Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Complex polymer architectures through free-radical polymerization of multivinyl monomers

Abstract

The construction of complex polymer architectures with well-defined topology, composition and functionality has been extensively explored as the molecular basis for the development of modern polymer materials. The unique reaction kinetics of free-radical polymerization leads to the concurrent formation of crosslinks between polymer chains and rings within an individual chain and, thus, free-radical (co)polymerization of multivinyl monomers provides a facile method to manipulate chain topology and functionality. Regulating the relative contribution of these intermolecular and intramolecular chain-propagation reactions is the key to the construction of architecturally complex polymers. This can be achieved through the design of new monomers or by spatially or kinetically controlling crosslinking reactions. These mechanisms enable the synthesis of various polymer architectures, including linear, cyclized, branched and star polymer chains, as well as crosslinked networks. In this Review, we highlight some of the contemporary experimental strategies to prepare complex polymer architectures using radical polymerization of multivinyl monomers. We also examine the recent development of characterization techniques for sub-chain connections in such complex macromolecules. Finally, we discuss how these crosslinking reactions have been engineered to generate advanced polymer materials for use in a variety of biomedical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of architecturally complex polymers by FRP of MVMs.
Fig. 2: Strategies to control FRP of MVMs.
Fig. 3: The ‘Strathclyde route’ for the synthesis of branched polymers.
Fig. 4: Chemoselective polymerization and branched polymerization of asymmetric monomers.
Fig. 5: Contemporary experimental strategies to engineer MVMs for cyclopolymerization.
Fig. 6: Representative advanced techniques for identifying and quantifying intrachain and interchain connections.
Fig. 7: Gene transfection with a cyclized polymer as the delivery vector.
Fig. 8: Expansion microscopy.

Similar content being viewed by others

References

  1. PlasticsEurope. Plastics — the Facts 2018 https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf (2018).

  2. Nesvadba, P. in Encyclopedia of Radicals in Chemistry, Biology and Materials https://doi.org/10.1002/9781119953678.rad080 (Wiley, 2012).

  3. Matyjaszewski, K. & Tsarevsky, N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 1, 276–288 (2009).

    CAS  PubMed  Google Scholar 

  4. Matyjaszewski, K. Architecturally complex polymers with controlled heterogeneity. Science 333, 1104–1105 (2011).

    CAS  PubMed  Google Scholar 

  5. Georges, M. K., Veregin, R. P. N., Kazmaier, P. M. & Hamer, G. K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 26, 2987–2988 (1993).

    CAS  Google Scholar 

  6. Wang, J.-S. & Matyjaszewski, K. Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 117, 5614–5615 (1995).

    CAS  Google Scholar 

  7. Chiefari, J. et al. Living free-radical polymerization by reversible addition–fragmentation chain transfer: the RAFT process. Macromolecules 31, 5559–5562 (1998).

    CAS  Google Scholar 

  8. Stals, P. J. M. et al. How far can we push polymer architectures? J. Am. Chem. Soc. 135, 11421–11424 (2013).

    CAS  PubMed  Google Scholar 

  9. Newland, B. et al. Single cyclized molecule versus single branched molecule: a simple and efficient 3D “knot” polymer structure for nonviral gene delivery. J. Am. Chem. Soc. 134, 4782–4789 (2012).

    CAS  PubMed  Google Scholar 

  10. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Terashima, T., Kamigaito, M., Baek, K.-Y., Ando, T. & Sawamoto, M. Polymer catalysts from polymerization catalysts: direct encapsulation of metal catalyst into star polymer core during metal-catalyzed living radical polymerization. J. Am. Chem. Soc. 125, 5288–5289 (2003).

    CAS  PubMed  Google Scholar 

  12. Staudinger, H. & Husemann, E. Über hochpolymere Verbindungen, 116. Mitteil.: Über das begrenzt quellbare Poly-styrol. Ber. Dtsch. Chem. Ges. 68, 1618–1634 (1935).

    Google Scholar 

  13. Flory, P. J. Molecular size distribution in three dimensional polymers. I. Gelation. J. Am. Chem. Soc. 63, 3083–3090 (1941).

    CAS  Google Scholar 

  14. Stockmayer, W. H. Theory of molecular size distribution and gel formation in branched polymers II. General cross linking. J. Chem. Phys. 12, 125–131 (1944).

    CAS  Google Scholar 

  15. Chen, F. F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science 347, 543–548 (2015). This work shows the application of free-radical copolymerization of monovinyl/divinyl monomers for biological imaging.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Distefano, G. et al. Highly ordered alignment of a vinyl polymer by host–guest cross-polymerization. Nat. Chem. 5, 335–341 (2013). This work describes the free-radical copolymerization of monovinyl/divinyl monomers in porous coordination polymers, yielding a pseudo-crystalline polymeric network.

    CAS  PubMed  Google Scholar 

  17. Gu, Y., Zhao, J. & Johnson, J. A. A (macro)molecular-level understanding of polymer network topology. Trends Chem. 1, 318–334 (2019).

    Google Scholar 

  18. Seiffert, S. Origin of nanostructural inhomogeneity in polymer-network gels. Polym. Chem. 8, 4472–4487 (2017).

    CAS  Google Scholar 

  19. Matsumoto, A., Miwa, Y., Inoue, S., Enomoto, T. & Aota, H. Discussion of “greatly delayed gelation from theory in free-radical cross-linking multivinyl polymerization accompanied by microgel formation” based on multiallyl polymerization. Macromolecules 43, 6834–6842 (2010).

    CAS  Google Scholar 

  20. Okay, O., Kurz, M., Lutz, K. & Funke, W. Cyclization and reduced pendant vinyl group reactivity during the free-radical crosslinking polymerization of 1,4-divinylbenzene. Macromolecules 28, 2728–2737 (1995).

    CAS  Google Scholar 

  21. Norisuye, T. et al. Small angle neutron scattering studies on structural inhomogeneities in polymer gels: irradiation cross-linked gels vs chemically cross-linked gels. Polymer 43, 5289–5297 (2002).

    CAS  Google Scholar 

  22. Adibnia, V. & Hill, R. J. Universal aspects of hydrogel gelation kinetics, percolation and viscoelasticity from PA-hydrogel rheology. J. Rheol. 60, 541–548 (2016).

    CAS  Google Scholar 

  23. Polanowski, P., Jeszka, J. K., Li, W. & Matyjaszewski, K. Effect of dilution on branching and gelation in living copolymerization of monomer and divinyl cross-linker: modeling using dynamic lattice liquid model (DLL) and Flory–Stockmayer (FS) model. Polymer 52, 5092–5101 (2011).

    CAS  Google Scholar 

  24. Lyu, J. et al. Monte Carlo simulations of atom transfer radical (homo)polymerization of divinyl monomers: applicability of Flory–Stockmayer theory. Macromolecules 51, 6673–6681 (2018).

    CAS  Google Scholar 

  25. Elliott, J. E., Anseth, J. W. & Bowman, C. N. Kinetic modeling of the effect of solvent concentration on primary cyclization during polymerization of multifunctional monomers. Chem. Eng. Sci. 56, 3173–3184 (2001).

    CAS  Google Scholar 

  26. Cerid, H. & Okay, O. Minimization of spatial inhomogeneity in polystyrene gels formed by free-radical mechanism. Eur. Polym. J. 40, 579–587 (2004).

    CAS  Google Scholar 

  27. Elliott, J. E. & Bowman, C. N. Effects of solvent quality during polymerization on network structure of cross-linked methacrylate copolymers. J. Phys. Chem. B 106, 2843–2847 (2002).

    CAS  Google Scholar 

  28. Doura, M., Naka, Y., Aota, H. & Matsumoto, A. Control of intermolecular cross-linking reaction in free-radical cross-linking monovinyl/divinyl copolymerizations by the aid of amphiphilic nature of primary polymer chains and cross-link units with opposite polarities. Macromolecules 38, 5955–5963 (2005).

    CAS  Google Scholar 

  29. Mori, H. & Tsukamoto, M. RAFT polymerization of diacrylate derivatives having different spacers in dilute conditions. Polymer 52, 635–645 (2011).

    CAS  Google Scholar 

  30. Yu, Q., Zhu, Y., Ding, Y. & Zhu, S. Reaction behavior and network development in RAFT radical polymerization of dimethacrylates. Macromol. Chem. Phys. 209, 551–556 (2008).

    CAS  Google Scholar 

  31. Van Camp, W., Gao, H., Du Prez, F. E. & Matyjaszewski, K. Effect of crosslinker multiplicity on the gel point in ATRP. J. Polym. Sci. A Polym. Chem. 48, 2016–2023 (2010).

    Google Scholar 

  32. Elliott, J. E. & Bowman, C. N. Monomer functionality and polymer network formation. Macromolecules 34, 4642–4649 (2001).

    CAS  Google Scholar 

  33. Patras, G., Qiao, G. G. & Solomon, D. H. Novel cross-linked homogeneous polyacrylamide gels with improved separation properties: Investigation of the cross-linker functionality. Electrophoresis 22, 4303–4310 (2001).

    CAS  PubMed  Google Scholar 

  34. Denisin, A. K. & Pruitt, B. L. Tuning the range of polyacrylamide gel stiffness for mechanobiology applications. ACS Appl. Mater. Interfaces 8, 21893–21902 (2016).

    CAS  PubMed  Google Scholar 

  35. Shi, Y., Graff, R. W., Cao, X., Wang, X. & Gao, H. Chain-growth click polymerization of AB2 monomers for the formation of hyperbranched polymers with low polydispersities in a one-pot process. Angew. Chem. Int. Ed. 54, 7562–7562 (2015).

    Google Scholar 

  36. O’Brien, N., McKee, A., Sherrington, D. C. C., Slark, A. T. T. & Titterton, A. Facile, versatile and cost effective route to branched vinyl polymers. Polymer 41, 6027–6031 (2000). This work proposes the ‘Strathclyde route’ for synthesizing branched polymers from radical polymerization of multivinyl monomers with the addition of chain-transfer agents.

    Google Scholar 

  37. Besenius, P., Slavin, S., Vilela, F. & Sherrington, D. C. Synthesis and characterization of water-soluble densely branched glycopolymers. React. Funct. Polym. 68, 1524–1533 (2008).

    CAS  Google Scholar 

  38. Baudry, R. & Sherrington, D. C. Synthesis of highly branched poly(methyl methacrylate)s using the “Strathclyde methodology” in aqueous emulsion. Macromolecules 39, 1455–1460 (2006).

    CAS  Google Scholar 

  39. Chisholm, M., Hudson, N., Kirtley, N., Vilela, F. & Sherrington, D. C. Application of the “Strathclyde route” to branched vinyl polymers in suspension polymerization: architectural, thermal, and rheological characterization of the derived branched products. Macromolecules 42, 7745–7752 (2009).

    CAS  Google Scholar 

  40. Xiang, L., Song, Y., Qiu, M. & Su, Y. Synthesis of branched poly(butyl acrylate) using the Strathclyde method in continuous-flow microreactors. Ind. Eng. Chem. Res. 58, 21312–21322 (2019).

    CAS  Google Scholar 

  41. Guan, Z. Control of polymer topology through transition-metal catalysis: synthesis of hyperbranched polymers by cobalt-mediated free radical polymerization. J. Am. Chem. Soc. 124, 5616–5617 (2002).

    CAS  PubMed  Google Scholar 

  42. McEwan, K. A. & Haddleton, D. M. Combining catalytic chain transfer polymerisation (CCTP) and thio-Michael addition: enabling the synthesis of peripherally functionalised branched polymers. Polym. Chem. 2, 1992–1999 (2011).

    CAS  Google Scholar 

  43. Smeets, N. M. B. Amphiphilic hyperbranched polymers from the copolymerization of a vinyl and divinyl monomer: the potential of catalytic chain transfer polymerization. Eur. Polym. J. 49, 2528–2544 (2013).

    CAS  Google Scholar 

  44. Kurochkin, S. A., Silant’ev, M. A., Perepelitsyna, E. O. & Grachev, V. P. Synthesis of branched polymers via radical copolymerization under oxygen inflow. Eur. Polym. J. 57, 202–212 (2014).

    CAS  Google Scholar 

  45. Hirano, T., Kamiike, R., Hsu, Y., Momose, H. & Ute, K. Multivariate analysis of 13C NMR spectra of branched copolymers prepared by initiator-fragment incorporation radical copolymerization of ethylene glycol dimethacrylate and tert-butyl methacrylate. Polym. J. 48, 793–800 (2016).

    CAS  Google Scholar 

  46. Liang, S., Li, X., Wang, W.-J. J., Li, B.-G. & Zhu, S. Toward understanding of branching in RAFT copolymerization of methyl methacrylate through a cleavable dimethacrylate. Macromolecules 49, 752–759 (2016).

    CAS  Google Scholar 

  47. Bannister, I., Billingham, N. C., Armes, S. P., Rannard, S. P. & Findlay, P. Development of branching in living radical copolymerization of vinyl and divinyl monomers. Macromolecules 39, 7483–7492 (2006).

    CAS  Google Scholar 

  48. Rosselgong, J., Armes, S. P., Barton, W. & Price, D. Synthesis of highly branched methacrylic copolymers: observation of near-ideal behavior using RAFT polymerization. Macromolecules 42, 5919–5924 (2009).

    CAS  Google Scholar 

  49. Bannister, I., Billingham, N. C. & Armes, S. P. Monte Carlo modelling of living branching copolymerisation of monovinyl and divinyl monomers: comparison of simulated and experimental data for ATRP copolymerisation of methacrylic monomers. Soft Matter 5, 3495–3504 (2009).

    CAS  Google Scholar 

  50. Bouhier, M.-H., Cormack, P. A. G., Graham, S. & Sherrington, D. C. Synthesis of densely branched poly(methyl methacrylate)s via ATR copolymerization of methyl methacrylate and ethylene glycol dimethacrylate. J. Polym. Sci. A Polym. Chem. 45, 2375–2386 (2007).

    CAS  Google Scholar 

  51. Liu, B., Kazlauciunas, A., Guthrie, J. T. & Perrier, S. One-pot hyperbranched polymer synthesis mediated by reversible addition fragmentation chain transfer (RAFT) polymerization. Macromolecules 38, 2131–2136 (2005).

    CAS  Google Scholar 

  52. Gao, H., Min, K. & Matyjaszewski, K. Determination of gel point during atom transfer radical copolymerization with cross-linker. Macromolecules 40, 7763–7770 (2007).

    CAS  Google Scholar 

  53. Yang, H. et al. Synthesis of highly branched polymers by reversible complexation-mediated copolymerization of vinyl and divinyl monomers. Polym. Chem. 8, 2137–2144 (2017).

    CAS  Google Scholar 

  54. Flynn, S., Dwyer, A. B., Chambon, P. & Rannard, S. Expanding the monomer scope of linear and branched vinyl polymerisations via copper-catalysed reversible-deactivation radical polymerisation of hydrophobic methacrylates using anhydrous alcohol solvents. Polym. Chem. 10, 5103–5115 (2019).

    CAS  Google Scholar 

  55. Rosselgong, J., Armes, S. P., Barton, W. R. S. & Price, D. Synthesis of branched methacrylic copolymers: comparison between RAFT and ATRP and effect of varying the monomer concentration. Macromolecules 43, 2145–2156 (2010).

    CAS  Google Scholar 

  56. Gao, Y., Newland, B., Zhou, D., Matyjaszewski, K. & Wang, W. Controlled polymerization of multivinyl monomers: formation of cyclized/knotted single-chain polymer architectures. Angew. Chem. Int. Ed. 56, 450–460 (2017).

    CAS  Google Scholar 

  57. Wang, W. et al. Controlling chain growth: a new strategy to hyperbranched materials. Macromolecules 40, 7184–7194 (2007).

    CAS  Google Scholar 

  58. Zhao, T. et al. Water soluble hyperbranched polymers from controlled radical homopolymerization of PEG diacrylate. RSC Adv. 5, 33823–33830 (2015).

    CAS  Google Scholar 

  59. Zhao, T., Zheng, Y., Poly, J. & Wang, W. Controlled multi-vinyl monomer homopolymerization through vinyl oligomer combination as a universal approach to hyperbranched architectures. Nat. Commun. 4, 1873 (2013). This work describes a universal approach to synthesize hyperbranched polymers from kinetically controlled multivinyl monomers.

    PubMed  Google Scholar 

  60. Odian, G. in Principles of Polymerization (Wiley, 2004).

  61. Gao, H., Miasnikova, A. & Matyjaszewski, K. Effect of cross-linker reactivity on experimental gel points during ATRcP of monomer and cross-linker. Macromolecules 41, 7843–7849 (2008).

    CAS  Google Scholar 

  62. Nagelsdiek, R., Mennicken, M., Maier, B., Keul, H. & Höcker, H. Synthesis of polymers containing cross-linkable groups by atom transfer radical polymerization: poly(allyl methacrylate) and copolymers of allyl methacrylate and styrene. Macromolecules 37, 8923–8932 (2004).

    CAS  Google Scholar 

  63. Yhaya, F., Sutinah, A., Gregory, A. M., Liang, M. & Stenzel, M. H. RAFT polymerization of vinyl methacrylate and subsequent conjugation via enzymatic thiol-ene chemistry. J. Polym. Sci. A Polym. Chem. 50, 4085–4093 (2012).

    CAS  Google Scholar 

  64. Akiyama, M., Yoshida, K. & Mori, H. Controlled synthesis of vinyl-functionalized homopolymers and block copolymers by RAFT polymerization of vinyl methacrylate. Polymer 55, 813–823 (2014).

    CAS  Google Scholar 

  65. Ma, J., Cheng, C., Sun, G. & Wooley, K. L. Well-defined polymers bearing pendent alkene functionalities via selective RAFT polymerization. Macromolecules 41, 9080–9089 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ma, J., Cheng, C. & Wooley, K. L. Cycloalkenyl-functionalized polymers and block copolymers: syntheses via selective RAFT polymerizations and demonstration of their versatile reactivity. Macromolecules 42, 1565–1573 (2009).

    CAS  Google Scholar 

  67. Qu, Q., Liu, G., Lv, X., Zhang, B. & An, Z. In situ cross-linking of vesicles in polymerization-induced self-assembly. ACS Macro Lett. 5, 316–320 (2016).

    CAS  Google Scholar 

  68. Chen, L. et al. Chemoselective RAFT polymerization of a trivinyl monomer derived from carbon dioxide and 1,3-butadiene: from linear to hyperbranched. Macromolecules 50, 9598–9606 (2017).

    CAS  Google Scholar 

  69. Dong, Z. M., Liu, X. H., Tang, X. L. & Li, Y. S. Synthesis of hyperbranched polymers with pendent norbornene functionalities via raft polymerization of a novel asymmetrical divinyl monomer. Macromolecules 42, 4596–4603 (2009).

    CAS  Google Scholar 

  70. Ren, J. M. et al. Star polymers. Chem. Rev. 116, 6743–6836 (2016).

    CAS  PubMed  Google Scholar 

  71. Gao, H. & Matyjaszewski, K. Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels. Prog. Polym. Sci. 34, 317–350 (2009).

    CAS  Google Scholar 

  72. Wang, D. et al. Kinetics and modeling of semi-batch RAFT copolymerization with hyperbranching. Macromolecules 45, 28–38 (2012). This work describes the synthesis of branched polymers from semi-batch copolymerization of multivinyl monomers.

    CAS  Google Scholar 

  73. Wang, D., Wang, W.-J., Li, B.-G. & Zhu, S. Semibatch RAFT polymerization for branched polyacrylamide production: effect of divinyl monomer feeding policies. AIChE J. 59, 1322–1333 (2013).

    CAS  Google Scholar 

  74. Xia, J., Zhang, X. & Matyjaszewski, K. Synthesis of star-shaped polystyrene by atom transfer radical polymerization using an ‘arm first’ approach. Macromolecules 32, 4482–4484 (1999).

    CAS  Google Scholar 

  75. Gao, H., Ohno, S., & Matyjaszewski, K. Low Polydispersity Star Polymers via Cross-Linking Macromonomers by ATRP. J. Am. Chem. Soc. 128, 15111–15113 (2006).

    CAS  PubMed  Google Scholar 

  76. Connal, L. A., Vestberg, R., Hawker, C. J. & Qiao, G. G. Synthesis of dendron functionalized core cross-linked star polymers. Macromolecules 40, 7855–7863 (2007).

    CAS  Google Scholar 

  77. Hatton, F. L., Chambon, P., McDonald, T. O., Owen, A. & Rannard, S. P. Hyperbranched polydendrons: a new controlled macromolecular architecture with self-assembly in water and organic solvents. Chem. Sci. 5, 1844–1853 (2014).

    CAS  Google Scholar 

  78. Hern, F. Y., Hill, A., Owen, A. & Rannard, S. P. Co-initiated hyperbranched-polydendron building blocks for the direct nanoprecipitation of dendron-directed patchy particles with heterogeneous surface functionality. Polym. Chem. 9, 1767–1771 (2018).

    CAS  Google Scholar 

  79. Kanaoka, S., Sawamoto, M. & Higashimura, T. Star-shaped polymers by living cationic polymerization. 1. Synthesis of star-shaped polymers of alkyl and vinyl ethers. Macromolecules 24, 2309–2313 (1991).

    CAS  Google Scholar 

  80. Gao, H. & Matyjaszewski, K. Structural control in ATRP synthesis of star polymers using the arm-first method. Macromolecules 39, 3154–3160 (2006).

    CAS  Google Scholar 

  81. Baek, K.-Y. Y., Kamigaito, M. & Sawamoto, M. Star-shaped polymers by metal-catalyzed living radical polymerization. 1. Design of Ru(II)-based systems and divinyl linking agents. Macromolecules 34, 215–221 (2001).

    CAS  Google Scholar 

  82. Baek, K.-Y., Kamigaito, M. & Sawamoto, M. Core-functionalized star polymers by transition metal-catalyzed living radical polymerization. 1. Synthesis and characterization of star polymers with PMMA arms and amide cores. Macromolecules 34, 7629–7635 (2001).

    CAS  Google Scholar 

  83. Li, W. & Matyjaszewski, K. Star polymers via cross-linking amphiphilic macroinitiators by AGET ATRP in aqueous media. J. Am. Chem. Soc. 131, 10378–10379 (2009).

    CAS  PubMed  Google Scholar 

  84. Zhang, X., Xia, J. & Matyjaszewski, K. End-functional poly(tert-butyl acrylate) star polymers by controlled radical polymerization. Macromolecules 33, 2340–2345 (2000).

    CAS  Google Scholar 

  85. Pasquale, A. J. & Long, T. E. Synthesis of star-shaped polystyrenes via nitroxide-mediated stable free-radical polymerization. J. Polym. Sci. A Polym. Chem. 39, 216–223 (2001).

    CAS  Google Scholar 

  86. Gao, H. & Matyjaszewski, K. Synthesis of star polymers by a new “core-first” method: sequential polymerization of cross-linker and monomer. Macromolecules 41, 1118–1125 (2008).

    CAS  Google Scholar 

  87. Butler, G. B. & Bunch, R. L. Preparation and polymerization of unsaturated quaternary ammonium compounds. J. Am. Chem. Soc. 71, 3120–3122 (1949).

    CAS  Google Scholar 

  88. Butler, G. B. & Ingley, F. L. Preparation and polymerization of unsaturated quaternary ammonium compounds. II. Halogenated allyl derivatives. J. Am. Chem. Soc. 73, 895–896 (1951).

    CAS  Google Scholar 

  89. Pasini, D. & Takeuchi, D. Cyclopolymerizations: synthetic tools for the precision synthesis of macromolecular architectures. Chem. Rev. 118, 8983–9057 (2018).

    CAS  PubMed  Google Scholar 

  90. Saito, Y. & Saito, R. The effect of the distance between neighboring vinyl groups on template polymerization. Polymer 52, 3565–3569 (2011).

    CAS  Google Scholar 

  91. Matsumoto, A. et al. Crystal engineering for topochemical polymerization of muconic esters using halogen–halogen and CH/π interactions as weak intermolecular interactions. J. Am. Chem. Soc. 124, 8891–8902 (2002).

    CAS  PubMed  Google Scholar 

  92. Crawshaw, A. & Butler, G. B. The formation of linear polymers from diene monomers by a cyclic polymerization mechanism. II. Polyacrylic anhydride and the derived polyacrylic acid. J. Am. Chem. Soc. 80, 5464–5466 (1958).

    CAS  Google Scholar 

  93. Tsukino, M. & Kunitake, T. Radical cyclopolymerization of divinyl acetals — structure variation with polymerization conditions. Polym. J. 17, 943–951 (1985).

    CAS  Google Scholar 

  94. Costa, L., Chiantore, O. & Guaita, M. Free radical polymerization of unconjugated dienes: 19. Temperature dependence of the cyclopolymerization of o-divinylbenzene. Polymer 19, 202–204 (1978).

    CAS  Google Scholar 

  95. Jones, R. G., Harry Cragg, R. & Swain, A. C. Structure and mechanism in the cyclopolymerization of diallylsilanes. Eur. Polym. J. 28, 651–655 (1992).

    CAS  Google Scholar 

  96. Erkoc, S., Mathias, L. J. & Acar, A. E. Cyclopolymerization of tert-butyl α-(hydroxymethyl) acrylate (TBHMA) ether dimer via atom transfer radical polymerization (ATRP). Macromolecules 39, 8936–8942 (2006).

    CAS  Google Scholar 

  97. Erkoc, S. & Acar, A. E. Controlled/living cyclopolymerization of tert-butyl α-(hydroxymethyl) acrylate ether dimer via reversible addition fragmentation chain transfer polymerization. Macromolecules 41, 9019–9024 (2008).

    CAS  Google Scholar 

  98. Yokota, K., Matsumura, M., Yamaguchi, K. & Takada, Y. Synthesis of polymers with benzo-19-crown-6 units via cyclopolymerization of divinyl ethers. Macromol. Rapid Commun. 4, 721–724 (1983).

    CAS  Google Scholar 

  99. Wulff, G., Schmidt, H., Witt, H. & Zentel, R. Cooperativity and transfer of chirality in liquid-crystalline polymers. Angew. Chem. Int. Ed. 33, 188–191 (1994).

    Google Scholar 

  100. Kakuchi, T. et al. Chirality induction in cyclocopolymerization. 14. Template effect of 1,2-cycloalkanediol in the cyclocopolymerization of bis(4-vinylbenzoate)s with styrene. Macromolecules 34, 38–43 (2001).

    CAS  Google Scholar 

  101. Zhao, X. & Liu, H. Synthesis and characterization of PEG polymer brushes via cyclopolymerization of 1,2,3-triazole tethered diacrylates. Chin. J. Chem. Phys. 28, 739–745 (2015).

    CAS  Google Scholar 

  102. Ochiai, B., Shiomi, T. & Yoshita, H. Cyclopolymerization of a bisacrylate through selective formation of a 19-membered ring. Polym. J. 48, 859–862 (2016).

    CAS  Google Scholar 

  103. Ochiai, B., Ootani, Y. & Endo, T. Controlled cyclopolymerization through quantitative 19-membered ring formation. J. Am. Chem. Soc. 130, 10832–10833 (2008).

    CAS  PubMed  Google Scholar 

  104. Kim, T.-H. et al. Cyclopolymerisation of an oriented 4,6-bis(4-vinylbenzyl)-myo-inositol orthoformate. Chem. Commun. 24, 2419–2420 (2000).

    Google Scholar 

  105. Kim, T.-H., Holmes, A. B. & Giles, M. Ring closing metathesis of a 4,6-diallyl-myo-inositol orthoformate as a model for an inositol cyclopolymer. Chem. Commun. 24, 2419–2420 (2000).

    Google Scholar 

  106. Li, J., Du, M., Zhao, Z. & Liu, H. Cyclopolymerization of disiloxane-tethered divinyl monomers to synthesize chirality-responsive helical polymers. Macromolecules 49, 445–454 (2016).

    CAS  Google Scholar 

  107. Saito, Y. & Saito, R. Synthesis of syndiotactic poly(methacrylic acid) by free-radical polymerization of the pseudo-divinyl monomer formed with methacrylic acid and catechol. J. Appl. Polym. Sci. 128, 3528–3533 (2013).

    CAS  Google Scholar 

  108. Kang, Y., Lu, A., Ellington, A., Jewett, M. C. & O’Reilly, R. K. Effect of complementary nucleobase interactions on the copolymer composition of RAFT copolymerizations. ACS Macro Lett. 2, 581–586 (2013).

    CAS  Google Scholar 

  109. Kimura, Y., Miyabara, Y., Terashima, T. & Sawamoto, M. Polyacrylamide pseudo crown ethers via hydrogen bond-assisted cyclopolymerization. J. Polym. Sci. A Polym. Chem. 54, 3294–3302 (2016).

    CAS  Google Scholar 

  110. Mathur, A. M. & Scranton, A. B. Synthesis and ion-binding properties of polymeric pseudocrown ethers II: template ion induced cyclization of oligomeric ethylene glycol diacrylates. Sep. Sci. Technol. 32, 285–301 (1997).

    CAS  Google Scholar 

  111. Terashima, T., Kawabe, M., Miyabara, Y., Yoda, H. & Sawamoto, M. Polymeric pseudo-crown ether for cation recognition via cation template-assisted cyclopolymerization. Nat. Commun. 4, 2321 (2013). This work presents the cyclopolymerization of divinyl monomers in the presence of cation template.

    PubMed  Google Scholar 

  112. Jana, S. & Sherrington, D. C. Transfer of chirality from (−)-sparteine zinc(II) (meth)acrylate complexes to the main chains of their (meth)acrylate polymer derivatives. Angew. Chem. Int. Ed. 44, 4804–4808 (2005).

    CAS  Google Scholar 

  113. Hibi, Y., Ouchi, M. & Sawamoto, M. Sequence-regulated radical polymerization with a metal-templated monomer: repetitive ABA sequence by double cyclopolymerization. Angew. Chem. Int. Ed. 50, 7434–7437 (2011). This work describes the synthesis of sequence-controlled polymers via cyclopolymerization of multivinyl monomers.

    CAS  Google Scholar 

  114. Mochizuki, S., Kitao, T. & Uemura, T. Controlled polymerizations using metal–organic frameworks. Chem. Commun. 54, 11843–11856 (2018).

    CAS  Google Scholar 

  115. Uemura, T., Hiramatsu, D., Kubota, Y., Takata, M. & Kitagawa, S. Topotactic linear radical polymerization of divinylbenzenes in porous coordination polymers. Angew. Chem. Int. Ed. 46, 4987–4990 (2007).

    CAS  Google Scholar 

  116. Uemura, T. et al. Controlled cyclopolymerization of difunctional vinyl monomers in coordination nanochannels. Macromolecules 47, 7321–7326 (2014).

    CAS  Google Scholar 

  117. Gao, Y. et al. Intramolecular cyclization dominating homopolymerization of multivinyl monomers toward single-chain cyclized/knotted polymeric nanoparticles. Macromolecules 48, 6882–6889 (2015).

    CAS  Google Scholar 

  118. Elliott, J. E. & Bowman, C. N. Kinetics of primary cyclization reactions in cross-linked polymers: an analytical and numerical approach to heterogeneity in network formation. Macromolecules 32, 8621–8628 (1999).

    CAS  Google Scholar 

  119. Taylor, W. R. & Lin, K. Protein knots: a tangled problem. Nature 421, 25 (2003).

    CAS  PubMed  Google Scholar 

  120. Zheng, Y. et al. 3D single cyclized polymer chain structure from controlled polymerization of multi-vinyl monomers: beyond Flory–Stockmayer theory. J. Am. Chem. Soc. 133, 13130–13137 (2011). This work describes the synthesis of single-cyclized polymers from intramolecular cyclization-dominated polymerization of multivinyl monomers.

    CAS  PubMed  Google Scholar 

  121. Li, Y. & Armes, S. P. Synthesis and chemical degradation of branched vinyl polymers prepared via ATRP: use of a cleavable disulfide-based branching agent. Macromolecules 38, 8155–8162 (2005).

    CAS  Google Scholar 

  122. Rosselgong, J. & Armes, S. P. Quantification of intramolecular cyclization in branched copolymers by 1H NMR spectroscopy. Macromolecules 45, 2731–2737 (2012).

    CAS  Google Scholar 

  123. Zhou, H. et al. Counting primary loops in polymer gels. Proc. Natl Acad. Sci. USA 109, 19119–19124 (2012).

    CAS  PubMed  Google Scholar 

  124. Wang, J. et al. Counting secondary loops is required for accurate prediction of end-linked polymer network elasticity. ACS Macro Lett. 7, 244–249 (2018).

    CAS  Google Scholar 

  125. Zhong, M., Wang, R., Kawamoto, K., Olsen, B. D. & Johnson, J. A. Quantifying the impact of molecular defects on polymer network elasticity. Science 353, 1264–1268 (2016). This work proposes a technique, called symmetric isotopic labelling disassembly spectrometry (SILDaS), to quantify the intrachain links (loops) in polymer networks.

    CAS  PubMed  Google Scholar 

  126. Wang, J. et al. Counting loops in sidechain-crosslinked polymers from elastic solids to single-chain nanoparticles. Chem. Sci. 10, 5332–5337 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, D. & Russell, T. P. Advances in atomic force microscopy for probing polymer structure and properties. Macromolecules 51, 3–24 (2018).

    CAS  Google Scholar 

  128. Pavliček, N. & Gross, L. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat. Rev. Chem. 1, 0005 (2017).

    Google Scholar 

  129. Krieg, M. et al. Atomic force microscopy-based mechanobiology. Nat. Rev. Phys. 1, 41–57 (2019).

    Google Scholar 

  130. Burdyńska, J. et al. Synthesis and arm dissociation in molecular stars with a spoked wheel core and bottlebrush arms. J. Am. Chem. Soc. 136, 12762–12770 (2014).

    PubMed  Google Scholar 

  131. Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

    CAS  PubMed  Google Scholar 

  132. Chung, J., Kushner, A. M., Weisman, A. C. & Guan, Z. Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers. Nat. Mater. 13, 1055–1062 (2014).

    CAS  PubMed  Google Scholar 

  133. Beedle, A. E. M. et al. Forcing the reversibility of a mechanochemical reaction. Nat. Commun. 9, 3155 (2018).

    PubMed  PubMed Central  Google Scholar 

  134. Wiita, A. P. et al. Probing the chemistry of thioredoxin catalysis with force. Nature 450, 124–127 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Garcia-Manyes, S., Liang, J., Szoszkiewicz, R., Kuo, T.-L. & Fernández, J. M. Force-activated reactivity switch in a bimolecular chemical reaction. Nat. Chem. 1, 236–242 (2009).

    CAS  PubMed  Google Scholar 

  136. Hosono, N. et al. Forced unfolding of single-chain polymeric nanoparticles. J. Am. Chem. Soc. 137, 6880–6888 (2015).

    CAS  PubMed  Google Scholar 

  137. Levy, A., Feinstein, R. & Diesendruck, C. E. Mechanical unfolding and thermal refolding of single-chain nanoparticles using ligand–metal bonds. J. Am. Chem. Soc. 141, 7256–7260 (2019).

    CAS  PubMed  Google Scholar 

  138. Liu, N. & Zhang, W. Feeling inter- or intramolecular interactions with the polymer chain as probe: recent progress in SMFS studies on macromolecular interactions. ChemPhysChem 13, 2238–2256 (2012).

    CAS  PubMed  Google Scholar 

  139. Huang, Z. et al. Injectable dynamic covalent hydrogels of boronic acid polymers cross-linked by bioactive plant-derived polyphenols. Biomater. Sci. 6, 2487–2495 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Kakkar, A., Traverso, G., Farokhzad, O. C., Weissleder, R. & Langer, R. Evolution of macromolecular complexity in drug delivery systems. Nat. Rev. Chem. 1, 0063 (2017).

    CAS  Google Scholar 

  141. Breslow, D. S., Edwards, E. I. & Newburg, N. R. Divinyl ether-maleic anhydride (pyran) copolymer used to demonstrate the effect of molecular weight on biological activity. Nature 246, 160–162 (1973).

    CAS  PubMed  Google Scholar 

  142. Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug. Discov. 2, 347–360 (2003).

    CAS  PubMed  Google Scholar 

  143. Zhou, D. et al. The transition from linear to highly branched poly(β-amino ester)s: branching matters for gene delivery. Sci. Adv. 2, e1600102 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Wei, H., Chu, D. S. H., Zhao, J., Pahang, J. A. & Pun, S. H. Synthesis and evaluation of cyclic cationic polymers for nucleic acid delivery. ACS Macro Lett. 2, 1047–1050 (2013).

    CAS  Google Scholar 

  145. Cortez, M. A. et al. The synthesis of cyclic poly(ethylene imine) and exact linear analogues: an evaluation of gene delivery comparing polymer architectures. J. Am. Chem. Soc. 137, 6541–6549 (2015).

    CAS  PubMed  Google Scholar 

  146. Newland, B. et al. GDNF gene delivery via a 2-(dimethylamino)ethyl methacrylate based cyclized knot polymer for neuronal cell applications. ACS Chem. Neurosci. 4, 540–546 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Cook, A. B. et al. Branched poly (trimethylphosphonium ethylacrylate-co-PEGA) by RAFT: alternative to cationic polyammoniums for nucleic acid complexation. J. Interdiscip. Nanomed. 3, 164–174 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Cho, H. Y. et al. Synthesis of biocompatible PEG-based star polymers with cationic and degradable core for siRNA delivery. Biomacromolecules 12, 3478–3486 (2011).

    CAS  PubMed  Google Scholar 

  149. Dai, F., Sun, P., Liu, Y. & Liu, W. Redox-cleavable star cationic PDMAEMA by arm-first approach of ATRP as a nonviral vector for gene delivery. Biomaterials 31, 559–569 (2010).

    CAS  PubMed  Google Scholar 

  150. Zhao, T. et al. Significance of branching for transfection: synthesis of highly branched degradable functional poly(dimethylaminoethyl methacrylate) by vinyl oligomer combination. Angew. Chem. Int. Ed. 53, 6095–6100 (2014).

    CAS  Google Scholar 

  151. Jackson, A. W. et al. Synthesis and in vivo magnetic resonance imaging evaluation of biocompatible branched copolymer nanocontrast agents. Int. J. Nanomed. 10, 5895–5907 (2015).

    CAS  Google Scholar 

  152. Hatton, F. L. et al. Hyperbranched polydendrons: a new nanomaterials platform with tuneable permeation through model gut epithelium. Chem. Sci. 6, 326–334 (2015).

    CAS  PubMed  Google Scholar 

  153. Xu, Q. et al. Bacteria-resistant single chain cyclized/knotted polymer coatings. Angew. Chem. Int. Ed. 58, 10616–10620 (2019).

    CAS  Google Scholar 

  154. Namivandi-Zangeneh, R. et al. The effects of polymer topology and chain length on the antimicrobial activity and hemocompatibility of amphiphilic ternary copolymers. Polym. Chem. 9, 1735–1744 (2018).

    CAS  Google Scholar 

  155. Rolfe, B. E. et al. Multimodal polymer nanoparticles with combined 19F magnetic resonance and optical detection for tunable, targeted, multimodal imaging in vivo. J. Am. Chem. Soc. 136, 2413–2419 (2014).

    CAS  PubMed  Google Scholar 

  156. Tai, H. et al. Thermoresponsive and photocrosslinkable PEGMEMA-PPGMA-EGDMA copolymers from a one-step ATRP synthesis. Biomacromolecules 10, 822–828 (2009).

    CAS  PubMed  Google Scholar 

  157. Dong, Y. et al. Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing. Adv. Funct. Mater. 27, 1606619 (2017).

    Google Scholar 

  158. Sigen, A. et al. Hyperbranched PEG-based multi-NHS polymer and bioconjugation with BSA. Polym. Chem. 8, 1283–1287 (2017).

    Google Scholar 

  159. Chen, X. et al. Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells. Nat. Commun. 10, 2705 (2019).

    PubMed  PubMed Central  Google Scholar 

  160. Zhao, T., Sellers, D. L., Cheng, Y., Horner, P. J. & Pun, S. H. Tunable, injectable hydrogels based on peptide-cross-linked, cyclized polymer nanoparticles for neural progenitor cell delivery. Biomacromolecules 18, 2723–2731 (2017).

    CAS  PubMed  Google Scholar 

  161. Yoshimatsu, K. et al. Temperature-responsive “catch and release” of proteins by using multifunctional polymer-based nanoparticles. Angew. Chem. Int. Ed. 51, 2405–2408 (2012).

    CAS  Google Scholar 

  162. Lee, S. H. et al. Engineered synthetic polymer nanoparticles as IgG affinity ligands. J. Am. Chem. Soc. 134, 15765–15772 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Hoshino, Y. et al. Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: a plastic antibody. J. Am. Chem. Soc. 132, 6644–6645 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Pan, G., Guo, Q., Ma, Y., Yang, H. & Li, B. Thermo-responsive hydrogel layers imprinted with RGDS peptide: a system for harvesting cell sheets. Angew. Chem. Int. Ed. 52, 6907–6911 (2013).

    CAS  Google Scholar 

  165. Ma, Y., Pan, G., Zhang, Y., Guo, X. & Zhang, H. Narrowly dispersed hydrophilic molecularly imprinted polymer nanoparticles for efficient molecular recognition in real aqueous samples including river water, milk, and bovine serum. Angew. Chem. Int. Ed. 52, 1511–1514 (2013).

    CAS  Google Scholar 

  166. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Hook, A. L. et al. Combinatorial discovery of polymers resistant to bacterial attachment. Nat. Biotechnol. 30, 868–875 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Vining, K. H. et al. Synthetic light-curable polymeric materials provide a supportive niche for dental pulp stem cells. Adv. Mater. 30, 1704486 (2018).

    Google Scholar 

  169. Mei, Y. et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat. Mater. 9, 768–778 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Yan, M. et al. Single siRNA nanocapsules for enhanced RNAi delivery. J. Am. Chem. Soc. 134, 13542–13545 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Yan, M. et al. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat. Nanotechnol. 5, 48–53 (2010).

    CAS  PubMed  Google Scholar 

  172. Koide, H. et al. A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165). Nat. Chem. 9, 715–722 (2017).

    CAS  PubMed  Google Scholar 

  173. Tillberg, P. W. et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34, 987–992 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Chen, F. et al. Nanoscale imaging of RNA with expansion microscopy. Nat. Methods 13, 679–684 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhao, Y. et al. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nat. Biotechnol. 35, 757–764 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Tang, W. & Matyjaszewski, K. Kinetic modeling of normal ATRP, normal ATRP with [CuII]0, reverse ATRP and SR&NI ATRP. Macromol. Theory Simul. 17, 359–375 (2008).

    CAS  Google Scholar 

  177. Soeriyadi, A. H. et al. Synthesis and modification of thermoresponsive poly(oligo(ethylene glycol) methacrylate) via catalytic chain transfer polymerization and thiol–ene Michael addition. Polym. Chem. 2, 815–822 (2011).

    CAS  Google Scholar 

  178. Baudry, R. & Sherrington, D. C. Facile synthesis of branched poly(vinyl alcohol)s. Macromolecules 39, 5230–5237 (2006).

    CAS  Google Scholar 

  179. Bao, Y., Shen, G., Liu, X. & Li, Y. RAFT polymerization of a novel allene-derived asymmetrical divinyl monomer: a facile strategy to alkene-functionalized hyperbranched vinyl polymers with high degrees of branching. J. Polym. Sci. A Polym. Chem. 51, 2959–2969 (2013).

    CAS  Google Scholar 

  180. Jia, Y.-B. et al. Controlled divinyl monomer polymerization mediated by Lewis pairs: a powerful synthetic strategy for functional polymers. ACS Macro Lett. 3, 896–899 (2014).

    CAS  Google Scholar 

  181. Butler, G. B. & Myers, G. R. The fundamental basis for cyclopolymerization. IV. Radiation initiated solid-state polymerization of certain dimethacrylamides. J. Macromol. Sci. A. Chem. 5, 135–166 (1971).

    Google Scholar 

  182. Costa, A. I., Barata, P. D. & Prata, J. V. Radical cyclopolymerization of a divinylbenzyl-p-tert-butylcalix[4]arene derivative. React. Funct. Polym. 66, 465–470 (2006).

    CAS  Google Scholar 

  183. Edizer, S. et al. Efficient free-radical cyclopolymerization of oriented styrenic difunctional monomers. Macromolecules 42, 1860–1866 (2009).

    CAS  Google Scholar 

  184. Ochiai, B., Ito, S. & Endo, T. Chiral interaction between aromatic aldehydes and a polymer bearing large chiral rings obtained by cyclopolymerization of bisacrylamide. Polym. J. 42, 138–141 (2010).

    CAS  Google Scholar 

  185. Sharma, A. K., Cornaggia, C. & Pasini, D. Controlled RAFT cyclopolymerization of oriented styrenic difunctional monomers. Macromol. Chem. Phys. 211, 2254–2259 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Science Foundation Ireland (SFI) Principal Investigator (PI) Programme (13/IA/1962) (to W.W.), National Science Foundation (NSF) Division of Materials Research (DMR) (1501324) (to K.M.), National Natural Science Foundation of China (NSFC) (51873179) (to W.W.), Senior Visiting Scholarship of State Key Laboratory of Molecular Engineering of Polymers, Fudan University (19FGJ07) (to W.W.), Irish Research Council (IRC) Employment-Based Postgraduate Programme (EBPPG/2018/159) (to J.L.) and University College Dublin (to Y.G.) for financial support. The authors apologize to those whose work is relevant but could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

Y.G., D.Z. and J.L. contributed equally to the research, writing and review of this article.

Corresponding authors

Correspondence to Dezhong Zhou or Wenxin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks A. Zhukhovitskiy, H. Wei and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Intramolecular cyclization

In the context of free-radical polymerization, a special type of crosslinking reaction that produces a link similar to a standard crosslink but between two monomer units in the same primary chain, resulting in a loop structure.

Instantaneous kinetic chain length

The number of double bonds added during one activation/deactivation cycle in ATRP (Equation 2 of Box 3).

Degree of branching

In radical polymerization of MVMs, degree of branching is defined as the number of branch points (that is, fully reacted MVMs) per repeat unit.

‘Grafting-from’ polymerization

A type of polymerization process in which initiating moieties are covalently bonded to the main polymer backbone and monomers are polymerized as side chains.

‘5-Å rule’

Effective intramolecular cyclization occurs only when two vinyl units are within 5 Å of one another.

Mark–Houwink exponent (α)

A constant from the Mark–Houwink equation, which correlates the intrinsic viscosity ([𝜂]) of polymer with its molecular weight (M): [𝜂] = kMα. The α values depend on the configuration of polymer chains in the solvent environment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Zhou, D., Lyu, J. et al. Complex polymer architectures through free-radical polymerization of multivinyl monomers. Nat Rev Chem 4, 194–212 (2020). https://doi.org/10.1038/s41570-020-0170-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-020-0170-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing