust solids are considered key challenges in materials sciences. In this Perspective, we discuss the possibility of embedding artificial molecular machines into heterogeneous robust frameworks with the goal of creating cooperatively working molecular factories. We describe the current progress in the design, synthesis and functioning of artificial molecular machines and outline current efforts organizing them in ordered assemblies and frameworks. On the basis of this discussion, design principles are given towards collectively working systems in which both the machine and the framework are active components. We further explore potential functionalities and applications of these systems, and discuss challenges and prospects for the future.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Organization of factories.
Fig. 2: Artificial molecular machines incorporated in the backbone of metal–organic frameworks.
Fig. 3: Arrangement of molecular machines.
Fig. 4: Coordination and organization of molecular machines.
Fig. 5: Excitation and utilization of molecular machines.

References

  1. 1.

    Kadic, M., Milton, G. W., van Hecke, M. & Wegener, M. 3D metamaterials. Nat. Rev. Phys. 1, 198–210 (2019).

    Google Scholar 

  2. 2.

    Coudert, F.-X. & Evans, J. D. Nanoscale metamaterials: meta-MOFs and framework materials with anomalous behavior. Coord. Chem. Rev. 388, 48–62 (2019).

    CAS  Google Scholar 

  3. 3.

    Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).

    CAS  Google Scholar 

  4. 4.

    Lancia, F., Ryabchun, A. & Katsonis, N. Life-like motion driven by artificial molecular machines. Nat. Rev. Chem. 3, 536–551 (2019).

    CAS  Google Scholar 

  5. 5.

    Chari, A. & Fischer, U. Cellular strategies for the assembly of molecular machines. Trends Biochem. Sci. 35, 676–683 (2010).

    CAS  PubMed  Google Scholar 

  6. 6.

    Saper, G. & Hess, H. Synthetic systems powered by biological molecular motors. Chem. Rev. 120, 288–309 (2020).

    CAS  PubMed  Google Scholar 

  7. 7.

    Frank, J. (ed.) Molecular Machines in Biology: Workshop of the Cell Vol. 1 (Cambridge Univ. Press, 2011).

  8. 8.

    Irie, M. Photochromism:  memories and switches. Chem. Rev. 100, 1683–1684 (2000).

    CAS  PubMed  Google Scholar 

  9. 9.

    Feringa, B. L. & Browne, W. R. (eds) Molecular Switches 2nd edn Vols 1 & 2 (Wiley, 2011).

  10. 10.

    Feringa, B. L. In control of motion:  from molecular switches to molecular motors. Acc. Chem. Res. 34, 504–513 (2001).

    CAS  PubMed  Google Scholar 

  11. 11.

    Mena-Hernando, S. & Pérez, E. M. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chem. Soc. Rev. 48, 5016–5032 (2019).

    CAS  PubMed  Google Scholar 

  12. 12.

    Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    CAS  Google Scholar 

  13. 13.

    Pease, A. R. et al. Switching devices based on interlocked molecules. Acc. Chem. Res. 34, 433–444 (2001).

    CAS  PubMed  Google Scholar 

  14. 14.

    Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: from Molecules to Machines Vol. 1 (Wiley, 2016).

  15. 15.

    Baroncini, M., Silvi, S. & Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020).

    CAS  PubMed  Google Scholar 

  16. 16.

    Le Poul, N. & Colasson, B. Electrochemically and chemically induced redox processes in molecular machines. ChemElectroChem 2, 475–496 (2015).

    Google Scholar 

  17. 17.

    Kottas, G. S., Clarke, L. I., Horinek, D. & Michl, J. Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005).

    CAS  PubMed  Google Scholar 

  18. 18.

    Michl, J. & Sykes, E. C. H. Molecular rotors and motors: recent advances and future challenges. ACS Nano 3, 1042–1048 (2009).

    CAS  PubMed  Google Scholar 

  19. 19.

    Gil-Ramírez, G., Leigh, D. A. & Stephens, A. J. Catenanes: fifty years of molecular links. Angew. Chem. Int. Ed. 54, 6110–6150 (2015).

    Google Scholar 

  20. 20.

    Hernández, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    PubMed  Google Scholar 

  21. 21.

    Dietrich-Buchecker, C. O., Sauvage, J. P. & Kintzinger, J. P. Une nouvelle famille de molecules: les metallo-catenanes. Tetrahedron Lett. 24, 5095–5098 (1983).

    CAS  Google Scholar 

  22. 22.

    Mohr, B., Sauvage, J. P., Grubbs, R. H. & Weck, M. High-yield synthesis of [2] catenanes by intramolecular ring-closing metathesis. Angew. Chem. Int. Ed. 36, 1308–1310 (1997).

    CAS  Google Scholar 

  23. 23.

    Fielden, S. D. P., Leigh, D. A. & Woltering, S. L. Molecular knots. Angew. Chem. Int. Ed. 56, 11166–11194 (2017).

    CAS  Google Scholar 

  24. 24.

    Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    CAS  PubMed  Google Scholar 

  25. 25.

    Kelly, T. R., De Silva, H. & Silva, R. A. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    CAS  PubMed  Google Scholar 

  26. 26.

    Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    CAS  PubMed  Google Scholar 

  27. 27.

    Greb, L. & Lehn, J.-M. Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014).

    CAS  PubMed  Google Scholar 

  28. 28.

    Guentner, M. et al. Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor. Nat. Commun. 6, 8406 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Pollard, M. M., Meetsma, A. & Feringa, B. L. A redesign of light-driven rotary molecular motors. Org. Biomol. Chem. 6, 507–512 (2008).

    CAS  PubMed  Google Scholar 

  30. 30.

    Vicario, J., Meetsma, A. & Feringa, B. L. Controlling the speed of rotation in molecular motors. Dramatic acceleration of the rotary motion by structural modification. Chem. Commun. Issue 47, 5910–5912 (2005).

  31. 31.

    Koumura, N., Geertsema, E. M., van Gelder, M. B., Meetsma, A. & Feringa, B. L. Second generation light-driven molecular motors. unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J. Am. Chem. Soc. 124, 5037–5051 (2002).

    CAS  PubMed  Google Scholar 

  32. 32.

    García-López, V., Liu, D. & Tour, J. M. Light-activated organic molecular motors and their applications. Chem. Rev. 120, 79–124 (2020).

    PubMed  Google Scholar 

  33. 33.

    Feringa, B. L. The art of building small: from molecular switches to motors (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).

    CAS  Google Scholar 

  34. 34.

    Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 1, 25–35 (2006).

    CAS  PubMed  Google Scholar 

  35. 35.

    van Leeuwen, T., Lubbe, A. S., Štacko, P., Wezenberg, S. J. & Feringa, B. L. Dynamic control of function by light-driven molecular motors. Nat. Rev. Chem. 1, 0096 (2017).

    Google Scholar 

  36. 36.

    Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    CAS  PubMed  Google Scholar 

  37. 37.

    Collins, B. S. L., Kistemaker, J. C. M., Otten, E. & Feringa, B. L. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle. Nat. Chem. 8, 860–866 (2016).

    CAS  Google Scholar 

  38. 38.

    Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    CAS  PubMed  Google Scholar 

  39. 39.

    Goswami, A., Saha, S., Biswas, P. K. & Schmittel, M. (Nano)mechanical motion triggered by metal coordination: from functional devices to networked multicomponent catalytic machinery. Chem. Rev. 120, 125–199 (2020).

    CAS  PubMed  Google Scholar 

  40. 40.

    Gerwien, A., Mayer, P. & Dube, H. Green light powered molecular state motor enabling eight-shaped unidirectional rotation. Nat. Commun. 10, 4449 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    CAS  PubMed  Google Scholar 

  42. 42.

    Štacko, P. et al. Locked synchronous rotor motion in a molecular motor. Science 356, 964–968 (2017).

    PubMed  Google Scholar 

  43. 43.

    De Bo, G. et al. An artificial molecular machine that builds an asymmetric catalyst. Nat. Nanotechnol. 13, 381–385 (2018).

    PubMed  Google Scholar 

  44. 44.

    De Bo, G. et al. Sequence-specific β-peptide synthesis by a rotaxane-based molecular machine. J. Am. Chem. Soc. 139, 10875–10879 (2017).

    PubMed  Google Scholar 

  45. 45.

    De Bo, G. et al. Efficient assembly of threaded molecular machines for sequence-specific synthesis. J. Am. Chem. Soc. 136, 5811–5814 (2014).

    PubMed  Google Scholar 

  46. 46.

    Kassem, S. et al. Stereodivergent synthesis with a programmable molecular machine. Nature 549, 374–378 (2017).

    CAS  PubMed  Google Scholar 

  47. 47.

    Zhang, L., Marcos, V. & Leigh, D. A. Molecular machines with bio-inspired mechanisms. Proc. Natl Acad. Sci. USA 115, 9397–9404 (2018).

    CAS  PubMed  Google Scholar 

  48. 48.

    Wang, J. & Feringa, B. L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).

    CAS  PubMed  Google Scholar 

  49. 49.

    Muraoka, T., Kinbara, K. & Aida, T. Mechanical twisting of a guest by a photoresponsive host. Nature 440, 512–515 (2006).

    CAS  PubMed  Google Scholar 

  50. 50.

    Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    CAS  PubMed  Google Scholar 

  51. 51.

    Dattler, D. et al. Design of collective motions from synthetic molecular switches, rotors, and motors. Chem. Rev. 120, 310–433 (2020).

    CAS  PubMed  Google Scholar 

  52. 52.

    Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

    PubMed  Google Scholar 

  53. 53.

    Foy, J. T. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).

    CAS  PubMed  Google Scholar 

  54. 54.

    Suda, M. et al. Light-driven molecular switch for reconfigurable spin filters. Nat. Commun. 10, 2455 (2019).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

    CAS  PubMed  Google Scholar 

  56. 56.

    Eelkema, R. et al. Nanomotor rotates microscale objects. Nature 440, 163–163 (2006).

    CAS  PubMed  Google Scholar 

  57. 57.

    Ichimura, K., Oh, S.-K. & Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science 288, 1624–1626 (2000).

    CAS  PubMed  Google Scholar 

  58. 58.

    Berná, J. et al. Macroscopic transport by synthetic molecular machines. Nat. Mater. 4, 704–710 (2005).

    PubMed  Google Scholar 

  59. 59.

    Balzani, V., Credi, A. & Venturi, M. Molecular machines working on surfaces and at interfaces. ChemPhysChem 9, 202–220 (2008).

    CAS  PubMed  Google Scholar 

  60. 60.

    Watson, M. A. & Cockroft, S. L. Man-made molecular machines: membrane bound. Chem. Soc. Rev. 45, 6118–6129 (2016).

    CAS  PubMed  Google Scholar 

  61. 61.

    Moulin, E., Faour, L., Carmona-Vargas, C. C. & Giuseppone, N. From molecular machines to stimuli-responsive materials. Adv. Mater. 32, 1906036 (2020).

    CAS  Google Scholar 

  62. 62.

    Philp, D. & Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. 35, 1154–1196 (1996).

    Google Scholar 

  63. 63.

    Deng, H., Olson, M. A., Stoddart, J. F. & Yaghi, O. M. Robust dynamics. Nat. Chem. 2, 439–443 (2010).

    CAS  PubMed  Google Scholar 

  64. 64.

    London, G., Chen, K.-Y., Carroll, G. T. & Feringa, B. L. Towards dynamic control of wettability by using functionalized altitudinal molecular motors on solid surfaces. Chem. Eur. J. 19, 10690–10697 (2013).

    CAS  PubMed  Google Scholar 

  65. 65.

    Carroll, G. T., London, G., Landaluce, T. F., Rudolf, P. & Feringa, B. L. Adhesion of photon-driven molecular motors to surfaces via 1,3-dipolar cycloadditions: effect of interfacial interactions on molecular motion. ACS Nano 5, 622–630 (2011).

    CAS  PubMed  Google Scholar 

  66. 66.

    Alothman, Z. A. A review: fundamental aspects of silicate mesoporous materials. Materials 5, 2874–2902 (2012).

    CAS  PubMed Central  Google Scholar 

  67. 67.

    Payer, D. et al. Toward mechanical switching of surface-adsorbed [2]catenane by in situ copper complexation. J. Am. Chem. Soc. 129, 15662–15667 (2007).

    CAS  PubMed  Google Scholar 

  68. 68.

    Lu, T., Zhang, L., Gokel, G. W. & Kaifer, A. E. The first surface-attached catenane: self-assembly of a two-component monolayer. J. Am. Chem. Soc. 115, 2542–2543 (1993).

    CAS  Google Scholar 

  69. 69.

    Nørgaard, K. et al. Structural evidence of mechanical shuttling in condensed monolayers of bistable rotaxane molecules. Angew. Chem. Int. Ed. 44, 7035–7039 (2005).

    Google Scholar 

  70. 70.

    Flood, A. H. et al. The role of physical environment on molecular electromechanical switching. Chem. Eur. J. 10, 6558–6564 (2004).

    CAS  PubMed  Google Scholar 

  71. 71.

    Kaleta, J. et al. Surface inclusion of unidirectional molecular motors in hexagonal tris(o-phenylene)cyclotriphosphazene. J. Am. Chem. Soc. 139, 10486–10498 (2017).

    CAS  PubMed  Google Scholar 

  72. 72.

    Chu, Z. & Klajn, R. Polysilsesquioxane nanowire networks as an “artificial solvent” for reversible operation of photochromic molecules. Nano Lett. 19, 7106–7111 (2019).

    CAS  PubMed  Google Scholar 

  73. 73.

    Conyard, J. et al. Ultrafast excited state dynamics in molecular motors: coupling of motor length to medium viscosity. J. Phys. Chem. A 121, 2138–2150 (2017).

    CAS  PubMed  Google Scholar 

  74. 74.

    Vogelsberg, C. S. & Garcia-Garibay, M. A. Crystalline molecular machines: function, phase order, dimensionality, and composition. Chem. Soc. Rev. 41, 1892–1910 (2012).

    CAS  PubMed  Google Scholar 

  75. 75.

    Karlen, S. D. et al. Symmetry and dynamics of molecular rotors in amphidynamic molecular crystals. Proc. Natl Acad. Sci. USA 107, 14973–14977 (2010).

    CAS  PubMed  Google Scholar 

  76. 76.

    Day, G. M. & Cooper, A. I. Energy–structure–function maps: cartography for materials discovery. Adv. Mater. 0, 1704944 (2017).

    Google Scholar 

  77. 77.

    Pulido, A. et al. Functional materials discovery using energy–structure–function maps. Nature 543, 657–664 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Greenaway, R. L. et al. High-throughput discovery of organic cages and catenanes using computational screening fused with robotic synthesis. Nat. Commun. 9, 2849 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Lehn, J. Supramolecular chemistry. Science 260, 1762–1763 (1993).

    CAS  PubMed  Google Scholar 

  80. 80.

    Martinez-Bulit, P., Stirk, A. J. & Loeb, S. J. Rotors, motors, and machines inside metal-organic frameworks. Trends Chem. 1, 588–600 (2019).

    CAS  Google Scholar 

  81. 81.

    Fujita, M. et al. Self-assembly of ten molecules into nanometre-sized organic host frameworks. Nature 378, 469–471 (1995).

    CAS  Google Scholar 

  82. 82.

    Fujita, D. et al. Self-assembly of tetravalent Goldberg polyhedra from 144 small components. Nature 540, 563–566 (2016).

    CAS  PubMed  Google Scholar 

  83. 83.

    Guillerm, V. et al. A supermolecular building approach for the design and construction of metal–organic frameworks. Chem. Soc. Rev. 43, 6141–6172 (2014).

    CAS  PubMed  Google Scholar 

  84. 84.

    Krishna, R. Diffusion in porous crystalline materials. Chem. Soc. Rev. 41, 3099–3118 (2012).

    CAS  PubMed  Google Scholar 

  85. 85.

    Ceroni, P., Credi, A. & Venturi, M. (eds) Electrochemistry of Functional Supramolecular Systems (Wiley, 2009).

  86. 86.

    Astumian, R. D. Optical vs. chemical driving for molecular machines. Faraday Discuss. 195, 583–597 (2016).

    CAS  PubMed  Google Scholar 

  87. 87.

    Danowski, W. et al. Unidirectional rotary motion in a metal–organic framework. Nat. Nanotechnol. 14, 488–494 (2019).

    CAS  PubMed  Google Scholar 

  88. 88.

    Gelebart, A. H. et al. Making waves in a photoactive polymer film. Nature 546, 632–636 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Burnworth, M. et al. Optically healable supramolecular polymers. Nature 472, 334–337 (2011).

    CAS  PubMed  Google Scholar 

  90. 90.

    Zhou, H.-C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

    CAS  PubMed  Google Scholar 

  91. 91.

    Beuerle, F. & Gole, B. Covalent organic frameworks and cage compounds: design and applications of polymeric and discrete organic scaffolds. Angew. Chem. Int. Ed. 57, 4850–4878 (2018).

    CAS  Google Scholar 

  92. 92.

    Park, S. S., Santha Moorthy, M. & Ha, C.-S. Periodic mesoporous organosilicas for advanced applications. NPG Asia Mater. 6, e96 (2014).

    CAS  Google Scholar 

  93. 93.

    Borah, P. et al. Near-IR squaraine dye–loaded gated periodic mesoporous organosilica for photo-oxidation of phenol in a continuous-flow device. Sci. Adv. 1, e1500390 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. 94.

    Yaghi, O. M. Reticular chemistry in all dimensions. ACS Cent. Sci. 5, 1295–1300 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Gould, S. L., Tranchemontagne, D., Yaghi, O. M. & Garcia-Garibay, M. A. Amphidynamic character of crystalline MOF-5:  rotational dynamics of terephthalate phenylenes in a free-volume, sterically unhindered environment. J. Am. Chem. Soc. 130, 3246–3247 (2008).

    CAS  PubMed  Google Scholar 

  96. 96.

    Gonzalez-Nelson, A., Coudert, F.-X. & van der Veen, M. A. Rotational dynamics of linkers in metal–organic frameworks. Nanomaterials 9, 330 (2019).

    CAS  PubMed Central  Google Scholar 

  97. 97.

    Babaei, H., McGaughey, A. J. H. & Wilmer, C. E. Effect of pore size and shape on the thermal conductivity of metal-organic frameworks. Chem. Sci. 8, 583–589 (2017).

    CAS  PubMed  Google Scholar 

  98. 98.

    Vukotic, V. N., Harris, K. J., Zhu, K., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with dynamic interlocked components. Nat. Chem. 4, 456–460 (2012).

    CAS  PubMed  Google Scholar 

  99. 99.

    Li, Q. et al. A catenated strut in a catenated metal–organic framework. Angew. Chem. Int. Ed. 122, 6903–6907 (2010).

    Google Scholar 

  100. 100.

    Chen, Q. et al. A redox-active bistable molecular switch mounted inside a metal–organic framework. J. Am. Chem. Soc. 138, 14242–14245 (2016).

    CAS  PubMed  Google Scholar 

  101. 101.

    Yang, J., Ma, J.-F. & Batten, S. R. Polyrotaxane metal–organic frameworks (PMOFs). Chem. Commun. 48, 7899–7912 (2012).

    CAS  Google Scholar 

  102. 102.

    Coskun, A. et al. Metal–organic frameworks incorporating copper-complexed rotaxanes. Angew. Chem. Int. Ed. 51, 2160–2163 (2012).

    CAS  Google Scholar 

  103. 103.

    Zhu, K., O’Keefe, C. A., Vukotic, V. N., Schurko, R. W. & Loeb, S. J. A molecular shuttle that operates inside a metal–organic framework. Nat. Chem. 7, 514–519 (2015).

    CAS  PubMed  Google Scholar 

  104. 104.

    Deng, H. et al. Multiple functional groups of varying ratios in metal-organic frameworks. Science 327, 846–850 (2010).

    CAS  PubMed  Google Scholar 

  105. 105.

    Bisbey, R. P. & Dichtel, W. R. Covalent organic frameworks as a platform for multidimensional polymerization. ACS Cent. Sci. 3, 533–543 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Luo, T.-Y. et al. Multivariate stratified metal–organic frameworks: diversification using domain building blocks. J. Am. Chem. Soc. 141, 2161–2168 (2019).

    CAS  PubMed  Google Scholar 

  107. 107.

    Mutruc, D. et al. Modulating guest uptake in core–shell MOFs with visible light. Angew. Chem. Int. Ed. 58, 12862–12867 (2019).

    CAS  Google Scholar 

  108. 108.

    Heinke, L. & Wöll, C. Surface-mounted metal–organic frameworks: crystalline and porous molecular assemblies for fundamental insights and advanced applications. Adv. Mater. 31, 1806324 (2019).

    Google Scholar 

  109. 109.

    Ikigaki, K. et al. MOF-on-MOF: oriented growth of multiple layered thin films of metal–organic frameworks. Angew. Chem. Int. Ed. 58, 6886–6890 (2019).

    CAS  Google Scholar 

  110. 110.

    Luo, X.-L., Yin, Z., Zeng, M.-H. & Kurmoo, M. The construction, structures, and functions of pillared layer metal–organic frameworks. Inorg. Chem. Front. 3, 1208–1226 (2016).

    CAS  Google Scholar 

  111. 111.

    Kanj, A. B., Bürck, J., Grosjean, S., Bräse, S. & Heinke, L. Switching the enantioselectivity of nanoporous host materials by light. Chem. Commun. 55, 8776–8779 (2019).

    CAS  Google Scholar 

  112. 112.

    Heinke, L. et al. Photoswitching in two-component surface-mounted metal–organic frameworks: optically triggered release from a molecular container. ACS Nano 8, 1463–1467 (2014).

    CAS  PubMed  Google Scholar 

  113. 113.

    Tu, B. et al. Harnessing bottom-up self-assembly to position five distinct components in an ordered porous framework. Angew. Chem. Int. Ed. 58, 5348–5353 (2019).

    CAS  Google Scholar 

  114. 114.

    Segura, J. L., Royuela, S. & Mar Ramos, M. Post-synthetic modification of covalent organic frameworks. Chem. Soc. Rev. 48, 3903–3945 (2019).

    CAS  PubMed  Google Scholar 

  115. 115.

    Wang, Z. & Cohen, S. M. Postsynthetic modification of metal–organic frameworks. Chem. Soc. Rev. 38, 1315–1329 (2009).

    CAS  PubMed  Google Scholar 

  116. 116.

    Kim, M., Cahill, J. F., Su, Y., Prather, K. A. & Cohen, S. M. Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal–organic frameworks. Chem. Sci. 3, 126–130 (2012).

    CAS  Google Scholar 

  117. 117.

    Burnett, B. J., Barron, P. M., Hu, C. & Choe, W. Stepwise synthesis of metal–organic frameworks: replacement of structural organic linkers. J. Am. Chem. Soc. 133, 9984–9987 (2011).

    CAS  PubMed  Google Scholar 

  118. 118.

    Bury, W. et al. Control over catenation in pillared paddlewheel metal–organic framework materials via solvent-assisted linker exchange. Chem. Mater. 25, 739–744 (2013).

    CAS  Google Scholar 

  119. 119.

    Frantz, D. K., Linden, A., Baldridge, K. K. & Siegel, J. S. Molecular spur gears comprising triptycene rotators and bibenzimidazole-based stators. J. Am. Chem. Soc. 134, 1528–1535 (2012).

    CAS  PubMed  Google Scholar 

  120. 120.

    Ube, H. et al. A circularly arranged sextuple triptycene gear molecule. J. Am. Chem. Soc. 139, 16470–16473 (2017).

    CAS  PubMed  Google Scholar 

  121. 121.

    Pérez-Estrada, S., Rodríguez-Molina, B., Maverick, E. F., Khan, S. I. & Garcia-Garibay, M. A. Throwing in a monkey wrench to test and determine geared motion in the dynamics of a crystalline one-dimensional (1D) columnar rotor array. J. Am. Chem. Soc. 141, 2413–2420 (2019).

    PubMed  Google Scholar 

  122. 122.

    Kaleta, J. et al. Gearing motion in cogwheel pairs of molecular rotors: weak-coupling limit. CrystEngComm 17, 7829–7834 (2015).

    CAS  Google Scholar 

  123. 123.

    Howe, M. E. & Garcia-Garibay, M. A. The roles of intrinsic barriers and crystal fluidity in determining the dynamics of crystalline molecular rotors and molecular machines. J. Org. Chem. 84, 9835–9849 (2019).

    CAS  PubMed  Google Scholar 

  124. 124.

    Pezzato, C., Cheng, C., Stoddart, J. F. & Astumian, R. D. Mastering the non-equilibrium assembly and operation of molecular machines. Chem. Soc. Rev. 46, 5491–5507 (2017).

    CAS  PubMed  Google Scholar 

  125. 125.

    Zhang, Y. et al. Simultaneous and coordinated rotational switching of all molecular rotors in a network. Nat. Nanotechnol. 11, 706–712 (2016).

    CAS  PubMed  Google Scholar 

  126. 126.

    Kamencek, T., Bedoya-Martínez, N. & Zojer, E. Understanding phonon properties in isoreticular metal-organic frameworks from first principles. Phys. Rev. Mater. 3, 116003 (2019).

    CAS  Google Scholar 

  127. 127.

    So, M. C., Wiederrecht, G. P., Mondloch, J. E., Hupp, J. T. & Farha, O. K. Metal–organic framework materials for light-harvesting and energy transfer. Chem. Commun. 51, 3501–3510 (2015).

    CAS  Google Scholar 

  128. 128.

    Moore, M. J. & Nakano, T. Oscillation and synchronization of molecular machines by the diffusion of inhibitory molecules. IEEE Trans. Nanotechnol. 12, 601–608 (2013).

    CAS  Google Scholar 

  129. 129.

    Simpson, G. J., García-López, V., Daniel Boese, A., Tour, J. M. & Grill, L. How to control single-molecule rotation. Nat. Commun. 10, 4631 (2019).

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Cui, J. et al. Nanomagnetic encoding of shape-morphing micromachines. Nature 575, 164–168 (2019).

    CAS  PubMed  Google Scholar 

  131. 131.

    Ameloot, R. et al. Metal–organic framework single crystals as photoactive matrices for the generation of metallic microstructures. Adv. Mater. 23, 1788–1791 (2011).

    CAS  PubMed  Google Scholar 

  132. 132.

    Winston, E. B. et al. Dipolar molecular rotors in the metal–organic framework crystal IRMOF-2. Phys. Chem. Chem. Phys. 10, 5188–5191 (2008).

    CAS  PubMed  Google Scholar 

  133. 133.

    Namsani, S. & Yazaydin, A. O. Electric field induced rotation of halogenated organic linkers in isoreticular metal–organic frameworks for nanofluidic applications. Mol. Syst. Des. Eng. 3, 951–958 (2018).

    CAS  Google Scholar 

  134. 134.

    Aulakh, D. et al. Metal–organic frameworks as platforms for the controlled nanostructuring of single-molecule magnets. J. Am. Chem. Soc. 137, 9254–9257 (2015).

    CAS  PubMed  Google Scholar 

  135. 135.

    Tam, B. & Yazaydin, O. Design of electric field controlled molecular gates mounted on metal-organic frameworks. J. Mater. Chem. A 5, 8690–8696 (2017).

    CAS  Google Scholar 

  136. 136.

    Kopperger, E. et al. A self-assembled nanoscale robotic arm controlled by electric fields. Science 359, 296–301 (2018).

    CAS  PubMed  Google Scholar 

  137. 137.

    Zhang, Y. et al. A chiral molecular propeller designed for unidirectional rotations on a surface. Nat. Commun. 10, 3742 (2019).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Knebel, A. et al. Defibrillation of soft porous metal-organic frameworks with electric fields. Science 358, 347–351 (2017).

    CAS  PubMed  Google Scholar 

  139. 139.

    Ghoufi, A., Benhamed, K., Boukli-Hacene, L. & Maurin, G. Electrically induced breathing of the MIL-53(Cr) metal–organic framework. ACS Cent. Sci. 3, 394–398 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Dürholt, J. P., Jahromi, B. F. & Schmid, R. Tuning the electric field response of MOFs by rotatable dipolar linkers. ACS Cent. Sci. 5, 1440–1448 (2019).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Yao, Z.-S. et al. Molecular motor-driven abrupt anisotropic shape change in a single crystal of a Ni complex. Nat. Chem. 6, 1079–1083 (2014).

    CAS  PubMed  Google Scholar 

  142. 142.

    Colin-Molina, A. et al. Thermosalient amphidynamic molecular machines: motion at the molecular and macroscopic scales. Matter 1, 1033–1046 (2019).

    Google Scholar 

  143. 143.

    Bon, V., Brunner, E., Pöppl, A. & Kaskel, S. Unraveling structure and dynamics in porous frameworks via advanced in situ characterization techniques. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201907847 (2020).

    Article  Google Scholar 

  144. 144.

    Hoffmann, H. C. et al. Solid-state NMR spectroscopy of metal–organic framework compounds (MOFs). Materials 5, 2537–2572 (2012).

    CAS  PubMed Central  Google Scholar 

  145. 145.

    Devautour-Vinot, S. et al. Structure and dynamics of the functionalized MOF type UiO-66(Zr): NMR and dielectric relaxation spectroscopies coupled with DFT calculations. Chem. Mater. 24, 2168–2177 (2012).

    CAS  Google Scholar 

  146. 146.

    Frunza, S. et al. Molecular relaxation processes in a MOF-5 structure revealed by broadband dielectric spectroscopy: signature of phenylene ring fluctuations. J. Phys. Chem. B 114, 12840–12846 (2010).

    CAS  PubMed  Google Scholar 

  147. 147.

    Sacha, K. & Zakrzewski, J. Time crystals: a review. Rep. Prog. Phys. 81, 016401 (2017).

    Google Scholar 

  148. 148.

    Yuan, S. et al. Retrosynthesis of multi-component metal–organic frameworks. Nat. Commun. 9, 808 (2018).

    PubMed  PubMed Central  Google Scholar 

  149. 149.

    Juluri, B. K. et al. A mechanical actuator driven electrochemically by artificial molecular muscles. ACS Nano 3, 291–300 (2009).

    CAS  PubMed  Google Scholar 

  150. 150.

    Liu, Y. et al. Linear artificial molecular muscles. J. Am. Chem. Soc. 127, 9745–9759 (2005).

    CAS  PubMed  Google Scholar 

  151. 151.

    Chen, J. et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018).

    CAS  PubMed  Google Scholar 

  152. 152.

    Ikejiri, S., Takashima, Y., Osaki, M., Yamaguchi, H. & Harada, A. Solvent-free photoresponsive artificial muscles rapidly driven by molecular machines. J. Am. Chem. Soc. 140, 17308–17315 (2018).

    CAS  PubMed  Google Scholar 

  153. 153.

    Walther, A. Viewpoint: from responsive to adaptive and interactive materials and materials systems: a roadmap. Adv. Mater. 32, 1905111 (2020).

    CAS  Google Scholar 

  154. 154.

    Nakagawa, Y. et al. Photosalient effect of diarylethene crystals of thiazoyl and thienyl derivatives. Chem. Eur. J. 25, 7874–7880 (2019).

    CAS  PubMed  Google Scholar 

  155. 155.

    Naumov, P., Chizhik, S., Panda, M. K., Nath, N. K. & Boldyreva, E. Mechanically responsive molecular crystals. Chem. Rev. 115, 12440–12490 (2015).

    CAS  PubMed  Google Scholar 

  156. 156.

    Biswas, P. K., Saha, S., Paululat, T. & Schmittel, M. Rotating catalysts are superior: suppressing product inhibition by anchimeric assistance in four-component catalytic machinery. J. Am. Chem. Soc. 140, 9038–9041 (2018).

    CAS  PubMed  Google Scholar 

  157. 157.

    Dorel, R. & Feringa, B. L. Stereodivergent anion binding catalysis with molecular motors. Angew. Chem. Int. Ed. 59, 785–789 (2020).

    CAS  Google Scholar 

  158. 158.

    Romanazzi, G., Degennaro, L., Mastrorilli, P. & Luisi, R. Chiral switchable catalysts for dynamic control of enantioselectivity. ACS Catal. 7, 4100–4114 (2017).

    CAS  Google Scholar 

  159. 159.

    Dorel, R. & Feringa, B. L. Photoswitchable catalysis based on the isomerisation of double bonds. Chem. Commun. 55, 6477–6486 (2019).

    CAS  Google Scholar 

  160. 160.

    Göstl, R., Senf, A. & Hecht, S. Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution. Chem. Soc. Rev. 43, 1982–1996 (2014).

    PubMed  Google Scholar 

  161. 161.

    Eisenreich, F. et al. A photoswitchable catalyst system for remote-controlled (co)polymerization in situ. Nat. Catal. 1, 516–522 (2018).

    CAS  Google Scholar 

  162. 162.

    Pizzolato, S. F. et al. Central-to-helical-to-axial-to-central transfer of chirality with a photoresponsive catalyst. J. Am. Chem. Soc. 140, 17278–17289 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Zhao, D., Neubauer, T. M. & Feringa, B. L. Dynamic control of chirality in phosphine ligands for enantioselective catalysis. Nat. Commun. 6, 6652 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Gaikwad, S., Goswami, A., De, S. & Schmittel, M. A metalloregulated four-state nanoswitch controls two-step sequential catalysis in an eleven-component system. Angew. Chem. Int. Ed. 55, 10512–10517 (2016).

    CAS  Google Scholar 

  165. 165.

    Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).

    PubMed  PubMed Central  Google Scholar 

  166. 166.

    Marbach, S., Dean, D. S. & Bocquet, L. Transport and dispersion across wiggling nanopores. Nat. Phys. 14, 1108–1113 (2018).

    CAS  Google Scholar 

  167. 167.

    Evans, J. D., Krause, S. & Feringa, B. L. Cooperative and synchronized rotation in motorized porous frameworks: impact on local and global transport properties of confined fluids. Faraday Discuss. https://doi.org/10.1039/D0FD00016G (2020).

    Article  PubMed  Google Scholar 

  168. 168.

    Bruce, D. A. Mechanical catalysis: methods of enzymatic, homogeneous, and heterogeneous catalysis. J. Am. Chem. Soc. 131, 14597–14597 (2009).

    CAS  Google Scholar 

  169. 169.

    Xia, Q. et al. Multivariate metal–organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions. J. Am. Chem. Soc. 139, 8259–8266 (2017).

    CAS  PubMed  Google Scholar 

  170. 170.

    Vriezema, D. M. et al. Self-assembled nanoreactors. Chem. Rev. 105, 1445–1490 (2005).

    CAS  PubMed  Google Scholar 

  171. 171.

    Whitesides, G. M. The once and future nanomachine. Sci. Am. 285, 78–83 (2001).

    CAS  PubMed  Google Scholar 

  172. 172.

    Wang, X. et al. MOFBOTS: metal–organic-framework-based biomedical microrobots. Adv. Mater. 31, 1901592 (2019).

    Google Scholar 

  173. 173.

    Cheng, F. et al. Dynamic electric field alignment of metal–organic framework microrods. J. Am. Chem. Soc. 141, 12989–12993 (2019).

    CAS  PubMed  Google Scholar 

  174. 174.

    Park, J. H., Lach, S., Polev, K., Granick, S. & Grzybowski, B. A. Metal–organic framework “swimmers” with energy-efficient autonomous motility. ACS Nano 11, 10914–10923 (2017).

    CAS  PubMed  Google Scholar 

  175. 175.

    Ikezoe, Y. et al. Peptide–metal organic framework swimmers that direct the motion toward chemical targets. Nano Lett. 15, 4019–4023 (2015).

    CAS  PubMed  Google Scholar 

  176. 176.

    Horike, S., Nagarkar, S. S., Ogawa, T. & Kitagawa, S. A new dimension for coordination polymers and metal–organic frameworks: towards functional glasses and liquids. Angew. Chem. Int. Ed. 59, 6652–6664 (2020).

    CAS  Google Scholar 

  177. 177.

    Hou, J. et al. Metal-organic framework crystal-glass composites. Nat. Commun. 10, 2580 (2019).

    PubMed  PubMed Central  Google Scholar 

  178. 178.

    Reboul, J. et al. Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication. Nat. Mater. 11, 717–723 (2012).

    CAS  PubMed  Google Scholar 

  179. 179.

    Troyano, J., Carné-Sánchez, A., Avci, C., Imaz, I. & Maspoch, D. Colloidal metal–organic framework particles: the pioneering case of ZIF-8. Chem. Soc. Rev. 48, 5534–5546 (2019).

    CAS  PubMed  Google Scholar 

  180. 180.

    Hwang, J., Heil, T., Antonietti, M. & Schmidt, B. V. K. J. Morphogenesis of metal–organic mesocrystals mediated by double hydrophilic block copolymers. J. Am. Chem. Soc. 140, 2947–2956 (2018).

    CAS  PubMed  Google Scholar 

  181. 181.

    Hou, J., Sapnik, A. F. & Bennett, T. D. Metal–organic framework gels and monoliths. Chem. Sci. 11, 310–323 (2020).

    CAS  PubMed  Google Scholar 

  182. 182.

    Gliemann, H. & Wöll, C. Epitaxially grown metal-organic frameworks. Mater. Today 15, 110–116 (2012).

    CAS  Google Scholar 

  183. 183.

    Krishtab, M. et al. Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics. Nat. Commun. 10, 3729 (2019).

    PubMed  PubMed Central  Google Scholar 

  184. 184.

    Wang, C. et al. Ultrarobust biochips with metal–organic framework coating for point-of-care diagnosis. ACS Sens. 3, 342–351 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    de Pablo, J. J. et al. New frontiers for the materials genome initiative. NPJ Comput. Mater. 5, 41 (2019).

    Google Scholar 

  186. 186.

    Marolf, D. M. & Jones, M. R. Measurement challenges in dynamic and nonequilibrium nanoscale systems. Anal. Chem. 91, 13324–13336 (2019).

    CAS  PubMed  Google Scholar 

  187. 187.

    Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

    CAS  PubMed  Google Scholar 

  188. 188.

    Schneemann, A. et al. Flexible metal-organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank W. Danowski and A. Lubbe for helpful discussion and proofreading. They thank the Ministry of Education, Culture and Science (Gravitation Program no. 024.001.035) for financial support. S.K. thanks the Alexander von Humboldt Foundation for financial support and FlixBus for providing transportation during which the majority of this manuscript was written.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Simon Krause or Ben L. Feringa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krause, S., Feringa, B.L. Towards artificial molecular factories from framework-embedded molecular machines. Nat Rev Chem 4, 550–562 (2020). https://doi.org/10.1038/s41570-020-0209-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing