Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multiphase carbon mineralization for the reactive separation of CO2 and directed synthesis of H2


There is a need to capture, convert and store CO2 by atom-efficient and energy-efficient pathways that use as few process configurations as possible. This need has motivated studies into multiphase reaction chemistries and this Review describes two such approaches in the context of carbon mineralization. The first approach uses aqueous alkaline solutions containing amine nucleophiles that capture CO2 and eventually convert it into calcium and magnesium carbonates, thereby regenerating the nucleophiles. Gas–liquid–solid and liquid–solid configurations of these reactions are explored. The second approach combines silicates such as CaSiO3 or Mg2SiO4 with CO and H2O from the water-gas shift reaction to give H2 and calcium or magnesium carbonates. Coupling carbonate formation to the water-gas shift reaction shifts the latter equilibrium to afford more H2 as part of a single-step catalytic approach to carbon mineralization. These pathways exploit the vast abundance of alkaline resources, including naturally occurring silicates and alkaline industrial residues. However, simple stoichiometries belie the complex, multiphase nature of the reactions, predictive control of which presents a scientific opportunity and challenge. This Review describes this multiphase chemistry and the knowledge gaps that need to be addressed to achieve ‘step-change’ advancements in the reactive separation of CO2 by carbon mineralization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Amines used to capture CO2 in aqueous solution.
Fig. 2: The aqueous alkaline-amine-looping approach for CO2 mineralization.
Fig. 3: Carbon mineralization by aqueous alkaline-amine looping is affected by the solid precursor, temperature and amine concentration.
Fig. 4: Polymorphism in calcium and magnesium carbonate products of carbon mineralization.
Fig. 5: Comparison of the reactivity of Ca-bearing and Mg-bearing silicate and aluminosilicate minerals and rocks.
Fig. 6: Coupled reaction pathways in the conversion of silicates into carbonates and H2.
Fig. 7: Characterization over multiple length scales reveals reaction-induced chemo-morphological coupling.


  1. 1.

    Kelemen, P. B. et al. Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage. Annu. Rev. Earth Planet. Sci. 39, 545–576 (2011).

    CAS  Google Scholar 

  2. 2.

    Kelemen, P. B. & Matter, J. In situ carbonation of peridotite for CO2 storage. Proc. Natl Acad. Sci. USA 105, 17295–17300 (2008).

    CAS  Google Scholar 

  3. 3.

    Matter, J. M. & Kelemen, P. B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat. Geosci. 2, 837–841 (2009).

    CAS  Google Scholar 

  4. 4.

    Harrison, A. L., Power, I. M. & Dipple, G. M. Accelerated carbonation of brucite in mine tailings for carbon sequestration. Environ. Sci. Technol. 47, 126–134 (2013).

    CAS  PubMed  Google Scholar 

  5. 5.

    Matter, J. M. et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 352, 1312–1314 (2016).

    CAS  PubMed  Google Scholar 

  6. 6.

    Schaef, H. T., McGrail, B. P. & Owen, A. T. Basalt-CO2–H2O interactions and variability in carbonate mineralization rates. Energy Procedia 1, 4899–4906 (2009).

    CAS  Google Scholar 

  7. 7.

    Schaef, H. T., McGrail, B. P., Owen, A. T. & Arey, B. W. Mineralization of basalts in the CO2–H2O–H2S system. Int. J. Greenh. Gas Control 16, 187–196 (2013).

    CAS  Google Scholar 

  8. 8.

    Gerdemann, S. J., O’Connor, W. K., Dahlin, D. C., Penner, L. R. & Rush, H. Ex situ aqueous mineral carbonation. Environ. Sci. Technol. 41, 2587–2593 (2007).

    CAS  PubMed  Google Scholar 

  9. 9.

    Gadikota, G., Matter, J., Kelemen, P. & Park, A.-hA. Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3. Phys. Chem. Chem. Phys. 16, 4679–4693 (2014).

    CAS  PubMed  Google Scholar 

  10. 10.

    Eikeland, E., Blichfeld, A. B., Tyrsted, C., Jensen, A. & Iversen, B. B. Optimized carbonation of magnesium silicate mineral for CO2 storage. ACS Appl. Mater. Interfaces 7, 5258–5264 (2015).

    CAS  PubMed  Google Scholar 

  11. 11.

    Miller, Q. R. et al. Quantitative review of olivine carbonation kinetics: reactivity trends, mechanistic insights, and research frontiers. Environ. Sci. Technol. Lett. 6, 431–442 (2019).

    CAS  Google Scholar 

  12. 12.

    Wang, F., Dreisinger, D., Jarvis, M., Hitchins, T. & Dyson, D. Quantifying kinetics of mineralization of carbon dioxide by olivine under moderate conditions. Chem. Eng. J. 360, 452–463 (2019).

    CAS  Google Scholar 

  13. 13.

    National Academies of Sciences, Engineering, and Medicine. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. The National Academies Press (2019).

  14. 14.

    Palandri, J. L. & Kharaka, Y. K. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. U.S. Geological Survey Open File Report 2004-1068 (2004).

  15. 15.

    Bénézeth, P., Saldi, G. D., Dandurand, J.-L. & Schott, J. Experimental determination of the solubility product of magnesite at 50 to 200 °C. Chem. Geol. 286, 21–31 (2011).

    Google Scholar 

  16. 16.

    Weyl, P. The change in solubility of calcium carbonate with temperature and carbon dioxide content. Geochim. Cosmochim. Acta 17, 214–225 (1959).

    CAS  Google Scholar 

  17. 17.

    Rhodes, C., Hutchings, G. J. & Ward, A. M. Water-gas shift reaction: finding the mechanistic boundary. Catal. Today 23, 43–58 (1995).

    CAS  Google Scholar 

  18. 18.

    Mirjafari, P., Asghari, K. & Mahinpey, N. Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind. Eng. Chem. Res. 46, 921–926 (2007).

    CAS  Google Scholar 

  19. 19.

    Patel, T. N., Park, A.-H. A. & Banta, S. Periplasmic expression of carbonic anhydrase in Escherichia coli: a new biocatalyst for CO2 hydration. Biotechnol. Bioeng. 110, 1865–1873 (2013).

    CAS  PubMed  Google Scholar 

  20. 20.

    Zhao, H., Park, Y., Lee, D. H. & Park, A.-H. A. Tuning the dissolution kinetics of wollastonite via chelating agents for CO2 sequestration with integrated synthesis of precipitated calcium carbonates. Phys. Chem. Chem. Phys. 15, 15185–15192 (2013).

    CAS  PubMed  Google Scholar 

  21. 21.

    Béarat, H. et al. Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation. Environ. Sci. Technol. 40, 4802–4808 (2006).

    PubMed  Google Scholar 

  22. 22.

    Daval, D. et al. Influence of amorphous silica layer formation on the dissolution rate of olivine at 90°C and elevated pCO2. Chem. Geol. 284, 193–209 (2011).

    CAS  Google Scholar 

  23. 23.

    Daval, D. et al. in Proc. 13th Int. Conf. Water Rock Interaction WRI-13 (eds Birkle, P. & Torres-Alvarado, I. S.) 713–716 (Taylor & Francis, 2010).

  24. 24.

    Park, A.-H. A. et al. Methods and systems for capturing and storing carbon dioxide. US Patent 14/237,690 (2015).

  25. 25.

    Di Lorenzo, F. et al. The carbonation of wollastonite: a model reaction to test natural and biomimetic catalysts for enhanced CO2 sequestration. Minerals 8, 209 (2018).

    Google Scholar 

  26. 26.

    Giammar, D. E., Bruant Jr, R. G. & Peters, C. A. Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide. Chem. Geol. 217, 257–276 (2005).

    CAS  Google Scholar 

  27. 27.

    Swanson, E. J., Fricker, K. J., Sun, M. & Park, A.-H. A. Directed precipitation of hydrated and anhydrous magnesium carbonates for carbon storage. Phys. Chem. Chem. Phys. 16, 23440–23450 (2014).

    CAS  PubMed  Google Scholar 

  28. 28.

    Yu, C.-H., Huang, C.-H. & Tan, C.-S. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 12, 745–769 (2012).

    CAS  Google Scholar 

  29. 29.

    Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

    CAS  PubMed  Google Scholar 

  30. 30.

    Bottoms, R. R. Process for separating acidic gases. US Patent 1,834,016 (1930).

  31. 31.

    Lepaumier, H., Picq, D. & Carrette, P.-L. New amines for CO2 capture. I. mechanisms of amine degradation in the presence of CO2. Ind. Eng. Chem. Res. 48, 9061–9067 (2009).

    CAS  Google Scholar 

  32. 32.

    Sayari, A., Heydari-Gorji, A. & Yang, Y. CO2-induced degradation of amine-containing adsorbents: reaction products and pathways. J. Am. Chem. Soc. 134, 13834–13842 (2012).

    CAS  PubMed  Google Scholar 

  33. 33.

    Gouedard, C., Picq, D., Launay, F. & Carrette, P.-L. Amine degradation in CO2 capture. I. A review. Int. J. Greenh. Gas Control 10, 244–270 (2012).

    CAS  Google Scholar 

  34. 34.

    Martin, S. et al. New amines for CO2 capture. IV. Degradation, corrosion, and quantitative structure property relationship model. Ind. Eng. Chem. Res. 51, 6283–6289 (2012).

    CAS  Google Scholar 

  35. 35.

    Dai, N. et al. Measurement of nitrosamine and nitramine formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration. Environ. Sci. Technol. 46, 9793–9801 (2012).

    CAS  PubMed  Google Scholar 

  36. 36.

    Dai, N. & Mitch, W. A. Controlling nitrosamines, nitramines, and amines in amine-based CO2 capture systems with continuous ultraviolet and ozone treatment of washwater. Environ. Sci. Technol. 49, 8878–8886 (2015).

    CAS  PubMed  Google Scholar 

  37. 37.

    Wang, Z. & Mitch, W. A. Influence of dissolved metals on N-nitrosamine formation under amine-based CO2 capture conditions. Environ. Sci. Technol. 49, 11974–11981 (2015).

    CAS  PubMed  Google Scholar 

  38. 38.

    Rochelle, G. T. Thermal degradation of amines for CO2 capture. Curr. Opin. Chem. Eng. 1, 183–190 (2012).

    CAS  Google Scholar 

  39. 39.

    Soosaiprakasam, I. R. & Veawab, A. Corrosion and polarization behavior of carbon steel in MEA-based CO2 capture process. Int. J. Greenh. Gas Control 2, 553–562 (2008).

    CAS  Google Scholar 

  40. 40.

    Xiang, Y., Choi, Y. S., Yang, Y. & Nešić, S. Corrosion of carbon steel in MDEA-based CO2 capture plants under regenerator conditions: Effects of O2 and heat-stable salts. Corrosion 71, 30–37 (2014).

    Google Scholar 

  41. 41.

    Wattanaphan, P., Sema, T., Idem, R., Liang, Z. & Tontiwachwuthikul, P. Effects of flue gas composition on carbon steel (1020) corrosion in MEA-based CO2 capture process. Int. J. Greenh. Gas Control 19, 340–349 (2013).

    CAS  Google Scholar 

  42. 42.

    Veawab, A., Tontiwachwuthikul, P. & Chakma, A. Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions. Ind. Eng. Chem. Res. 38, 3917–3924 (2002).

    Google Scholar 

  43. 43.

    Kittel, J. et al. Corrosion in MEA units for CO2 capture: pilot plant studies. Energy Procedia 1, 791–797 (2009).

    CAS  Google Scholar 

  44. 44.

    Mandal, B. P., Guha, M., Biswas, A. K. & Bandyopadhyay, S. S. Removal of carbon dioxide by absorption in mixed amines: modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions. Chem. Eng. Sci. 56, 6217–6224 (2001).

    CAS  Google Scholar 

  45. 45.

    Idem, R. et al. Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant. Ind. Eng. Chem. Res. 45, 2414–2420 (2006).

    CAS  Google Scholar 

  46. 46.

    Li, Q. et al. A novel strategy for carbon capture and sequestration by rHLPD processing. Front. Energy Res. 3, 53 (2016).

    CAS  Google Scholar 

  47. 47.

    Ji, L. et al. Integrated absorption-mineralisation for low-energy CO2 capture and sequestration. Appl. Energy 225, 356–366 (2018).

    CAS  Google Scholar 

  48. 48.

    Kang, J. M. et al. Energy-efficient chemical regeneration of AMP using calcium hydroxide for operating carbon dioxide capture process. Chem. Eng. J. 335, 338–344 (2018).

    CAS  Google Scholar 

  49. 49.

    Arti, M. et al. Single process for CO2 capture and mineralization in various alkanolamines using calcium chloride. Energy Fuels 31, 763–769 (2017).

    CAS  Google Scholar 

  50. 50.

    Yu, B. et al. Coupling a sterically hindered amine-based absorption and coal fly ash triggered amine regeneration: a high energy-saving process for CO2 absorption and sequestration. Int. J. Greenh. Gas Control 87, 58–65 (2019).

    CAS  Google Scholar 

  51. 51.

    Vaidya, P. D., Konduru, P., Vaidyanathan, M. & Kenig, E. Y. Kinetics of carbon dioxide removal by aqueous alkaline amino acid salts. Ind. Eng. Chem. Res. 49, 11067–11072 (2010).

    CAS  Google Scholar 

  52. 52.

    Kumar, P. S., Hogendoorn, J. A., Versteeg, G. F. & Feron, P. H. M. Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine. AIChE J. 49, 203–213 (2003).

    CAS  Google Scholar 

  53. 53.

    Portugal, A. F., Sousa, J. M., Magalhães, F. D. & Mendes, A. Solubility of carbon dioxide in aqueous solutions of amino acid salts. Chem. Eng. Sci. 64, 1993–2002 (2009).

    CAS  Google Scholar 

  54. 54.

    Portugal, A. F., Derks, P. W. J., Versteeg, G. F., Magalhães, F. D. & Mendes, A. Characterization of potassium glycinate for carbon dioxide absorption purposes. Chem. Eng. Sci. 62, 6534–6547 (2007).

    CAS  Google Scholar 

  55. 55.

    Guo, D. et al. Amino acids as carbon capture solvents: chemical kinetics and mechanism of the glycine+CO2 reaction. Energy Fuels 27, 3898–3904 (2013).

    CAS  Google Scholar 

  56. 56.

    Thee, H. et al. A kinetic study of CO2 capture with potassium carbonate solutions promoted with various amino acids: glycine, sarcosine and proline. Int. J. Greenh. Gas Control 20, 212–222 (2014).

    CAS  Google Scholar 

  57. 57.

    Sanchez Fernandez, E. et al. Conceptual design of a novel CO2 capture process based on precipitating amino acid solvents. Ind. Eng. Chem. Res. 52, 12223–12235 (2013).

    CAS  Google Scholar 

  58. 58.

    Sanchez-Fernandez, E. et al. New process concepts for CO2 capture based on precipitating amino acids. Energy Procedia 37, 1160–1171 (2013).

    CAS  Google Scholar 

  59. 59.

    Majchrowicz, M. E., Brilman, D. W. F. (Wim) & Groeneveld, M. J. Precipitation regime for selected amino acid salts for CO2 capture from flue gases. Energy Procedia 1, 979–984 (2009).

    CAS  Google Scholar 

  60. 60.

    Sanchez-Fernandez, E. et al. Analysis of process configurations for CO2 capture by precipitating amino acid solvents. Ind. Eng. Chem. Res. 53, 2348–2361 (2014).

    CAS  Google Scholar 

  61. 61.

    Hänchen, M., Prigiobbe, V., Storti, G., Seward, T. M. & Mazzotti, M. Dissolution kinetics of fosteritic olivine at 90–150 °C including effects of the presence of CO2. Geochim. Cosmochim. Acta 70, 4403–4416 (2006).

    Google Scholar 

  62. 62.

    Oelkers, E. H., Declercq, J., Saldi, G. D., Gislason, S. R. & Schott, J. Olivine dissolution rates: a critical review. Chem. Geol. 500, 1–19 (2018).

    CAS  Google Scholar 

  63. 63.

    Kirchofer, A., Brandt, A., Krevor, S., Prigiobbe, V. & Wilcox, J. Impact of alkalinity sources on the life-cycle energy efficiency of mineral carbonation technologies. Energy Environ. Sci. 5, 8631–8641 (2012).

    CAS  Google Scholar 

  64. 64.

    Park, A.-H. A. & Fan, L.-S. CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process. Chem. Eng. Sci. 59, 5241–5247 (2004).

    CAS  Google Scholar 

  65. 65.

    Sanna, A., Hall, M. R. & Maroto-Valer, M. Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral materials. Energy Environ. Sci. 5, 7781–7796 (2012).

    CAS  Google Scholar 

  66. 66.

    Gadikota, G. & Park, A.-H. A. in Carbon Dioxide Utilisation: Closing the Carbon Cycle (eds Styring, P., Quadrelli, E. A. & Armstrong, K.) 115–137 (Elsevier, 2015).

  67. 67.

    Murnandari, A. et al. Effect of process parameters on the CaCO3 production in the single process for carbon capture and mineralization. Korean J. Chem. Eng. 34, 935–941 (2017).

    CAS  Google Scholar 

  68. 68.

    Han, C. & Harrison, D. P. Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen. Chem. Eng. Sci. 49, 5875–5883 (1994).

    CAS  Google Scholar 

  69. 69.

    Liu, M. & Gadikota, G. Integrated CO2 capture, conversion, and storage to produce calcium carbonate using an amine looping strategy. Energy Fuels 33, 1722–1733 (2019).

    CAS  Google Scholar 

  70. 70.

    Liu, M., Asgar, H., Seifert, S. & Gadikota, G. Novel aqueous amine looping approach for the direct capture, conversion and storage of CO2 to produce magnesium carbonate. Sustain. Energy Fuels. (2019).

    Article  Google Scholar 

  71. 71.

    Hövelmann, J., Putnis, C. V., Ruiz-Agudo, E. & Austrheim, H. Direct nanoscale observations of CO2 sequestration during brucite [Mg(OH)2] dissolution. Environ. Sci. Technol. 46, 5253–5260 (2012).

    PubMed  Google Scholar 

  72. 72.

    Saldi, G. D., Jordan, G., Schott, J. & Oelkers, E. H. Magnesite growth rates as a function of temperature and saturation state. Geochim. Cosmochim. Acta 73, 5646–5657 (2009).

    CAS  Google Scholar 

  73. 73.

    Schott, J., Pokrovsky, O. S. & Oelkers, E. H. The link between mineral dissolution/precipitation kinetics and solution chemistry. Rev. Mineral Geochem. 70, 207–258 (2009).

    Google Scholar 

  74. 74.

    Dresselhaus, M. Basic Research Needs for the Hydrogen Economy. US Department of Energy (2003).

  75. 75.

    Turner, J. A. Sustainable hydrogen production. Science 305, 972–975 (2004).

    CAS  PubMed  Google Scholar 

  76. 76.

    Pereira, E. G., da Silva, J. N., de Oliveira, J. L. & Machado, C. S. Sustainable energy: a review of gasification technologies. Renew. Sustain. Energy Rev. 16, 4753–4762 (2012).

    CAS  Google Scholar 

  77. 77.

    Levalley, T. L., Richard, A. R. & Fan, M. The progress in water gas shift and steam reforming hydrogen production technologies — a review. Int. J. Hydrog. Energy 39, 16983–17000 (2014).

    CAS  Google Scholar 

  78. 78.

    Bukur, D. B., Todic, B. & Elbashir, N. Role of water-gas-shift reaction in Fischer–Tropsch synthesis on iron catalysts: a review. Catal. Today 275, 66–75 (2016).

    CAS  Google Scholar 

  79. 79.

    Fricker, K. J. Magnesium Hydroxide Sorbents for Combined Carbon Dioxide Capture and Storage in Energy Conversion Systems. PhD Thesis, Columbia Univ. (2014).

  80. 80.

    Byron Smith, R. J., Loganathan, M. & Shantha, M. S. A review of the water gas shift reaction kinetics. Int. J. Chem. React. Eng. 8, R4 (2010).

    Google Scholar 

  81. 81.

    Pal, D. B., Chand, R., Upadhyay, S. N. & Mishra, P. K. Performance of water gas shift reaction catalysts: a review. Renew. Sustain. Energy Rev. 93, 549–565 (2018).

    CAS  Google Scholar 

  82. 82.

    Elliott, D. C. & Sealock Jr, L. J. Aqueous catalyst systems for the water-gas shift reaction. 1. Comparative catalyst studies. Ind. Eng. Chem. Prod. Res. Dev. 22, 426–431 (1983).

    CAS  Google Scholar 

  83. 83.

    Elliott, D. C., Hallen, R. T. & Sealock Jr, L. J. Aqueous catalyst systems for the water-gas shift reaction. 2. Mechanism of basic catalysis. Ind. Eng. Chem. Prod. Res. Dev. 22, 431–435 (1983).

    CAS  Google Scholar 

  84. 84.

    Onsager, O.-T., Brownrigg, M. S. A. & Lødeng, R. Hydrogen production from water and CO via alkali metal formate salts. Int. J. Hydrog. Energy 21, 883–885 (1996).

    CAS  Google Scholar 

  85. 85.

    Stevens, R. W. Jr, Shamsi, A., Carpenter, S. & Siriwardane, R. Sorption-enhanced water gas shift reaction by sodium-promoted calcium oxides. Fuel 89, 1280–1286 (2010).

    CAS  Google Scholar 

  86. 86.

    Beaver, M. G., Caram, H. S. & Sircar, S. Selection of CO2 chemisorbent for fuel-cell grade H2 production by sorption-enhanced water gas shift reaction. Int. J. Hydrog. Energy 34, 2972–2978 (2009).

    CAS  Google Scholar 

  87. 87.

    Dasgupta, D., Mondal, K. & Wiltowski, T. Robust, high reactivity and enhanced capacity carbon dioxide removal agents for hydrogen production applications. Int. J. Hydrog. Energy 33, 303–311 (2008).

    CAS  Google Scholar 

  88. 88.

    Ding, Y. & Alpay, E. Adsorption-enhanced steam–methane reforming. Chem. Eng. Sci. 55, 3929–3940 (2000).

    CAS  Google Scholar 

  89. 89.

    Guoxin, H. & Hao, H. Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent. Biomass Bioenergy 33, 899–906 (2009).

    Google Scholar 

  90. 90.

    Harrison, D. P. Sorption-enhanced hydrogen production: a review. Ind. Eng. Chem. Res. 47, 6486–6501 (2008).

    CAS  Google Scholar 

  91. 91.

    Lee, K. B., Beaver, M. G., Caram, H. S. & Sircar, S. Reversible chemisorbents for carbon dioxide and their potential applications. Ind. Eng. Chem. Res. 47, 8048–8062 (2008).

    CAS  Google Scholar 

  92. 92.

    Lopez Ortiz, A. & Harrison, D. P. Hydrogen production using sorption-enhanced reaction. Ind. Eng. Chem. Res. 40, 5102–5109 (2002).

    Google Scholar 

  93. 93.

    Van Selow, E. R., Cobden, P. D., Verbraeken, P. A., Hufton, J. R. & van den Brink, R. W. Carbon capture by sorption-enhanced water–gas shift reaction process using hydrotalcite-based material. Ind. Eng. Chem. Res. 48, 4184–4193 (2009).

    Google Scholar 

  94. 94.

    Xiu, G.-h, Li, P. & Rodrigues, A. E. Sorption-enhanced reaction process with reactive regeneration. Chem. Eng. Sci. 57, 3893–3908 (2002).

    CAS  Google Scholar 

  95. 95.

    Wei, L., Xu, S., Liu, J., Liu, C. & Liu, S. Hydrogen production in steam gasification of biomass with CaO as a CO2 absorbent. Energy Fuels 22, 1997–2004 (2008).

    CAS  Google Scholar 

  96. 96.

    Fricker, K. J. & Park, A.-H. A. Effect of H2O on Mg(OH)2 carbonation pathways for combined CO2 capture and storage. Chem. Eng. Sci. 100, 332–341 (2013).

    CAS  Google Scholar 

  97. 97.

    Fricker, K. J. & Park, A.-H. A. in Proc. 12th Int. Conf. Gas-Liquid and Gas-Liquid-Solid Reactor Engineering (GLS 12) (2015).

  98. 98.

    O’Connor, W. K. et al. Carbon dioxide sequestration by direct mineral carbonation: results from recent studies and current status. US Department of Energy DOE/ARC-2001-029 (2001).

  99. 99.

    O’Connor, W. K., Dahlin, D. C., Rush, G. E., Gerdemann, S. J. & Nilsen, D. N. Final report: aqueous mineral carbonation. US Department of Energy DOE/ARC-TR-04-002 (2004).

  100. 100.

    Gadikota, G., Swanson, E. J., Zhao, H. & Park, A.-H. A. Experimental design and data analysis for accurate estimation of reaction kinetics and conversion for carbon mineralization. Ind. Eng. Chem. Res. 53, 6664–6676 (2014).

    CAS  Google Scholar 

  101. 101.

    Gadikota, G. Geo-chemo-physical Studies of Carbon Mineralization for Natural and Engineered Carbon Storage. PhD Thesis, Columbia Univ. (2014).

  102. 102.

    Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A. B. & Ortega-Huertas, M. Thermal decomposition of calcite: mechanisms of formation and textural evolution of CaO nanocrystals. Am. Mineral. 94, 578–593 (2009).

    CAS  Google Scholar 

  103. 103.

    Ungermann, C. et al. Homogeneous catalysis of the water gas shift reaction by ruthenium and other metal carbonyls. studies in alkaline solutions. J. Am. Chem. Soc. 101, 5922–5929 (1979).

    CAS  Google Scholar 

  104. 104.

    King Jr, A. D., King, R. B. & Yang, D. B. Homogeneous catalysis of the water gas shift reaction using iron pentacarbonyl. J. Am. Chem. Soc. 102, 1028–1032 (1980).

    Google Scholar 

  105. 105.

    Ishida, H., Tanaka, K., Morimoto, M. & Tanaka, T. Isolation of intermediates in the water gas shift reactions catalyzed by [Ru(bpy)2(CO)Cl]+ and [Ru(bpy)2(CO)2]2+. Organometallics 5, 724–730 (1986).

    CAS  Google Scholar 

  106. 106.

    Laine, R. M. & Crawford, E. J. Homogeneous catalysis of the water-gas shift reaction. J. Mol. Catal. 44, 357–387 (1988).

    CAS  Google Scholar 

  107. 107.

    Thom, J. G. M., Dipple, G. M., Power, I. M. & Harrison, A. L. Chrysotile dissolution rates: implications for carbon sequestration. Appl. Geochem. 35, 244–254 (2013).

    CAS  Google Scholar 

  108. 108.

    Vanderzee, S. S. S., Dipple, G. M. & Bradshaw, P. M. D. Targeting highly reactive labile magnesium in ultramafic tailings for greenhouse-gas offsets and potential tailings stabilization at the Baptiste deposit, central British Columbia (NTS 093K/13, 14). Geoscience BC (2019).

  109. 109.

    King, H. E., Plümper, O. & Putnis, A. Effect of secondary phase formation on the carbonation of olivine. Environ. Sci. Technol. 44, 6503–6509 (2010).

    CAS  PubMed  Google Scholar 

  110. 110.

    Waychunas, G. A. Grazing-incidence X-ray absorption and emission spectroscopy. Rev. Mineral. Geochem. 49, 267–315 (2002).

    CAS  Google Scholar 

  111. 111.

    Fernandez-Martinez, A., Hu, Y., Lee, B., Jun, Y.-S. & Waychunas, G. A. In situ determination of interfacial energies between heterogeneously nucleated CaCO3 and quartz substrates: thermodynamics of CO2 mineral trapping. Environ. Sci. Technol. 47, 102–109 (2013).

    CAS  PubMed  Google Scholar 

  112. 112.

    Jubb, A. M., Hua, W. & Allen, H. C. Environmental chemistry at vapor/water interfaces: insights from vibrational sum frequency generation spectroscopy. Annu. Rev. Phys. Chem. 63, 107–130 (2012).

    CAS  PubMed  Google Scholar 

  113. 113.

    Axnanda, S. et al. Using “tender” X-ray ambient pressure X-ray photoelectron spectroscopy as a direct probe of solid–liquid interface. Sci. Rep. 5, 9788 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Jiao, D., King, C., Grossfield, A., Darden, T. A. & Ren, P. Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. J. Phys. Chem. B 110, 18553––18559 (2006).

    PubMed  Google Scholar 

  115. 115.

    Power, I. M., Kenward, P. A., Dipple, G. M. & Raudsepp, M. Room temperature magnesite precipitation. Cryst. Growth Des. 17, 5652–5659 (2017).

    CAS  Google Scholar 

  116. 116.

    Tai, C. Y. & Chen, F.-B. Polymorphism of CaCO3, precipitated in a constant-composition environment. AIChE J. 44, 1790–1798 (1998).

    CAS  Google Scholar 

  117. 117.

    Nebel, H. & Epple, M. Continuous preparation of calcite, aragonite and vaterite, and of magnesium-substituted amorphous calcium carbonate (Mg-ACC). Z. Anorg. Allg. Chem. 634, 1439–1443 (2008).

    CAS  Google Scholar 

  118. 118.

    Loste, E., Park, R. J., Warren, J. & Meldrum, F. C. Precipitation of calcium carbonate in confinement. Adv. Funct. Mater. 14, 1211–1220 (2004).

    CAS  Google Scholar 

  119. 119.

    Falini, G., Fermani, S., Gazzano, M. & Ripamonti, A. Oriented crystallization of vaterite in collagenous matrices. Chem. Eur. J. 4, 1048–1052 (1998).

    CAS  Google Scholar 

  120. 120.

    Li, Q., Ding, Y., Li, F., Xie, B. & Qian, Y. Solvothermal growth of vaterite in the presence of ethylene glycol, 1, 2-propanediol and glycerin. J. Cryst. Growth 236, 357–362 (2002).

    CAS  Google Scholar 

  121. 121.

    Zhou, G.-T., Yu, J. C., Wang, X.-C. & Zhang, L.-Z. Sonochemical synthesis of aragonite-type calcium carbonate with different morphologies. N. J. Chem. 28, 1027–1031 (2004).

    CAS  Google Scholar 

  122. 122.

    Li, M., Lebeau, B. & Mann, S. Synthesis of aragonite nanofilament networks by mesoscale self-assembly and transformation in reverse microemulsions. Adv. Mater. 15, 2032–2035 (2003).

    CAS  Google Scholar 

  123. 123.

    Küther, J. et al. Templated crystallisation of calcium and strontium carbonates on centred rectangular self-assembled monolayer substrates. Chem. Eur. J. 4, 1834–1842 (1998).

    Google Scholar 

  124. 124.

    Nassif, N. et al. Synthesis of stable aragonite superstructures by a biomimetic crystallization pathway. Angew. Chem. Int. Ed. 44, 6004–6009 (2005).

    CAS  Google Scholar 

  125. 125.

    Belcher, A. M. et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381, 56–58 (1996).

    CAS  Google Scholar 

  126. 126.

    Falini, G., Albeck, S., Weiner, S. & Addadi, L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science. 271, 67–69 (1996).

    Google Scholar 

  127. 127.

    Heywood, B. R. & Mann, S. Molecular construction of oriented inorganic materials: controlled nucleation of calcite and aragonite under compressed Langmuir monolayers. Chem. Mater. 6, 311–318 (1994).

    CAS  Google Scholar 

  128. 128.

    Litvin, A. L., Valiyaveettil, S., Kaplan, D. L. & Mann, S. Template-directed synthesis of aragonite under supramolecular hydrogen-bonded langmuir monolayers. Adv. Mater. 9, 124–127 (1997).

    CAS  Google Scholar 

  129. 129.

    Davies, P. J. & Bubela, B. The transformation of nesquehonite into hydromagnesite. Chem. Geol. 12, 289–300 (1973).

    CAS  Google Scholar 

  130. 130.

    Hänchen, M., Prigiobbe, V., Baciocchi, R. & Mazzotti, M. Precipitation in the Mg-carbonate system—effects of temperature and CO2 pressure. Chem. Eng. Sci. 63, 1012–1028 (2008).

    Google Scholar 

  131. 131.

    Langmuir, D. Stability of carbonates in the system MgO–CO2–H2O. J. Geol. 73, 730–754 (1965).

    CAS  Google Scholar 

  132. 132.

    Zhang, Z. et al. Temperature- and pH-dependent morphology and FT–IR analysis of magnesium carbonate hydrates. J. Phys. Chem. B 110, 12969–12973 (2006).

    CAS  PubMed  Google Scholar 

  133. 133.

    Zhao, L., Sang, L., Chen, J., Ji, J. & Teng, H. H. Aqueous carbonation of natural brucite: relevance to CO2 sequestration. Environ. Sci. Technol. 44, 406–411 (2010).

    CAS  PubMed  Google Scholar 

  134. 134.

    Lanas, J. & Alvarez, J. I. Dolomitic lime: thermal decomposition of nesquehonite. Thermochim. Acta 421, 123–132 (2004).

    CAS  Google Scholar 

  135. 135.

    Sayles, F. L. & Fyfe, W. S. The crystallization of magnesite from aqueous solution. Geochim. Cosmochim. Acta 37, 87–99 (1973).

    CAS  Google Scholar 

  136. 136.

    Fricker, K. J. & Park, A.-H. A. Investigation of the different carbonate phases and their formation kinetics during Mg(OH)2 slurry carbonation. Ind. Eng. Chem. Res. 53, 18170–18179 (2014).

    CAS  Google Scholar 

  137. 137.

    Stack, A. G. et al. Pore-size-dependent calcium carbonate precipitation controlled by surface chemistry. Environ. Sci. Technol. 48, 6177–6183 (2014).

    CAS  PubMed  Google Scholar 

  138. 138.

    Ilavsky, J. et al. Development of combined microstructure and structure characterization facility for in situ and operando studies at the Advanced Photon Source. J. Appl. Crystallogr. 51, 867–882 (2018).

    CAS  Google Scholar 

  139. 139.

    Gadikota, G., Zhang, F. & Allen, A. In situ angstrom-to-micrometer characterization of the structural and microstructural changes in kaolinite on heating using ultrasmall-angle, small-angle, and wide-angle X-ray scattering (USAXS/SAXS/WAXS). Ind. Eng. Chem. Res. 56, 11791–11801 (2017).

    CAS  Google Scholar 

  140. 140.

    Gadikota, G. & Allen, A. in Materials and Processes for CO 2 Capture, Conversion, and Sequestration (eds Li, L., Wong-Ng, W., Huang, K. & Cook, L. P.) 296–318 (Wiley, 2018).

  141. 141.

    Gadikota, G. Connecting the morphological and crystal structural changes during the conversion of lithium hydroxide monohydrate to lithium carbonate using multi-scale X-ray scattering measurements. Minerals 7, 169 (2017).

    Google Scholar 

  142. 142.

    Yang, Z.-Z., Zhao, Y.-N. & He, L.-N. CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Adv. 1, 545–567 (2011).

    CAS  Google Scholar 

  143. 143.

    Yang, Z.-Z. et al. CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energy Environ. Sci. 4, 3971–3975 (2011).

    CAS  Google Scholar 

  144. 144.

    Liu, A.-H. et al. Equimolar CO2 capture by N-substituted amino acid salts and subsequent conversion. Angew. Chem. Int. Ed. 51, 11306–11310 (2012).

    CAS  Google Scholar 

  145. 145.

    Jiang, B. et al. Development of amino acid and amino acid-complex based solid sorbents for CO2 capture. Appl. Energy 109, 112–118 (2013).

    CAS  Google Scholar 

  146. 146.

    Feron, P. H. M. & ten Asbroek, N. in Greenhouse Gas Control Technologies 7 Vol. 2 (eds Rubin, E. S. et al.) 1153–1158 (Elsevier, 2005).

  147. 147.

    Huang, Q., Bhatnagar, S., Remias, J. E., Selegue, J. P. & Liu, K. Thermal degradation of amino acid salts in CO2 capture. Int. J. Greenh. Gas Control 19, 243–250 (2013).

    CAS  Google Scholar 

Download references


This research was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.

Author information



Corresponding author

Correspondence to Greeshma Gadikota.

Ethics declarations

Competing interests

Provisional patents have been filed by Cornell University on the process for directed hydrogen synthesis starting with calcium and magnesium silicate precursors and the reactive separation of CO2 using amine-bearing solvents.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gadikota, G. Multiphase carbon mineralization for the reactive separation of CO2 and directed synthesis of H2. Nat Rev Chem 4, 78–89 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing