Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced CO2 utilization in dry reforming of methane achieved through nickel-mediated hydrogen spillover in zeolite crystals

Abstract

Transformation of CO2 into precursors for chemicals and fuels by self-contained reducing gas contaminants (for example, CH4) is attractive from a carbon economy perspective. Reducing as much CO2 as possible using a limited amount of reducing gas would be ideal, but general dry reforming (DRM) schemes consume stoichiometric amounts of methane for CO2 reduction. Here we develop a process with high reducibility of methane relative to conventional DRM, using up to 2.9 mol of CO2 per mol of CH4. Key to this success are Ni nanoparticles, fixed within the matrix of an aluminosilicate zeolite catalyst (Ni@HZSM-5), that enhance hydrogen spillover to favour the reduction of CO2. This process achieves an energy cost for reducing CO2 of 113.6 kJ per mol CO2, which is 31.9% lower than the conventional DRM process with stoichiometric transformation of CO2 and methane. In addition, the rigid zeolite framework could minimize coke formation and prevent Ni sintering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterization of Ni@HZSM-5.
Fig. 2: Catalytic data.
Fig. 3: Equilibrium data and kinetic study.

Similar content being viewed by others

Data availability

All data are available from the authors upon reasonable request.

References

  1. Tollefson, J. CO2 emissions set to spike in 2017. Nature 551, 283 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Song, Y. et al. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science 367, 777–781 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Pakhare, D. & Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 43, 7813–7837 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 299, 1688–1691 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Buelens, L. C., Galvita, V. V., Poelman, H., Detavernier, C. & Marin, G. B. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle. Science 354, 449–452 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Tang, C., Zeng, Y., Cao, P., Yang, X. & Wang, G. The nickel and copper-catalyzed hydroformylation of acetylene with carbon monoxide to acrylic acid. Catal. Lett. 129, 189–193 (2009).

    Article  CAS  Google Scholar 

  7. Trotus, I.-T., Zimmermann, T. & Schuth, F. Catalytic reactions of acetylene: a feedstock for the chemical industry revisited. Chem. Rev. 114, 1761–1782 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Bianchini, C. & Meli, A. Alternating copolymerization of carbon monoxide and olefins by single-site metal catalysis. Coordin. Chem. Rev. 225, 35–66 (2002).

    Article  CAS  Google Scholar 

  9. Dry, M. E. The Fischer-Tropsch process: 1950–2000. Catal. Today 71, 227–241 (2002).

    Article  CAS  Google Scholar 

  10. Jiao, F. et al. Selective conversion of syngas to light olefins. Science 351, 1065–1068 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Zhong, L. et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538, 84–87 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Khodakov, A. Y., Chu, W. & Fongarland, P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 107, 1692–1744 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Galvis, H. M. T. et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335, 835–838 (2012).

    Article  Google Scholar 

  14. Graciani, J. et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345, 546–550 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Kattel, S., Ramírez, P. J., Chen, J. G., Rodriguez, J. A. & Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296–1299 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Woolerton, T. W. et al. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J. Am. Chem. Soc. 132, 2132–2133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wan, L. et al. Cu2O nanocubes with mixed oxidation-state facets for (photo) catalytic hydrogenation of carbon dioxide. Nat. Catal. 2, 889–898 (2019).

    Article  CAS  Google Scholar 

  19. Costentin, C., Robert, M. & Savéant, J. M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42, 2423–2436 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Costentin, C., Drouet, S., Robert, M. & Saveant, J. M. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338, 90–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Patel, H. A., Byun, J. & Yavuz, C. T. Carbon dioxide capture adsorbents: chemistry and methods. ChemSusChem 10, 1303–1317 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Sakakura, T., Choi, J. C. & Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 107, 2365–2387 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Porosoff, M. D., Yan, B. & Chen, J. G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ. Sci. 9, 62–73 (2016).

    Article  CAS  Google Scholar 

  24. Porosoff, M. D., Yang, X., Boscoboinik, J. A. & Chen, J. G. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew. Chem. Int. Ed. 53, 6705–6709 (2014).

    Article  CAS  Google Scholar 

  25. Theofanidis, S. A., Galvita, V. V., Poelman, H. & Marin, G. B. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe. ACS Catal. 5, 3028–3039 (2015).

    Article  CAS  Google Scholar 

  26. Akri, M. et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 10, 5181 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Palmer, C. et al. Dry reforming of methane catalysed by molten metal alloys. Nat. Catal. 3, 83–89 (2020).

    Article  CAS  Google Scholar 

  28. Kim, S. M. et al. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts. J. Am. Chem. Soc. 139, 1937–1949 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Foppa, L. et al. Contrasting the role of Ni/Al2O3 interfaces in water-gas shift and dry reforming of methane. J. Am. Chem. Soc. 139, 17128–17139 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Tang, Y. et al. Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4. J. Am. Chem. Soc. 141, 7283–7293 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Dong, J. et al. Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets. J. Am. Chem. Soc. 142, 17167–17174 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Kim, J.-H., Suh, D. J., Park, T.-J. & Kim, K.-L. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts. Appl. Catal. A Gen. 197, 191–200 (2000).

    Article  CAS  Google Scholar 

  33. Yu, Y. et al. Mechanisms for the accumulation of deep gas in the southern Songliao Basin, China. J. Pet. Sci. Eng. 182, 106302 (2019).

    Article  CAS  Google Scholar 

  34. APEC Energy Working Group. Assessment of the Capture and Storage Potential of CO2 Co-Produced with Natural Gas in South-East Asia (Asia-Pacific Enconomic Cooperation, APEC Energy Working Group, 2010).

  35. Galdeano, C., Cook, M. A. & Webber, M. E. Multilayer geospatial analysis of water availability for shale resources development in Mexico. Environ. Res. Lett. 12, 084014 (2017).

    Article  Google Scholar 

  36. Gilfillan, S. M. et al. The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochim. Cosmochim. Acta 72, 1174–1198 (2008).

    Article  CAS  Google Scholar 

  37. Zhang, J. et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat. Catal. 1, 540–546 (2018).

    Article  CAS  Google Scholar 

  38. Ferraz, A., Gamboa, L., Neto, E. V. D. & Baptista, R. Crustal structure and CO2 occurrences in the Brazilian basins. Interpretation 7, 37–45 (2019).

    Article  Google Scholar 

  39. Tsipouriari, V. A. & Verykios, X. E. Carbon and oxygen reaction pathways of CO2 reforming of methane over Ni/La2O3 and Ni/Al2O3 catalysts studied by isotopic tracing techniques. J. Catal. 187, 85–94 (1999).

    Article  CAS  Google Scholar 

  40. Zhang, Z. & Verykios, X. E. Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts. Appl. Catal. A Gen. 138, 109–133 (1996).

    Article  CAS  Google Scholar 

  41. Bonmassar, N. et al. In situ-determined catalytically active state of LaNiO3 in methane dry reforming. ACS Catal. 10, 1102–1112 (2020).

    Article  CAS  Google Scholar 

  42. Gao, J., Hou, Z., Guo, J., Zhu, Y. & Zheng, X. Catalytic conversion of methane and CO2 to synthesis gas over a La2O3-modified SiO2 supported Ni catalyst in fluidized-bed reactor. Catal. Today 131, 278–284 (2008).

    Article  CAS  Google Scholar 

  43. Pan, X. et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 6, 507–511 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, C. et al. Direct conversion of syngas to ethanol within zeolite crystals. Chem 6, 646–657 (2019).

    Article  CAS  Google Scholar 

  45. Li, M., Sun, Z. & Hu, Y. H. Catalysts for CO2 reforming of CH4: a review. J. Mater. Chem. A 9, 12495 (2021).

    Article  CAS  Google Scholar 

  46. Cheung, P., Bhan, A., Sunley, G. H. & Iglesia, E. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites. Angew. Chem. Int. Ed. 45, 1617–1620 (2006).

    Article  CAS  Google Scholar 

  47. Bhan, A., Allian, A. D., Sunley, G. H., Law, D. J. & Iglesia, E. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls. J. Am. Chem. Soc. 129, 4919–4924 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, S. et al. Activation and spillover of hydrogen on sub-1-nm palladium nanoclusters confined within sodalite zeolite for the semi-hydrogenation of alkynes. Angew. Chem. Int. Ed. 58, 7668–7672 (2019).

    Article  CAS  Google Scholar 

  49. Neikam, W. C. & Vannice, M. A. Hydrogen spillover in the Pt black/Ce Y zeolite/perylene system. J. Catal. 27, 207–214 (1972).

    Article  CAS  Google Scholar 

  50. Im, J., Shin, H., Jang, H., Kim, H. & Choi, M. Maximizing the catalytic function of hydrogen spillover in platinum-encapsulated aluminosilicates with controlled nanostructures. Nat. Commun. 5, 3370 (2014).

    Article  PubMed  Google Scholar 

  51. Yang, H., Chen, H., Chen, J., Omotoso, O. & Ring, Z. Shape selective and hydrogen spillover approach in the design of sulfur-tolerant hydrogenation catalysts. J. Catal. 243, 36–42 (2006).

    Article  CAS  Google Scholar 

  52. Zhou, W. et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem. Soc. Rev. 48, 3193–3228 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Weber, J. L. et al. Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics. Catal. Today 342, 161–166 (2020).

    Article  CAS  Google Scholar 

  54. Karim, W. et al. Catalyst support effects on hydrogen spillover. Nature 541, 68–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, C. et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 141, 8482–8488 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Khoobiar, S. Particle to particle migration of hydrogen atoms on platinum-alumina catalysts from particle to neighboring particles. J. Phys. Chem. 68, 411–412 (1964).

    Article  CAS  Google Scholar 

  57. Guan, E. & Gates, B. C. Stable rhodium pair sites on MgO: influence of ligands and rhodium nuclearity on catalysis of ethylene hydrogenation and H-D exchange in the reaction of H2 with D2. ACS Catal. 8, 482–487 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFA1500404), and the National Natural Science Foundation of China (U21B20101 and 21932006).

Author information

Authors and Affiliations

Authors

Contributions

Q.Z. performed the catalyst preparation, characterization and catalytic tests. H.Z. performed the thermodynamic and kinetic analysis. L.W. (Jilin University) performed the TEM characterization. C.W., H.W. and W.F. participated in the catalyst preparation and characterizations. M.H. and Q.W. provided helpful discussions. L.W. (Zhejiang University) and F.-S.X. designed this study, analysed the data and wrote the paper.

Corresponding authors

Correspondence to Liang Wang or Feng-Shou Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Hyun-Seog Roh, Roger Gläser, José Odriozola and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Table 1, Figs. 1–35, Notes 1–8 and references.

Supplementary Video 1

Video showing the TEM observation of the Ni@ZSM-5 catalyst.

Supplementary Video 2

Video showing the TEM observation of the Ni/ZSM-5 catalyst.

Source data

Source Data Fig. 2

Source data for the catalytic tests in Fig. 2 of the main text.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Zhou, H., Wang, L. et al. Enhanced CO2 utilization in dry reforming of methane achieved through nickel-mediated hydrogen spillover in zeolite crystals. Nat Catal 5, 1030–1037 (2022). https://doi.org/10.1038/s41929-022-00870-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00870-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing