Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Controlling dynamics in extended molecular frameworks

Abstract

Molecular machines are essential dynamic components for fuel production, cargo delivery, information storage and processing in living systems. Scientists have demonstrated that they can design and synthesize artificial molecular machines that operate efficiently in isolation — for example, at high dilution in solution — fuelled by chemicals, electricity or light. To organize the spatial arrangement and motion of these machines within close proximity to one another in solid frameworks, such that useful macroscopic work can be performed, remains a challenge in both chemical and materials science. In this Review, we summarize the progress that has been made during the past decade in organizing dynamic molecular entities in such solid frameworks. Emerging applications of these dynamic smart materials in the contexts of molecular recognition, optoelectronics, drug delivery, photodynamic therapy and water desalination are highlighted. Finally, we review recent work on a new non-equilibrium adsorption phenomenon for which we have coined the term mechanisorption. The ability to use external energy to drive directional processes in mechanized extended frameworks augurs well for the future development of artificial molecular factories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A Venn diagram showing the properties of metal–organic frameworks (MOFs) that render23 them an excellent platform for accommodating dynamic components.
Fig. 2: Chronology associated with the advances in robust dynamics23 from 2008 to the present day.
Fig. 3: Summary of non-directional rotational movements observed in molecular turnstiles.
Fig. 4: Summary of possible non-directional motions observed in mechanically interlocked molecules incorporated in extended molecular frameworks.
Fig. 5: Structural representations of switchable configurations of azobenzenes and switchable constitutions in diarylethenes and spiropyrans in struts of extended molecular frameworks.
Fig. 6: Graphical representations of controlled switchable motions using dative bonds in mechanically interlocked molecules (MIMs).
Fig. 7: Graphical illustration of continuous unidirectional motion of rotary motors in MOFs.
Fig. 8: Graphical illustration of continuous unidirectional motion of linear motors (pumps) in MOFs.
Fig. 9: Sequential pumping of different rings onto surfaces.
Fig. 10: Scope of mechanisorption and its potential application.
Fig. 11: Outlook for robust dynamics.

Similar content being viewed by others

References

  1. Alberts, B. et al. The Molecular Biology of the Cell 4th edn (Garland Science, 2002).

  2. Wagoner, J. A. & Dill, K. A. Mechanisms for achieving high speed and efficiency in biomolecular machines. Proc. Natl Acad. Sci. USA 116, 5902–5907 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Astumian, R. D. & Derényi, I. Fluctuation driven transport and models of molecular motors and pumps. Eur. Biophys. J. 27, 474–489 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Stoddart, J. F. Mechanically interlocked molecules (MIMs) — molecular shuttles, switches, and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    Article  CAS  Google Scholar 

  5. Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).

    Article  CAS  Google Scholar 

  6. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 1, 25–35 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Drexler, K. E. Molecular engineering — an approach to the development of general capabilities for molecular manipulation. Proc. Natl Acad. Sci. USA 78, 5275–5278 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Costil, R., Holzheimer, M., Crespi, S., Simeth, N. A. & Feringa, B. L. Directing coupled motion with light: a key step toward machine-like function. Chem. Rev. 121, 13213–13237 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966).

    Article  CAS  PubMed  Google Scholar 

  12. Sweeney, H. L. & Houdusse, A. Myosin VI rewrites the rules for myosin motors. Cell 141, 573–582 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Carter, N. J. & Cross, R. Mechanics of the kinesin step. Nature 435, 308–312 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, H. & Oster, G. Energy transduction in the F1 motor of ATP synthase. Nature 396, 279–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Toyabe, S., Watanabe-Nakayama, T., Okamoto, T., Kudo, S. & Muneyuki, E. Thermodynamic efficiency and mechanochemical coupling of F1-ATPase. Proc. Natl Acad. Sci. USA 108, 17951–17956 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jacrot, B., Cusack, S., Dianoux, A. J. & Engelman, D. M. Inelastic neutron scattering analysis of hexokinase dynamics and its modification on binding of glucose. Nature 300, 84–86 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. Jose, A. M. & Hunter, C. P. Transport of sequence-specific RNA interference information between cells. Annu. Rev. Genet. 41, 305–330 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Church, G. M., Gao, Y. & Kosuri, S. Next-generation digital information storage in DNA. Science 337, 1628–1628 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Sauvage, J. P. From chemical topology to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).

    Article  CAS  Google Scholar 

  20. Feringa, B. L. The art of building small: from molecular switches to motors (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).

    Article  CAS  Google Scholar 

  21. Moulin, E., Faour, L., Carmona‐Vargas, C. C. & Giuseppone, N. From molecular machines to stimuli‐responsive materials. Adv. Mater. 32, 1906036 (2020).

    Article  CAS  Google Scholar 

  22. Dattler, D. et al. Design of collective motions from synthetic molecular switches, rotors, and motors. Chem. Rev. 120, 310–433 (2019).

    Article  PubMed  Google Scholar 

  23. Deng, H. X., Olson, M. A., Stoddart, J. F. & Yaghi, O. M. Robust dynamics. Nat. Chem. 2, 439–443 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Krause, S. & Feringa, B. L. Towards artificial molecular factories from framework-embedded molecular machines. Nat. Rev. Chem. 4, 550–562 (2020).

    Article  CAS  Google Scholar 

  25. Yaghi, O. M., Li, G. M. & Li, H. L. Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995).

    Article  CAS  Google Scholar 

  26. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    Article  CAS  Google Scholar 

  27. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Kitagawa, S. & Uemura, K. Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chem. Soc. Rev. 34, 109–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  PubMed  Google Scholar 

  31. Evans, J. D., Bon, V., Senkovska, I., Lee, H. C. & Kaskel, S. Four-dimensional metal–organic frameworks. Nat. Commun. 11, 2690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng, L., Wang, K. Y., Willman, J. & Zhou, H. C. Hierarchy in metal–organic frameworks. ACS Cent. Sci. 6, 359–367 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilson, B. H. & Loeb, S. J. Integrating the mechanical bond into metal–organic frameworks. Chem 6, 1604–1612 (2020).

    Article  CAS  Google Scholar 

  34. Martinez-Bulit, P., Stirk, A. J. & Loeb, S. J. Rotors, motors, and machines inside metal–organic frameworks. Trends Chem. 1, 588–600 (2019).

    Article  CAS  Google Scholar 

  35. Eddaoudi, M. et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal−organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Lo, S. H. et al. Rapid desolvation-triggered domino lattice rearrangement in a metal–organic framework. Nat. Chem. 12, 90–97 (2020).

    Article  PubMed  Google Scholar 

  37. Yuan, S. et al. Stable metal–organic frameworks: design, synthesis, and applications. Adv. Mater. 30, 1704303 (2018).

    Article  Google Scholar 

  38. Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (John Wiley & Sons, 2016).

  39. Cote, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

    Article  PubMed  Google Scholar 

  41. Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Evans, A. M. et al. Two-dimensional polymers and polymerizations. Chem. Rev. 122, 442–564 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Iwamura, H. & Mislow, K. Stereochemical consequences of dynamic gearing. Acc. Chem. Res. 21, 175–182 (1988).

    Article  CAS  Google Scholar 

  44. Conyard, J. et al. Ultrafast dynamics in the power stroke of a molecular rotary motor. Nat. Chem. 4, 547–551 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Eelkema, R. et al. Nanomotor rotates microscale objects. Nature 440, 163–163 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Qiu, Y. et al. A precise polyrotaxane synthesizer. Science 368, 1247–1253 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qiu, Y., Feng, Y., Guo, Q.-H., Astumian, R. D. & Stoddart, J. F. Pumps through the ages. Chem 6, 1952–1977 (2020).

    Article  CAS  Google Scholar 

  49. Feng, L. et al. Active mechanisorption driven by pumping cassettes. Science 374, 1215–1221 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Kottas, G. S., Clarke, L. I., Horinek, D. & Michl, J. Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Vogelsberg, C. S. & Garcia-Garibay, M. A. Crystalline molecular machines: function, phase order, dimensionality, and composition. Chem. Soc. Rev. 41, 1892–1910 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Comotti, A., Bracco, S. & Sozzani, P. Molecular rotors built in porous materials. Acc. Chem. Res. 49, 1701–1710 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Horike, S. et al. Dynamic motion of building blocks in porous coordination polymers. Angew. Chem. Int. Ed. 45, 7226–7230 (2006).

    Article  CAS  Google Scholar 

  54. Gould, S. L., Tranchemontagne, D., Yaghi, O. M. & Garcia-Garibay, M. A. Amphidynamic character of crystalline MOF-5: rotational dynamics of terephthalate phenylenes in a free-volume, sterically unhindered environment. J. Am. Chem. Soc. 130, 3246–3247 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Winston, E. B. et al. Dipolar molecular rotors in the metal–organic framework crystal IRMOF-2. Phys. Chem. Chem. Phys. 10, 5188–5191 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Morris, W., Taylor, R. E., Dybowski, C., Yaghi, O. M. & Garcia-Garibay, M. A. Framework mobility in the metal–organic framework crystal IRMOF-3: evidence for aromatic ring and amine rotation. J. Mol. Struct. 1004, 94–101 (2011).

    Article  CAS  Google Scholar 

  58. Kolokolov, D. I. et al. Probing the dynamics of the porous Zr terephthalate UiO-66 framework using 2H NMR and neutron scattering. J. Phys. Chem. C. 116, 12131–12136 (2012).

    Article  CAS  Google Scholar 

  59. Ryder, M. R. et al. Detecting molecular rotational dynamics complementing the low-frequency terahertz vibrations in a zirconium-based metal–organic framework. Phys. Rev. Lett. 118, 255502 (2017).

    Article  PubMed  Google Scholar 

  60. Khudozhitkov, A. E., Kolokolov, D. I., Stepanov, A. G., Bolotov, V. A. & Dybtsev, D. N. Metal-cation-independent dynamics of phenylene ring in microporous MOFs: a 2H solid-state NMR study. J. Phys. Chem. C 119, 28038–28045 (2015).

    Article  CAS  Google Scholar 

  61. Damron, J. T. et al. The influence of chemical modification on linker rotational dynamics in metal–organic frameworks. Angew. Chem. Int. Ed. 57, 8678–8681 (2018).

    Article  CAS  Google Scholar 

  62. Bracco, S. et al. CO2 regulates molecular rotor dynamics in porous materials. Chem. Commun. 53, 7776–7779 (2017).

    Article  CAS  Google Scholar 

  63. Liu, C. Y. et al. Ultrafast luminescent light-up guest detection based on the lock of the host molecular vibration. J. Am. Chem. Soc. 142, 6690–6697 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Jiang, H.-L., Makal, T. A. & Zhou, H.-C. Interpenetration control in metal–organic frameworks for functional applications. Coord. Chem. Rev. 257, 2232–2249 (2013).

    Article  CAS  Google Scholar 

  65. Jiang, X., Duan, H. B., Khan, S. I. & Garcia-Garibay, M. A. Diffusion-controlled rotation of triptycene in a metal–organic framework (MOF) sheds light on the viscosity of MOF-confined solvent. ACS Cent. Sci. 2, 608–613 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vogelsberg, C. S. et al. Ultrafast rotation in an amphidynamic crystalline metal organic framework. Proc. Natl Acad. Sci. USA 114, 13613–13618 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Perego, J. et al. Fast motion of molecular rotors in metal–organic framework struts at very low temperatures. Nat. Chem. 12, 845–851 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Su, Y.-S. et al. Dipolar order in an amphidynamic crystalline metal–organic framework through reorienting linkers. Nat. Chem. 13, 278–283 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Teufel, J. et al. MFU-4–a metal–organic framework for highly effective H2/D2 separation. Adv. Mater. 25, 635–639 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, J.-P. & Chen, X.-M. Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework. J. Am. Chem. Soc. 130, 6010–6017 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Knebel, A. et al. Defibrillation of soft porous metal–organic frameworks with electric fields. Science 358, 347–351 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Zeng, H. et al. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature 595, 542–548 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Feng, L., Day, G. S., Wang, K.-Y., Yuan, S. & Zhou, H.-C. Strategies for pore engineering in zirconium metal–organic frameworks. Chem 6, 2902–2923 (2020).

    Article  CAS  Google Scholar 

  74. Feng, L., Wang, K.-Y., Day, G. S., Ryder, M. R. & Zhou, H.-C. Destruction of metal–organic frameworks: positive and negative aspects of stability and lability. Chem. Rev. 120, 13087–13133 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Gu, C. et al. Design and control of gas diffusion process in a nanoporous soft crystal. Science 363, 387–391 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Feng, L. et al. An encapsulation-rearrangement strategy to integrate superhydrophobicity into mesoporous metal–organic frameworks. Matter 2, 988–999 (2020).

    Article  Google Scholar 

  77. Li, X. et al. Partitioning the interlayer space of covalent organic frameworks by embedding pseudorotaxanes in their backbones. Nat. Chem. 12, 1115–1122 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Saura-Sanmartin, A. et al. Copper-linked rotaxanes for the building of photoresponsive metal organic frameworks with controlled cargo delivery. J. Am. Chem. Soc. 142, 13442–13449 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Vukotic, V. N. & Loeb, S. J. Coordination polymers containing rotaxane linkers. Chem. Soc. Rev. 41, 5896–5906 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Whang, D., Jeon, Y. M., Heo, J. & Kim, K. Self-assembly of a polyrotaxane containing a cyclic “bead” in every structural unit in the solid state: cucurbituril molecules threaded on a one-dimensional coordination polymer. J. Am. Chem. Soc. 118, 11333–11334 (1996).

    Article  CAS  Google Scholar 

  81. Whang, D. & Kim, K. Polycatenated two-dimensional polyrotaxane net. J. Am. Chem. Soc. 119, 451–452 (1997).

    Article  CAS  Google Scholar 

  82. Lee, E., Kim, J., Heo, J., Whang, D. & Kim, K. A two-dimensional polyrotaxane with large cavities and channels: a novel approach to metal–organic open-frameworks by using supramolecular building blocks. Angew. Chem. Int. Ed. 40, 399–402 (2001).

    Article  CAS  Google Scholar 

  83. Whang, D., Heo, J., Kim, C. A. & Kim, K. Helical polyrotaxane: cucurbituril ‘beads’ threaded onto a helical one-dimensional coordination polymer. Chem. Commun. 1997, 2361–2362 (1997).

    Article  Google Scholar 

  84. Lee, E. S., Heo, J. S. & Kim, K. A three-dimensional polyrotaxane network. Angew. Chem. Int. Ed. 39, 2699–2701 (2000).

    Article  CAS  Google Scholar 

  85. Kim, K. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev. 31, 96–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Hoffart, D. J. & Loeb, S. J. Metal–organic rotaxane frameworks: three-dimensional polyrotaxanes from lanthanide-ion nodes, pyridinium N-oxide axles, and crown-ether wheels. Angew. Chem. Int. Ed. 44, 901–904 (2005).

    Article  CAS  Google Scholar 

  87. Davidson, G. J. E. & Loeb, S. J. Channels and cavities lined with interlocked components: metal-based polyrotaxanes that utilize pyridinimn axles and crown ether wheels as ligands. Angew. Chem. Int. Ed. 42, 74–77 (2003).

    Article  CAS  Google Scholar 

  88. Li, Q. W. et al. Docking in metal–organic frameworks. Science 325, 855–859 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Li, Q. W. et al. A metal–organic framework replete with ordered donor-acceptor catenanes. Chem. Commun. 46, 380–382 (2010).

    Article  Google Scholar 

  90. Zhao, Y. L. et al. Rigid-strut-containing crown ethers and [2]catenanes for incorporation into metal–organic frameworks. Chem. Eur. J. 15, 13356–13380 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Li, Q. W. et al. A catenated strut in a catenated metal–organic framework. Angew. Chem. Int. Ed. 49, 6751–6755 (2010).

    Article  CAS  Google Scholar 

  92. Vukotic, V. N., Harris, K. J., Zhu, K. L., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with dynamic interlocked components. Nat. Chem. 4, 456–460 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Vukotic, V. N. et al. Mechanically interlocked linkers inside metal–organic frameworks: effect of ring size on rotational dynamics. J. Am. Chem. Soc. 137, 9643–9651 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Zhu, K. L., Vukotic, V. N., O’Keefe, C. A., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with mechanically interlocked pillars: controlling ring dynamics in the solid-state via a reversible phase change. J. Am. Chem. Soc. 136, 7403–7409 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Anelli, P. L., Spencer, N. & Stoddart, J. F. A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. Zhu, K. L., O’Keefe, C. A., Vukotic, V. N., Schurko, R. W. & Loeb, S. J. A molecular shuttle that operates inside a metal–organic framework. Nat. Chem. 7, 514–519 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Wilson, B. H. et al. Precise spatial arrangement and interaction between two different mobile components in a metal–organic framework. Chem 7, 202–211 (2021).

    Article  CAS  Google Scholar 

  98. Meng, W. et al. An elastic metal–organic crystal with a densely catenated backbone. Nature 598, 298–303 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. An, S. H. et al. Construction of covalent organic frameworks with crown ether struts. Angew. Chem. Int. Ed. 60, 9959–9963 (2021).

    Article  CAS  Google Scholar 

  100. Chun, H., Dybtsev, D. N., Kim, H. & Kim, K. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. Chem. Eur. J. 11, 3521–3529 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Rice, A. M. et al. Photophysics modulation in photoswitchable metal–organic frameworks. Chem. Rev. 120, 8790–8813 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Shinkai, S., Nakaji, T., Nishida, Y., Ogawa, T. & Manabe, O. Photoresponsive crown ethers. 1. Cis–trans isomerism of azobenzene as a tool to enforce conformational changes of crown ethers and polymers. J. Am. Chem. Soc. 102, 5860–5865 (1980).

    Article  CAS  Google Scholar 

  103. Krause, S. et al. Cooperative light-induced breathing of soft porous crystals via azobenzene buckling. Nat Commun. 13, 1951 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Modrow, A., Zargarani, D., Herges, R. & Stock, N. The first porous MOF with photoswitchable linker molecules. Dalton Trans. 40, 4217–4222 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Modrow, A., Feyand, M., Zargarani, D., Herges, R. & Stock, N. Systematic investigation of porous inorganic–organic hybrid compounds with photo-switchable properties. Z. Anorg. Allg. Chem. 638, 2138–2143 (2012).

    Article  CAS  Google Scholar 

  106. Wang, Z. B. et al. Photoswitching in nanoporous, crystalline solids: an experimental and theoretical study for azobenzene linkers incorporated in MOFs. Phys. Chem. Chem. Phys. 17, 14582–14587 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Modrow, A., Zargarani, D., Herges, R. & Stock, N. Introducing a photo-switchable azo-functionality inside Cr-MIL-101-NH2 by covalent post-synthetic modification. Dalton Trans. 41, 8690–8696 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Park, J. et al. Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal–organic framework. J. Am. Chem. Soc. 134, 99–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Brown, J. W. et al. Photophysical pore control in an azobenzene-containing metal–organic framework. Chem. Sci. 4, 2858–2864 (2013).

    Article  CAS  Google Scholar 

  110. Meng, X. S., Gui, B., Yuan, D. Q., Zeller, M. & Wang, C. Mechanized azobenzene-functionalized zirconium metal–organic framework for on-command cargo release. Sci. Adv. 2, e1600480 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Muller, K. et al. Switching the proton conduction in nanoporous, crystalline materials by light. Adv. Mater. 30, 1706551 (2018).

    Article  Google Scholar 

  112. Comotti, A., Bracco, S., Ben, T., Qiu, S. L. & Sozzani, P. Molecular rotors in porous organic frameworks. Angew. Chem. Int. Ed. 53, 1043–1047 (2014).

    Article  CAS  Google Scholar 

  113. Zhu, Y. & Zhang, W. Reversible tuning of pore size and CO2 adsorption in azobenzene functionalized porous organic polymers. Chem. Sci. 5, 4957–4961 (2014).

    Article  CAS  Google Scholar 

  114. Das, G. et al. Azobenzene-equipped covalent organic framework: light-operated reservoir. J. Am. Chem. Soc. 141, 19078–19087 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Williams, D. E. et al. Energy transfer on demand: photoswitch-directed behavior of metal-porphyrin frameworks. J. Am. Chem. Soc. 136, 11886–11889 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Park, J., Feng, D. W., Yuan, S. & Zhou, H. C. Photochromic metal–organic frameworks: reversible control of singlet oxygen generation. Angew. Chem. Int. Ed. 54, 430–435 (2015).

    Article  CAS  Google Scholar 

  117. Park, J., Jiang, Q., Feng, D. W. & Zhou, H. C. Controlled generation of singlet oxygen in living cells with tunable ratios of the photochromic switch in metal–organic frameworks. Angew. Chem. Int. Ed. 55, 7188–7193 (2016).

    Article  CAS  Google Scholar 

  118. Williams, D. E. et al. Flipping the switch: fast photoisomerization in a confined environment. J. Am. Chem. Soc. 140, 7611–7622 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Dolgopolova, E. A. et al. Connecting wires: photoinduced electronic structure modulation in metal–organic frameworks. J. Am. Chem. Soc. 141, 5350–5358 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Patel, D. G. et al. Photoresponsive porous materials: the design and synthesis of photochromic diarylethene-based linkers and a metal–organic framework. Chem. Commun. 50, 2653–2656 (2014).

    Article  CAS  Google Scholar 

  121. Walton, I. M. et al. The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metal–organic frameworks. New J. Chem. 40, 101–106 (2016).

    Article  CAS  Google Scholar 

  122. Sun, N. et al. Photoresponsive covalent organic frameworks with diarylethene switch for tunable singlet oxygen generation. Chem. Mater. 34, 1956–1964 (2022).

    Article  CAS  Google Scholar 

  123. Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 43, 148–184 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Healey, K., Liang, W. B., Southon, P. D., Church, T. L. & D’Alessandro, D. M. Photoresponsive spiropyran-functionalised MOF-808: postsynthetic incorporation and light dependent gas adsorption properties. J. Mater. Chem. A 4, 10816–10819 (2016).

    Article  CAS  Google Scholar 

  125. Ou, R. W. et al. A sunlight-responsive metal–organic framework system for sustainable water desalination. Nat. Sustain. 3, 1052–1058 (2020).

    Article  Google Scholar 

  126. Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F. & Zink, J. I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590–2605 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Coskun, A. et al. Metal–organic frameworks incorporating copper-complexed rotaxanes. Angew. Chem. Int. Ed. 51, 2160–2163 (2012).

    Article  CAS  Google Scholar 

  129. McGonigal, P. R. et al. Electrochemically addressable trisradical rotaxanes organized within a metal–organic framework. Proc. Natl Acad. Sci. USA 112, 11161–11168 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen, Q. S. et al. A redox-active bistable molecular switch mounted inside a metal–organic framework. J. Am. Chem. Soc. 138, 14242–14245 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

    Article  PubMed  Google Scholar 

  132. Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

    Article  PubMed  Google Scholar 

  133. Polin, M., Tuval, I., Drescher, K., Gollub, J. P. & Goldstein, R. E. Chlamydomonas swims with two “gears” in a eukaryotic version of run-and-tumble locomotion. Science 325, 487–490 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Danowski, W. et al. Unidirectional rotary motion in a metal–organic framework. Nat. Nanotechnol. 14, 488–494 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Danowski, W. et al. Visible-light-driven rotation of molecular motors in a dual-function metal–organic framework enabled by energy transfer. J. Am. Chem. Soc. 142, 9048–9056 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Evans, J. D., Krause, S. & Feringa, B. L. Cooperative and synchronized rotation in motorized porous frameworks: impact on local and global transport properties of confined fluids. Faraday Discuss. 225, 286–300 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Borsley, S., Kreidt, E., Leigh, D. A. & Roberts, B. M. W. Autonomous fuelled directional rotation about a covalent single bond. Nature 604, 80–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Borsley, S., Leigh, D. A. & Roberts, B. M. A doubly kinetically-gated information ratchet autonomously driven by carbodiimide hydration. J. Am. Chem. Soc. 143, 4414–4420 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Li, H. et al. A light-stimulated molecular switch driven by radical–radical interactions in water. Angew. Chem. Int. Ed. 50, 6782–6788 (2011).

    Article  CAS  Google Scholar 

  140. Astumian, R. D. & Robertson, B. Imposed oscillations of kinetic barriers can cause an enzyme to drive a chemical reaction away from equilibrium. J. Am. Chem. Soc. 115, 11063–11068 (1993).

    Article  CAS  Google Scholar 

  141. Pezzato, C., Cheng, C., Stoddart, J. F. & Astumian, R. D. Mastering the non-equilibrium assembly and operation of molecular machines. Chem. Soc. Rev. 46, 5491–5507 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Amano, S., Fielden, S. D. P. & Leigh, D. A. A catalysis-driven artificial molecular pump. Nature 594, 529–534 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Amano, S., Borsley, S., Leigh, D. A. & Sun, Z. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nat. Nanotechnol. 16, 1057–1067 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Cheng, C. Y. et al. An artificial molecular pump. Nat. Nanotechnol. 10, 547–553 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Pezzato, C. et al. An efficient artificial molecular pump. Tetrahedron 73, 4849–4857 (2017).

    Article  CAS  Google Scholar 

  147. Pezzato, C. et al. Controlling dual molecular pumps electrochemically. Angew. Chem. Int. Ed. 57, 9325–9329 (2018).

    Article  CAS  Google Scholar 

  148. Qiu, Y. et al. A molecular dual pump. J. Am. Chem. Soc. 141, 17472–17476 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Guo, Q.-H. et al. Artificial molecular pump operating in response to electricity and light. J. Am. Chem. Soc. 142, 14443–14449 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Feng, Y. et al. Molecular pumps and motors. J. Am. Chem. Soc. 143, 5569–5591 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Cai, K., Zhang, L., Astumian, R. D. & Stoddart, J. F. Radical-pairing-induced molecular assembly and motion. Nat. Rev. Chem. 5, 447–465 (2021).

    Article  CAS  Google Scholar 

  152. Cheng, C., McGonigal, P. R., Stoddart, J. F. & Astumian, R. D. Design and synthesis of nonequilibrium systems. ACS Nano 9, 8672–8688 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Thomas, D. et al. Pumping between phases with a pulsed-fuel molecular ratchet. Nat. Nanotechnol. 17, 701–707 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Langmuir, I. Forces near the surfaces of molecules. Chem. Rev. 6, 451–479 (1930).

    Article  Google Scholar 

  155. Lennard-Jones, J. Processes of adsorption and diffusion on solid surfaces. Trans. Faraday Soc. 28, 333–359 (1932).

    Article  CAS  Google Scholar 

  156. Chen, S. et al. An artificial molecular shuttle operates in lipid bilayers for ion transport. J. Am. Chem. Soc. 140, 17992–17998 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Huisgen, R. Kinetics and reaction mechanisms: selected examples from the experience of forty years. Pure Appl. Chem. 61, 613–628 (1989).

    Article  CAS  Google Scholar 

  158. Kolb, H. C., Finn, M. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  159. Tornøe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    Article  PubMed  Google Scholar 

  160. Merrifield, R. B. Solid phase synthesis (Nobel Lecture). Angew. Chem. Int. Ed. 24, 799–810 (1985).

    Article  Google Scholar 

  161. Taton, T. A., Mirkin, C. A. & Letsinger, R. L. Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000).

    Article  CAS  PubMed  Google Scholar 

  162. Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Treo, E. F. & Felice, C. J. Non-linear dielectric spectroscopy of microbiological suspensions. Biomed. Eng. Online 8, 19 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Mercier, G. S., Palanisami, A. & Miller, J. H. Jr Nonlinear dielectric spectroscopy for label-free detection of respiratory activity in whole cells. Biosens. Bioelectron. 25, 2107–2114 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Woodward, A. M. & Kell, D. B. Confirmation by using mutant strains that the membrane-bound H+-ATPase is the major source of non-linear dielectricity in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 84, 91–96 (1991).

    Article  CAS  Google Scholar 

  166. Astumian, R. D. & Robertson, B. Nonlinear effect of an oscillating electric field on membrane proteins. J. Chem. Phys. 91, 4891–4901 (1989).

    Article  CAS  Google Scholar 

  167. Nawarathna, D., Miller, J. Jr, Claycomb, J., Cardenas, G. & Warmflash, D. Harmonic response of cellular membrane pumps to low frequency electric fields. Phys. Rev. Lett. 95, 158103 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Eigen, M. Immeasurably fast reactions. In Nobel Lectures, Chemistry, 1963–1970 (Elsevier, 1972).

  169. Sluysmans, D., Devaux, F., Bruns, C. J., Stoddart, J. F. & Duwez, A.-S. Dynamic force spectroscopy of synthetic oligorotaxane foldamers. Proc. Natl Acad. Sci. USA 115, 9362–9366 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Karlen, S. D. & Garcia-Garibay, M. A. Highlighting gyroscopic motion in crystals in 13C CPMAS spectra by specific isotopic substitution and restricted cross polarization. Chem. Commun. 189–191 (2005).

  171. Astumian, R. D. Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. Phys. Chem. Chem. Phys. 9, 5067–5083 (2007).

    Article  CAS  PubMed  Google Scholar 

  172. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322, 549–560 (1905).

    Article  Google Scholar 

  173. Astumian, R. D. et al. Non-equilibrium kinetics and trajectory thermodynamics of synthetic molecular pumps. Mater. Chem. Front. 4, 1304–1314 (2020).

    Article  CAS  Google Scholar 

  174. Astumian, R. D., Chock, P., Tsong, T. Y. & Westerhoff, H. V. Effects of oscillations and energy-driven fluctuations on the dynamics of enzyme catalysis and free-energy transduction. Phys. Rev. A 39, 6416–6435 (1989).

    Article  CAS  Google Scholar 

  175. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).

    Article  PubMed  Google Scholar 

  176. Horowitz, J. M. & Gingrich, T. R. Thermodynamic uncertainty relations constrain non-equilibrium fluctuations. Nat. Phys. 16, 15–20 (2020).

    Article  CAS  Google Scholar 

  177. Falasco, G. & Esposito, M. Local detailed balance across scales: from diffusions to jump processes and beyond. Phys. Rev. E 103, 042114 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Lewis, G. N. A new principle of equilibrium. Proc. Natl Acad. Sci. USA 11, 179 (1925).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Astumian, R. D. & Bier, M. Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis. Biophys. J. 70, 637–653 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Koenig, F. O., Horne, F. H. & Mohilner, D. M. On thermodynamic coupling of chemical reactions. J. Am. Chem. Soc. 83, 1029–1033 (1961).

    Article  CAS  Google Scholar 

  182. Crano, J. C. & Guglielmetti, R. J. Organic Photochromic and Thermochromic Compounds (Springer, 1999).

  183. Su, X. & Aprahamian, I. Hydrazone-based switches, metallo-assemblies and sensors. Chem. Soc. Rev. 43, 1963–1981 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Harris, J. D., Moran, M. J. & Aprahamian, I. New molecular switch architectures. Proc. Natl Acad. Sci. USA 115, 9414–9422 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Prakasam, T. et al. Simultaneous self-assembly of a [2]catenane, a trefoil knot, and a Solomon link from a simple pair of ligands. Angew. Chem. Int. Ed. 52, 9956–9960 (2013).

    Article  CAS  Google Scholar 

  186. Ayme, J.-F. et al. A synthetic molecular pentafoil knot. Nat. Chem. 4, 15–20 (2012).

    Article  CAS  Google Scholar 

  187. Kathan, M. et al. A light-fuelled nanoratchet shifts a coupled chemical equilibrium. Nat. Nanotechnol. 17, 159–165 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Guo, Q.-H., Jiao, Y., Feng, Y. & Stoddart, J. F. The rise and promise of molecular nanotopology. CCS Chem. 3, 1542–1572 (2021).

    Article  CAS  Google Scholar 

  189. Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  190. de Juan, A. et al. A chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes. Nat. Chem. 14, 179–187 (2022).

    Article  PubMed  Google Scholar 

  191. Berna, J. et al. Macroscopic transport by synthetic molecular machines. Nat. Mater. 4, 704–710 (2005).

    Article  CAS  PubMed  Google Scholar 

  192. Juluri, B. K. et al. A mechanical actuator driven electrochemically by artificial molecular muscles. ACS Nano 3, 291–300 (2009).

    Article  CAS  PubMed  Google Scholar 

  193. Nishimura, D. et al. Single-molecule imaging of rotaxanes immobilized on glass substrates: observation of rotary movement. Angew. Chem. Int. Ed. 47, 6077–6079 (2008).

    Article  CAS  Google Scholar 

  194. Mayumi, K., Ito, K. & Kato, K. Polyrotaxane and Slide-ring Materials (Royal Society of Chemistry, 2015).

  195. Boyle, M. M. et al. Mechanised materials. Chem. Sci. 2, 204–210 (2011).

    Article  CAS  Google Scholar 

  196. August, D. P. et al. Self-assembly of a layered two-dimensional molecularly woven fabric. Nature 588, 429–435 (2020).

    Article  CAS  PubMed  Google Scholar 

  197. Calvert, J. G. Glossary of atmospheric chemistry terms. Pure Appl. Chem. 62, 2167–2219 (1990).

    Article  CAS  Google Scholar 

  198. Everett, D. Manual of symbols and terminology for physicochemical quantities and units. Appendix II: definitions, terminology and symbols in colloid and surface chemistry. Pure Appl. Chem. 31, 577–638 (1972).

    Article  Google Scholar 

  199. Skou, J. C. The identification of the sodium–potassium pump (Nobel Lecture). Angew. Chem. Int. Ed. 37, 2320–2328 (1998).

    Article  CAS  Google Scholar 

  200. Branscomb, E. & Russell, M. On the beneficent thickness of water. Interface Focus. 9, 20190061 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Astumian, R. D. The unreasonable effectiveness of equilibrium theory for interpreting nonequilibrium experiments. Am. J. Phys. 74, 683–688 (2006).

    Article  CAS  Google Scholar 

  202. Astumian, R., Mukherjee, S. & Warshel, A. The physics and physical chemistry of molecular machines. ChemPhysChem 17, 1719–1741 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Neumann, J., Gottschalk, K. E. & Astumian, R. D. Driving and controlling molecular surface rotors with a terahertz electric field. ACS Nano 6, 5242–5248 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Astumian, R. D. Thermodynamics and kinetics of a Brownian motor. Science 276, 917–922 (1997).

    Article  CAS  PubMed  Google Scholar 

  205. Astumian, R. D. Trajectory and cycle-based thermodynamics and kinetics of molecular machines: the importance of microscopic reversibility. Acc. Chem. Res. 51, 2653–2661 (2018).

    Article  CAS  PubMed  Google Scholar 

  206. Zuckerman, D. M. & Russo, J. D. A gentle introduction to the non-equilibrium physics of trajectories: theory, algorithms, and biomolecular applications. Am. J. Phys. 89, 1048–1061 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Northwestern University for financial support. The authors thank Y. Qiu, J. Seale and K.-Y. Wang for their helpful discussions of some of the topics covered in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the manuscript.

Corresponding authors

Correspondence to Liang Feng, R. Dean Astumian or J. Fraser Stoddart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks S. Loeb and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Astumian, R.D. & Stoddart, J.F. Controlling dynamics in extended molecular frameworks. Nat Rev Chem 6, 705–725 (2022). https://doi.org/10.1038/s41570-022-00412-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00412-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing