Monitoring chemical reactions in liquid media using electron microscopy

Abstract

Developments in chemistry, materials science and biology have been fuelled by our search for structure–property relationships in matter at different levels of organization. Transformations in chemical synthesis and living systems predominantly take place in solution, such that many efforts have focused on studying nanoscale systems in the liquid phase. These studies have largely relied on spectroscopic data, the assignment of which can often be ambiguous. By contrast, electron microscopy can be used to directly visualize chemical systems and processes with up to atomic resolution. Electron microscopy is most amenable to studying solid samples and, until recently, to study a liquid phase, one had to remove solvent and lose important structural information. Over the past decade, however, liquid-phase electron microscopy has revolutionized direct mechanistic studies of reactions in liquid media. Scanning electron microscopy and (scanning) transmission electron microscopy of liquid samples have enabled breakthroughs in nanoparticle chemistry, soft-matter science, catalysis, electrochemistry, battery research and biochemistry. In this Review, we discuss the utility of liquid-phase electron microscopy for studying chemical reaction mechanisms in liquid systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2: Reactions can be effected using different stimuli and monitored using different electron microscopes and sample holders.
Fig. 3: Electron micrographs help one follow the progress of metal-containing particle synthesis and reactivity in solution.
Fig. 4: Liquid-phase electron microscopy can be used to observe electrochemical processes in systems related to Li-ion batteries.
Fig. 5: Electron micrographs reveal the dynamics in soft-material solutions.

Change history

  • 14 November 2019

    This article has been corrected to change image credits given for Figures 3, 4 and 5. The credit line of Fig. 3 now reads “Part a is adapted with permission from ref.67, AAAS. Part b is adapted with permission from ref.77, ACS. Part c is adapted from ref.102, CC-BY-4.0. Part d is adapted with permission from ref.107, Elsevier. Part e is adapted from ref.111, CC-BY-4.0.” The credit line of Fig. 4 now reads “Part a is adapted with permission from ref.135, ACS. Part b is adapted with permission from ref.137, Elsevier. Part c is adapted with permission from ref.148, AAAS. Part d is adapted with permission from ref.151, OUP.” The credit line of Fig. 5 now reads ”Part a is adapted with permission from ref.153, ACS. Part b is adapted with permission from ref.164, Wiley-VCH. Part c is adapted with permission from ref.165, ACS.

References

  1. 1.

    Gauglitz, G. & Moore, D. S. (eds.) Handbook of Spectroscopy: Second, Enlarged Edition (Wiley-VCH, 2014).

  2. 2.

    Claridge, T. D. W. High-Resolution NMR Techniques in Organic Chemistry 3rd edn (Elsevier, 2016).

  3. 3.

    Lindon, J., Tranter, G. E. & Koppenaal, D. (eds.) Encyclopedia of Spectroscopy and Spectrometry 3rd edn (Academic Press, 2016).

  4. 4.

    Akitt, J. W. & Mann, B. E. NMR and Chemistry: An Introduction to Modern NMR Spectroscopy 4th edn (CRC Press, 2000).

  5. 5.

    Pienack, N. & Bensch, W. In-situ monitoring of the formation of crystalline solids. Angew. Chem. Int. Ed. 50, 2014–2034 (2011).

  6. 6.

    Zaera, F. Probing liquid/solid interfaces at the molecular level. Chem. Rev. 112, 2920–2986 (2012).

  7. 7.

    Hansen, T. C. & Kohlmann, H. Chemical reactions followed by in situ neutron powder diffraction. Z. Anorg. Allg. Chem. 640, 3044–3063 (2014).

  8. 8.

    Hodoroaba, V.-D., Rades, S. & Unger, W. E. S. Inspection of morphology and elemental imaging of single nanoparticles by high-resolution SEM/EDX in transmission mode. Surf. Interface Anal. 46, 945–948 (2014).

  9. 9.

    Rades, S. et al. High-resolution imaging with SEM/T-SEM, EDX and SAM as a combined methodical approach for morphological and elemental analyses of single engineered nanoparticles. RSC Adv. 4, 49577–49587 (2014).

  10. 10.

    Mourdikoudis, S., Pallares, R. M. & Thanh, N. T. K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10, 12871–12934 (2018).

  11. 11.

    Stach, E. A. Real-time observations with electron microscopy. Mater. Today 11, 50–58 (2008).

  12. 12.

    de Jonge, N. & Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695–704 (2011).

  13. 13.

    Chen, X., Li, C. & Cao, H. Recent developments of the in situ wet cell technology for transmission electron microscopies. Nanoscale 7, 4811–4819 (2015).

  14. 14.

    Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 350, aaa9886 (2015).

  15. 15.

    Wang, C.-M., Liao, H.-G. & Ross, F. M. Observation of materials processes in liquids by electron microscopy. MRS Bull. 40, 46–52 (2015).

  16. 16.

    Bañares, M. A. Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal. Today 100, 71–77 (2005).

  17. 17.

    Guerrero-Pérez, M. O. & Bañares, M. A. From conventional in situ to operando studies in Raman spectroscopy. Catal. Today 113, 48–57 (2006).

  18. 18.

    Weker, J. N. & Toney, M. F. Emerging in situ and operando nanoscale X-ray imaging techniques for energy storage materials. Adv. Funct. Mater. 25, 1622–1637 (2015).

  19. 19.

    Botos, A. et al. Carbon nanotubes as electrically active nanoreactors for multi-step inorganic synthesis: sequential transformations of molecules to nanoclusters and nanoclusters to nanoribbons. J. Am. Chem. Soc. 138, 8175–8183 (2016).

  20. 20.

    Miners, S. A., Rance, G. A. & Khlobystov, A. N. Chemical reactions confined within carbon nanotubes. Chem. Soc. Rev. 45, 4727–4746 (2016).

  21. 21.

    Skowron, S. T. et al. Chemical reactions of molecules promoted and simultaneously imaged by the electron beam in transmission electron microscopy. Acc. Chem. Res. 50, 1797–1807 (2017).

  22. 22.

    Zhao, H. et al. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotechnol. 11, 82–88 (2016).

  23. 23.

    Samanta, D. et al. Reversible chromism of spiropyran in the cavity of a flexible coordination cage. Nat. Commun. 9, 641 (2018).

  24. 24.

    Großmann, D., Dreier, A., Lehmann, C. W. & Grünert, W. Encapsulation of copper and zinc oxide nanoparticles inside small diameter carbon nanotubes. Microporous Mesoporous Mater. 202, 189–197 (2015).

  25. 25.

    Crozier, P. A. & Chenna, S. In situ analysis of gas composition by electron energy-loss spectroscopy for environmental transmission electron microscopy. Ultramicroscopy 111, 177–185 (2011).

  26. 26.

    Miller, B. K. & Crozier, P. A. Analysis of catalytic gas products using electron energy-loss spectroscopy and residual gas analysis for operando transmission electron microscopy. Microsc. Microanal. 20, 815–824 (2014).

  27. 27.

    Colby, R., Alsem, D. H., Liyu, A. & Kabius, B. A method for measuring the local gas pressure within a gas-flow stage in situ in the transmission electron microscope. Ultramicroscopy 153, 55–60 (2015).

  28. 28.

    Katsukura, H., Miyata, T., Shirai, M., Matsumoto, H. & Mizoguchi, T. Estimation of the molecular vibration of gases using electron microscopy. Sci. Rep. 7, 16434 (2017).

  29. 29.

    Kuwabata, S., Kongkanand, A., Oyamatsu, D. & Torimoto, T. Observation of ionic liquid by scanning electron microscope. Chem. Lett. 35, 600–601 (2006).

  30. 30.

    Plechkova, N. V. & Seddon, K. R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008).

  31. 31.

    Patel, D. D. & Lee, J.-M. Applications of ionic liquids. Chem. Rec. 12, 329–355 (2012).

  32. 32.

    Azov, V. A., Egorova, K. S., Seitkalieva, M. M., Kashin, A. S. & Ananikov, V. P. “Solvent-in-salt” systems for design of new materials in chemistry, biology and energy research. Chem. Soc. Rev. 47, 1250–1284 (2018).

  33. 33.

    Stokes, D. J. Recent advances in electron imaging, image interpretation and applications: environmental scanning electron microscopy. Philos. Trans. R. Soc. A 361, 2771–2787 (2003).

  34. 34.

    Bogner, A., Jouneau, P.-H., Thollet, G., Basset, D. & Gauthier, C. A history of scanning electron microscopy developments: Towards “wet-STEM” imaging. Micron 38, 390–401 (2007).

  35. 35.

    Kirk, S. E., Skepper, J. N. & Donald, A. M. Application of environmental scanning electron microscopy to determine biological surface structure. J. Microsc. 233, 205–224 (2009).

  36. 36.

    Gai, P. L., Sharma, R. & Ross, F. M. Environmental (S)TEM studies of gas–liquid–solid interactions under reaction conditions. MRS Bull. 33, 107–114 (2008).

  37. 37.

    Tao, F. & Salmeron, M. In situ studies of chemistry and structure of materials in reactive environments. Science 331, 171–174 (2011).

  38. 38.

    Yang, J. C., Small, M. W., Grieshaber, R. V. & Nuzzo, R. G. Recent developments and applications of electron microscopy to heterogeneous catalysis. Chem. Soc. Rev. 41, 8179–8194 (2012).

  39. 39.

    Grunwaldt, J.-D., Wagner, J. B. & Dunin-Borkowski, R. E. Imaging catalysts at work: a hierarchical approach from the macro- to the meso- and nano-scale. ChemCatChem 5, 62–80 (2013).

  40. 40.

    Hansen, T. W. & Wagner, J. B. Catalysts under controlled atmospheres in the transmission electron microscope. ACS Catal. 4, 1673–1685 (2014).

  41. 41.

    Su, D. S., Zhang, B. & Schlögl, R. Electron microscopy of solid catalysts — transforming from a challenge to a toolbox. Chem. Rev. 115, 2818–2882 (2015).

  42. 42.

    Tao, F. & Crozier, P. A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 116, 3487–3539 (2016).

  43. 43.

    Dou, J. et al. Operando chemistry of catalyst surfaces during catalysis. Chem. Soc. Rev. 46, 2001–2027 (2017).

  44. 44.

    Jiang, Y. et al. Recent advances in gas-involved in situ studies via transmission electron microscopy. Nano Res. 11, 42–67 (2018).

  45. 45.

    Abrams, I. M. & McBain, J. W. A closed cell for electron microscopy. J. Appl. Phys. 15, 607–609 (1944).

  46. 46.

    Fullam, E. F. A closed wet cell for the electron microscope. Rev. Sci. Instrum. 43, 245–247 (1972).

  47. 47.

    Woehl, T. J. et al. Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 127, 53–63 (2013).

  48. 48.

    Schneider, N. M. et al. Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 118, 22373–22382 (2014).

  49. 49.

    Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P. & Dahmen, U. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 9, 2460–2465 (2009).

  50. 50.

    de Jonge, N., Houben, L., Dunin-Borkowski, R. E. & Ross, F. M. Resolution and aberration correction in liquid cell transmission electron microscopy. Nat. Rev. Mater. 4, 61–78 (2019).

  51. 51.

    Naguib, N. et al. Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett. 4, 2237–2243 (2004).

  52. 52.

    Rossi, M. P. et al. Environmental scanning electron microscopy study of water in carbon nanopipes. Nano Lett. 4, 989–993 (2004).

  53. 53.

    Mirsaidov, U. et al. Scrolling graphene into nanofluidic channels. Lab Chip 13, 2874–2878 (2013).

  54. 54.

    Bhattacharya, D., Bosman, M., Mokkapati, V. R. S. S., Leong, F. Y. & Mirsaidov, U. Nucleation dynamics of water nanodroplets. Microsc. Microanal. 20, 407–415 (2014).

  55. 55.

    Nishijima, K., Yamasaki, J., Orihara, H. & Tanaka, N. Development of microcapsules for electron microscopy and their application to dynamical observation of liquid crystals in transmission electron microscopy. Nanotechnology 15, S329–S332 (2004).

  56. 56.

    Yuk, J. M. et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 61–64 (2012).

  57. 57.

    Sasaki, Y., Kitaura, R., Yuk, J. M., Zettl, A. & Shinohara, H. Efficient preparation of graphene liquid cell utilizing direct transfer with large-area well-stitched graphene. Chem. Phys. Lett. 650, 107–112 (2016).

  58. 58.

    Textor, M. & de Jonge, N. Strategies for preparing graphene liquid cells for transmission electron microscopy. Nano Lett. 18, 3313–3321 (2018).

  59. 59.

    Rasool, H., Dunn, G., Fathalizadeh, A. & Zettl, A. Graphene-sealed Si/SiN cavities for high-resolution in situ electron microscopy of nano-confined solutions. Phys. Status Solidi 253, 2351–2354 (2016).

  60. 60.

    Wadell, C. et al. Nanocuvette: a functional ultrathin liquid container for transmission electron microscopy. ACS Nano 11, 1264–1272 (2017).

  61. 61.

    Kelly, D. J. et al. Nanometer resolution elemental mapping in graphene-based TEM liquid cells. Nano Lett. 18, 1168–1174 (2018).

  62. 62.

    Thiberge, S., Zik, O. & Moses, E. An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy. Rev. Sci. Instrum. 75, 2280–2289 (2004).

  63. 63.

    Grogan, J. M. & Bau, H. H. The nanoaquarium: a platform for in situ transmission electron microscopy in liquid media. J. Microelectromech. Syst. 19, 885–894 (2010).

  64. 64.

    Ring, E. A. & de Jonge, N. Microfluidic system for transmission electron microscopy. Microsc. Microanal. 16, 622–629 (2010).

  65. 65.

    Dwyer, J. R. & Harb, M. Through a window, brightly: a review of selected nanofabricated thin-film platforms for spectroscopy, imaging, and detection. Appl. Spectrosc. 71, 2051–2075 (2017).

  66. 66.

    Zheng, H. et al. Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309–1312 (2009).

  67. 67.

    Liao, H. G. et al. Facet development during platinum nanocube growth. Science 345, 916–919 (2014).

  68. 68.

    Ievlev, A. V. et al. Quantitative description of crystal nucleation and growth from in situ liquid scanning transmission electron microscopy. ACS Nano 9, 11784–11791 (2015).

  69. 69.

    Jeong, M., Yuk, J. M. & Lee, J. Y. Observation of surface atoms during platinum nanocrystal growth by monomer attachment. Chem. Mater. 27, 3200–3202 (2015).

  70. 70.

    Kolmakova, N. & Kolmakov, A. Scanning electron microscopy for in situ monitoring of semiconductor−liquid interfacial processes: electron assisted reduction of Ag ions from aqueous solution on the surface of TiO2 rutile nanowire. J. Phys. Chem. C 114, 17233–17237 (2010).

  71. 71.

    Woehl, T. J., Evans, J. E., Arslan, I., Ristenpart, W. D. & Browning, N. D. Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6, 8599–8610 (2012).

  72. 72.

    Ahn, T.-Y., Hong, S.-P., Kim, S.-I. & Kim, Y.-W. In situ liquid-cell transmission electron microscopy for direct observation of concentration-dependent growth and dissolution of silver nanoparticles. RSC Adv. 5, 82342–82345 (2015).

  73. 73.

    Ge, M., Lu, M., Chu, Y. & Xin, H. Anomalous growth rate of Ag nanocrystals revealed by in situ STEM. Sci. Rep. 7, 16420 (2017).

  74. 74.

    Kraus, T. & de Jonge, N. Dendritic gold nanowire growth observed in liquid with transmission electron microscopy. Langmuir 29, 8427–8432 (2013).

  75. 75.

    Chen, Y.-T. et al. Electron beam manipulation of gold nanoparticles external to the beam. RSC Adv. 4, 31652–31656 (2014).

  76. 76.

    Lu, Y., Wang, K., Chen, F.-R., Zhang, W. & Sui, M. L. Extracting nano-gold from HAuCl4 solution manipulated with electrons. Phys. Chem. Chem. Phys. 18, 30079–30085 (2016).

  77. 77.

    Zhang, Y., Keller, D., Rossell, M. D. & Erni, R. Formation of Au nanoparticles in liquid cell transmission electron microscopy: from a systematic study to engineered nanostructures. Chem. Mater. 29, 10518–10525 (2017).

  78. 78.

    Ahmad, N., Le Bouar, Y., Ricolleau, C. & Alloyeau, D. Growth of dendritic nanostructures by liquid-cell transmission electron microscopy: a reflection of the electron-irradiation history. Adv. Struct. Chem. Imag. 2, 9 (2017).

  79. 79.

    Zhu, C. et al. In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles. Nat. Commun. 9, 421 (2018).

  80. 80.

    Zhu, G. et al. In situ study of the growth of two-dimensional palladium dendritic nanostructures using liquid-cell electron microscopy. Chem. Commun. 50, 9447–9450 (2014).

  81. 81.

    Abellan, P. et al. Gaining control over radiolytic synthesis of uniform sub-3-nanometer palladium nanoparticles: use of aromatic liquids in the electron microscope. Langmuir 32, 1468–1477 (2016).

  82. 82.

    Xin, H. L. & Zheng, H. In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett. 12, 1470–1474 (2012).

  83. 83.

    Liao, H.-G., Cui, L., Whitelam, S. & Zheng, H. Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011–1014 (2012).

  84. 84.

    Liao, H. G. & Zheng, H. Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. J. Am. Chem. Soc. 135, 5038–5043 (2013).

  85. 85.

    Bian, B. et al. Growth mechanisms and size control of FePt nanoparticles synthesized using Fe(CO)x (x<5)-oleylamine and platinum(II) acetylacetonate. Nanoscale 5, 2454–2459 (2013).

  86. 86.

    Bresin, M. et al. Electron-beam-induced deposition of bimetallic nanostructures from bulk liquids. Angew. Chem. Int. Ed. 52, 8004–8007 (2013).

  87. 87.

    De Clercq, A. et al. Growth of Pt–Pd nanoparticles studied in situ by HRTEM in a liquid cell. J. Phys. Chem. Lett. 5, 2126–2130 (2014).

  88. 88.

    Konuspayeva, Z. et al. Monitoring in situ the colloidal synthesis of AuRh/TiO2 selective-hydrogenation nanocatalysts. J. Mater. Chem. A 5, 17360–17367 (2017).

  89. 89.

    Jungjohann, K. L., Bliznakov, S., Sutter, P. W., Stach, E. A. & Sutter, E. A. In situ liquid cell electron microscopy of the solution growth of Au–Pd core–shell nanostructures. Nano Lett. 13, 2964–2970 (2013).

  90. 90.

    Weiner, R. G., Chen, D. P., Unocic, R. R. & Skrabalak, S. E. Impact of membrane-induced particle immobilization on seeded growth monitored by in situ liquid scanning transmission electron microscopy. Small 12, 2701–2706 (2016).

  91. 91.

    Tan, S. F. et al. Real-time imaging of the formation of Au–Ag core–shell nanoparticles. J. Am. Chem. Soc. 138, 5190–5193 (2016).

  92. 92.

    Wu, J. et al. Growth of Au on Pt icosahedral nanoparticles revealed by low-dose in situ TEM. Nano Lett. 15, 2711–2715 (2015).

  93. 93.

    Liu, Y., Tai, K. & Dillon, S. J. Growth kinetics and morphological evolution of ZnO precipitated from solution. Chem. Mater. 25, 2927–2933 (2013).

  94. 94.

    Niu, K.-Y., Park, J., Zheng, H. & Alivisatos, A. P. Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett. 13, 5715–5719 (2013).

  95. 95.

    van de Put, M. W. P. et al. Writing silica structures in liquid with scanning transmission electron microscopy. Small 11, 585–590 (2015).

  96. 96.

    Evans, J. E., Jungjohann, K. L., Browning, N. D. & Arslan, I. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 11, 2809–2813 (2011).

  97. 97.

    Bresin, M., Nadimpally, B. R., Nehru, N., Singh, V. P. & Hastings, J. T. Site-specific growth of CdS nanostructures. Nanotechnology 24, 505305 (2013).

  98. 98.

    Smeets, P. J. M., Cho, K. R., Kempen, R. G. E., Sommerdijk, N. A. J. M. & De Yoreo, J. J. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy. Nat. Mater. 14, 394–399 (2015).

  99. 99.

    Abellan, P. et al. The formation of cerium(III) hydroxide nanoparticles by a radiation mediated increase in local pH. RSC Adv. 7, 3831–3837 (2017).

  100. 100.

    Patterson, J. P. et al. Observing the growth of metal–organic frameworks by in situ liquid cell transmission electron microscopy. J. Am. Chem. Soc. 137, 7322–7328 (2015).

  101. 101.

    Sutter, E. et al. In situ liquid-cell electron microscopy of silver–palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun. 5, 4946 (2014).

  102. 102.

    Chee, S. W., Tan, S. F., Baraissov, Z., Bosman, M. & Mirsaidov, U. Direct observation of the nanoscale Kirkendall effect during galvanic replacement reactions. Nat. Commun. 8, 1224 (2017).

  103. 103.

    Wang, W., Dahl, M. & Yin, Y. Hollow nanocrystals through the nanoscale Kirkendall effect. Chem. Mater. 25, 1179–1189 (2013).

  104. 104.

    Yin, Y. et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714 (2004).

  105. 105.

    Hermannsdörfer, J., de Jonge, N. & Verch, A. Electron beam induced chemistry of gold nanoparticles in saline solution. Chem. Commun. 51, 16393–16396 (2015).

  106. 106.

    Ye, X. et al. Single-particle mapping of nonequilibrium nanocrystal transformations. Science 354, 874–877 (2016).

  107. 107.

    Jiang, Y. et al. Probing the oxidative etching induced dissolution of palladium nanocrystals in solution by liquid cell transmission electron microscopy. Micron 97, 22–28 (2017).

  108. 108.

    Shan, H. et al. Nanoscale kinetics of asymmetrical corrosion in core-shell nanoparticles. Nat. Commun. 9, 1011 (2018).

  109. 109.

    Zecˇevic´, J., Hermannsdörfer, J., Schuh, T., de Jong, K. P. & de Jonge, N. Anisotropic shape changes of silica nanoparticles induced in liquid with scanning transmission electron microscopy. Small 13, 1602466 (2017).

  110. 110.

    Asghar, M. S. A., Inkson, B. J. & Möbus, G. Giant radiolytic dissolution rates of aqueous ceria observed in situ by liquid-cell TEM. ChemPhysChem 18, 1247–1251 (2017).

  111. 111.

    Kashin, A. S., Degtyareva, E. S., Eremin, D. B. & Ananikov, V. P. Exploring the performance of nanostructured reagents with organic-group-defined morphology in cross-coupling reaction. Nat. Commun. 9, 2936 (2018).

  112. 112.

    Degtyareva, E. S., Erokhin, K. S., Kashin, A. S. & Ananikov, V. P. Switchable Ni-catalyzed bis-thiolation of acetylene with aryl disulfides as an access to functionalized alkenes and 1,3-dienes. Appl. Catal. A Gen. 571, 170–179 (2019).

  113. 113.

    Ananikov, V. P. & Beletskaya, I. P. Preparation of metal “nanosalts” and their application in catalysis: heterogeneous and homogeneous pathways. Dalton Trans. 40, 4011–4023 (2011).

  114. 114.

    Imanishi, A., Tamura, M. & Kuwabata, S. Formation of Au nanoparticles in an ionic liquid by electron beam irradiation. Chem. Commun. 1775–1777 (2009).

  115. 115.

    Uematsu, T. et al. Atomic resolution imaging of gold nanoparticle generation and growth in ionic liquids. J. Am. Chem. Soc. 136, 13789–13797 (2014).

  116. 116.

    Yoshida, K., Nozaki, T., Hirayama, T. & Tanaka, N. In situ high-resolution transmission electron microscopy of photocatalytic reactions by excited electrons in ionic liquid. J. Electron Microsc. 56, 177–180 (2007).

  117. 117.

    Ishioka, J. et al. In situ direct observation of photocorrosion in ZnO crystals in ionic liquid using a laser-equipped high-voltage electron microscope. AIP Adv. 7, 035220 (2017).

  118. 118.

    Park, J. et al. Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano 6, 2078–2085 (2012).

  119. 119.

    Zhu, G. et al. Atomic resolution liquid-cell transmission electron microscopy investigations of the dynamics of nanoparticles in ultrathin liquids. Chem. Commun. 49, 10944–10946 (2013).

  120. 120.

    Lin, G. et al. Nanodroplet-mediated assembly of platinum nanoparticle rings in solution. Nano Lett. 16, 1092–1096 (2016).

  121. 121.

    Kim, P. Y., Ribbe, A. E., Russell, T. P. & Hoagland, D. A. Visualizing the dynamics of nanoparticles in liquids by scanning electron microscopy. ACS Nano 10, 6257–6264 (2016).

  122. 122.

    Tan, S. F., Chee, S. W., Lin, G. & Mirsaidov, U. Direct observation of interactions between nanoparticles and nanoparticle self-assembly in solution. Acc. Chem. Res. 50, 1303–1312 (2017).

  123. 123.

    Miele, E., Raj, S., Baraissov, Z., Král, P. & Mirsaidov, U. Dynamics of templated assembly of nanoparticle filaments within nanochannels. Adv. Mater. 29, 1702682 (2017).

  124. 124.

    Powers, A. S. et al. Tracking nanoparticle diffusion and interaction during self-assembly in a liquid cell. Nano Lett. 17, 15–20 (2017).

  125. 125.

    Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. & Ross, F. M. Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat. Mater. 2, 532–536 (2003).

  126. 126.

    Radisic, A., Ross, F. M. & Searson, P. C. In situ study of the growth kinetics of individual island electrodeposition of copper. J. Phys. Chem. B 110, 7862–7868 (2006).

  127. 127.

    Radisic, A., Vereecken, P. M., Hannon, J. B., Searson, P. C. & Ross, F. M. Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett. 6, 238–242 (2006).

  128. 128.

    Radisic, A., Vereecken, P. M., Searson, P. C. & Ross, F. M. The morphology and nucleation kinetics of copper islands during electrodeposition. Surf. Sci. 600, 1817–1826 (2006).

  129. 129.

    Schneider, N. M. et al. Nanoscale evolution of interface morphology during electrodeposition. Nat. Commun. 8, 2174 (2017).

  130. 130.

    White, E. R. et al. In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6, 6308–6317 (2012).

  131. 131.

    Park, J. H. et al. Control of growth front evolution by Bi additives during ZnAu electrodeposition. Nano Lett. 18, 1093–1098 (2018).

  132. 132.

    Gu, M. et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 13, 6106–6112 (2013).

  133. 133.

    Sacci, R. L. et al. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. 50, 2104–2107 (2014).

  134. 134.

    Zeng, Z. et al. Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14, 1745–1750 (2014).

  135. 135.

    Mehdi, B. L. et al. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 2168–2173 (2015).

  136. 136.

    Mehdi, B. L. et al. The impact of Li grain size on Coulombic efficiency in Li batteries. Sci. Rep. 6, 34267 (2016).

  137. 137.

    Kushima, A. et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy 32, 271–279 (2017).

  138. 138.

    Kushima, A. et al. Charging/discharging nanomorphology asymmetry and rate-dependent capacity degradation in Li–oxygen battery. Nano Lett. 15, 8260–8265 (2015).

  139. 139.

    Yang, C. et al. Direct observations of the formation and redox-mediator-assisted decomposition of Li2O2 in a liquid-cell Li–O2 microbattery by scanning transmission electron microscopy. Adv. Mater. 29, 1702752 (2017).

  140. 140.

    Liu, P. et al. Operando characterization of cathodic reactions in a liquid-state lithium–oxygen micro-battery by scanning transmission electron microscopy. Sci. Rep. 8, 3134 (2018).

  141. 141.

    Hou, C. et al. Operando observations of RuO2 catalyzed Li2O2 formation and decomposition in a Li-O2 micro-battery. Nano Energy 47, 427–433 (2018).

  142. 142.

    Lutz, L. et al. Operando monitoring of the solution-mediated discharge and charge processes in a Na–O2 battery using liquid-electrochemical transmission electron microscopy. Nano Lett. 18, 1280–1289 (2018).

  143. 143.

    Kuwabata, S., Torimoto, T., Imanishi, A. & Tsuda, T. Introduction of ionic liquid to vacuum conditions for development of material productions and analyses. Electrochem. 80, 498–503 (2012).

  144. 144.

    Arimoto, S., Oyamatsu, D., Torimoto, T. & Kuwabata, S. Development of in situ electrochemical scanning electron microscopy with ionic liquids as electrolytes. ChemPhysChem 9, 763–767 (2008).

  145. 145.

    Arimoto, S., Kageyama, H., Torimoto, T. & Kuwabata, S. Development of in situ scanning electron microscope system for real time observation of metal deposition from ionic liquid. Electrochem. Commun. 10, 1901–1904 (2008).

  146. 146.

    Hsieh, Y.-T., Tsuda, T. & Kuwabata, S. SEM as a facile tool for real-time monitoring of microcrystal growth during electrodeposition: the merit of ionic liquids. Anal. Chem. 89, 7249–7254 (2017).

  147. 147.

    Wang, C. M. et al. In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: challenges and opportunities. J. Mater. Res. 25, 1541–1547 (2010).

  148. 148.

    Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

  149. 149.

    Chen, D., Indris, S., Schulz, M., Gamer, B. & Mönig, R. In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid. J. Power Sources 196, 6382–6387 (2011).

  150. 150.

    Ghassemi, H., Au, M., Chen, N., Heiden, P. A. & Yassar, R. S. Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery. Appl. Phys. Lett. 99, 123113 (2011).

  151. 151.

    Tsuda, T. et al. In situ SEM observation of the Si negative electrode reaction in an ionic-liquid-based lithium-ion secondary battery. Microscopy 64, 159–168 (2015).

  152. 152.

    Tsuda, T. et al. In situ electron microscopy and X-ray photoelectron spectroscopy for high capacity anodes in next-generation ionic liquid-based Li batteries. Electrochim. Acta 279, 136–142 (2018).

  153. 153.

    Proetto, M. T. et al. Dynamics of soft nanomaterials captured by transmission electron microscopy in liquid water. J. Am. Chem. Soc. 136, 1162–1165 (2014).

  154. 154.

    Li, C. et al. Dynamics of amphiphilic block copolymers in an aqueous solution: direct imaging of micelle formation and nanoparticle encapsulation. Nanoscale 11, 2299–2305 (2019).

  155. 155.

    Ianiro, A. et al. Liquid–liquid phase separation during amphiphilic self-assembly. Nat. Chem. 11, 320–328 (2019).

  156. 156.

    Le Ferrand, H., Duchamp, M., Gabryelczyk, B., Cai, H. & Miserez, A. Time-resolved observations of liquid–liquid phase separation at the nanoscale using in situ liquid transmission electron microscopy. J. Am. Chem. Soc. 141, 7202–7210 (2019).

  157. 157.

    Ribeiro, S. S., Samanta, N., Ebbinghaus, S. & Marcos, J. C. The synergic effect of water and biomolecules in intracellular phase separation. Nat. Rev. Chem. https://doi.org/10.1038/s41570-019-0120-4 (2019).

  158. 158.

    Mansfeld, U., Hoeppener, S. & Schubert, U. S. Investigating the motion of diblock copolymer assemblies in ionic liquids by in situ electron microscopy. Adv. Mater. 25, 761–765 (2013).

  159. 159.

    Lin, X., Wang, Y., Zeng, Q., Ding, X. & Chen, J. Extraction and separation of proteins by ionic liquid aqueous two-phase system. Analyst 138, 6445–6453 (2013).

  160. 160.

    Chen, J., Wang, Y., Zeng, Q., Ding, X. & Huang, Y. Partition of proteins with extraction in aqueous two-phase system by hydroxyl ammonium-based ionic liquid. Anal. Methods 6, 4067–4076 (2014).

  161. 161.

    Abdolrahimi, S., Nasernejad, B. & Pazuki, G. Influence of process variables on extraction of Cefalexin in a novel biocompatible ionic liquid based-aqueous two phase system. Phys. Chem. Chem. Phys. 17, 655–669 (2015).

  162. 162.

    Seitkalieva, M. M., Kashin, A. S., Egorova, K. S. & Ananikov, V. P. Micro-scale processes occurring in ionic liquid–water phases during extraction. Sep. Purif. Technol. 196, 318–326 (2018).

  163. 163.

    Seitkalieva, M. M., Kashin, A. S., Egorova, K. S. & Ananikov, V. P. Ionic liquids as tunable toxicity storage media for sustainable chemical waste management. ACS Sustain. Chem. Eng. 6, 719–726 (2018).

  164. 164.

    Kashin, A. S., Galkin, K. I., Khokhlova, E. A. & Ananikov, V. P. Direct observation of self-organized water-containing structures in the liquid phase and their influence on 5-(hydroxymethyl)furfural formation in ionic liquids. Angew. Chem. Int. Ed. 55, 2161–2166 (2016).

  165. 165.

    Smith, B. J. et al. Colloidal covalent organic frameworks. ACS Cent. Sci. 3, 58–65 (2017).

  166. 166.

    Touve, M. A. et al. Polymerization-induced self-assembly of micelles observed by liquid cell transmission electron microscopy. ACS Cent. Sci. 4, 543–547 (2018).

  167. 167.

    Tsuda, T. et al. SEM observation of wet biological specimens pretreated with room-temperature ionic liquid. ChemBioChem 12, 2547–2550 (2011).

  168. 168.

    Kawai, K., Kaneko, K., Kawakami, H., Narushima, T. & Yonezawa, T. Simple pretreatment of non-conductive small hydrous bio-samples with choline-type ionic liquid and membrane filter for microsample mounting. Colloids Surf. B Biointerfaces 102, 9–12 (2013).

  169. 169.

    Takahashi, C., Shirai, T. & Fuji, M. FE-SEM observation, and mechanism of interaction of wet agar gel in various swelling conditions using hydrophilic ionic liquid. Mater. Chem. Phys. 136, 816–822 (2012).

  170. 170.

    Takahashi, C., Shirai, T. & Fuji, M. Observation of interactions between hydrophilic ionic liquid and water on wet agar gels by FE-SEM and its mechanism. Mater. Chem. Phys. 133, 565–572 (2012).

  171. 171.

    Peckys, D. B. & de Jonge, N. Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy. Nano Lett. 11, 1733–1738 (2011).

  172. 172.

    Chen, Q. et al. 3D motion of DNA–Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett. 13, 4556–4561 (2013).

  173. 173.

    Peckys, D. B. & de Jonge, N. Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells. Microsc. Microanal. 20, 346–365 (2014).

  174. 174.

    Peckys, D. B., Mazur, P., Gould, K. L. & de Jonge, N. Fully hydrated yeast cells imaged with electron microscopy. Biophys. J. 100, 2522–2529 (2011).

  175. 175.

    de Jonge, N. & Peckys, D. B. Live cell electron microscopy is probably impossible. ACS Nano 10, 9061–9063 (2016).

Download references

Author information

All authors contributed equally to the preparation of the manuscript.

Correspondence to Valentine P. Ananikov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kashin, A.S., Ananikov, V.P. Monitoring chemical reactions in liquid media using electron microscopy. Nat Rev Chem 3, 624–637 (2019). https://doi.org/10.1038/s41570-019-0133-z

Download citation