Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Methods for detection of cytosine and thymine modifications in DNA

Abstract

Methylation of cytosine at the 5-position is a common epigenetic modification in mammalian DNA and plays an important role in regulating gene expression. Oxidized derivatives of 5-methylcytosine were discovered recently, and some of these oxidized derivatives, in addition to being intermediates in an active demethylation pathway, might also function as epigenetic modifications. Oxidized derivatives of thymine are known to be products of DNA damage, although evidence exists that the oxidized thymine derivative 5-hydroxymethyluracil might have an epigenetic role. There is a pressing need to learn more about these modifications, as epigenetic modifications have roles in development and in diseases, including cancer. This emerging area of research requires highly accurate and sequence-specific methods for the detection of cytosine and thymine modifications in DNA. In this Review, we introduce the biochemistry of cytosine and thymine modifications and discuss established detection methods, such as bisulfite sequencing and its modifications, as well as newer methods, which have been developed to overcome the substantial obstacles associated with studying these modifications in genomic DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Active demethylation of cytosine.
Fig. 2: Oxidation of thymine.
Fig. 3: Detection of 5-methylcytosine using N-halogeno-N-sodiobenzenesulfonamide reagents.
Fig. 4: Chemical labelling methods for selective detection of 5-formylcytosine in DNA.
Fig. 5: Oligonucleotide probes for the detection of cytosine modifications.

Adapted with permission from ref.176, RSC.

Fig. 6: Chemical labelling methods for the detection of 5-formyluracil.

Similar content being viewed by others

References

  1. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Gen. 33, 245–254 (2003).

    CAS  Google Scholar 

  2. Raiber, E.-A., Hardisty, R., van Delft, P. & Balasubramanian, S. Mapping and elucidating the function of modified bases in DNA. Nat. Rev. Chem. 1, 69 (2017).

    CAS  Google Scholar 

  3. Kinnaird, A., Zhao, S., Wellen, K. E. & Michelakis, E. D. Metabolic control of epigenetics in cancer. Nat. Rev. Cancer 16, 694–707 (2016).

    CAS  PubMed  Google Scholar 

  4. Jakovcevski, M. & Akbarian, S. Epigenetic mechanisms in neurodevelopmental and neurodegenerative disease. Nat. Med. 18, 1194–1204 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Xie, P., Zang, L.-Q., Li, X.-K. & Shu, Q. An epigenetic view of developmental diseases: new targets, new therapies. World J. Pediatr. 12, 291–297 (2016).

    CAS  PubMed  Google Scholar 

  6. Thomson, J. P. et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

    CAS  PubMed  Google Scholar 

  8. Cook, P. C. et al. A dominant role for the methyl-CpG-binding protein Mbd2 in controlling Th2 induction by dendritic cells. Nat. Commun. 6, 6920 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Saxonov, S., Berg, P. & Brutlag, D. L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl Acad. Sci. USA 103, 1412–1417 (2006).

    CAS  PubMed  Google Scholar 

  11. Esteller, M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21, 5427–5440 (2002).

    CAS  PubMed  Google Scholar 

  12. Jordheim, L. P., Durantel, D., Zoulim, F. & Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 12, 447–464 (2013).

    CAS  PubMed  Google Scholar 

  13. Yoo, J., Kim, H., Aksimentiev, A. & Ha, T. Direct evidence for sequence-dependent attraction between double-stranded DNA controlled by methylation. Nat. Commun. 7, 11045 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu, L. et al. Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155, 1545–1555 (2013).

    CAS  PubMed  Google Scholar 

  15. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. He, Y.-F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Iwan, K. et al. 5-Formylcytosine to cytosine conversion by C-C bond cleavage in vivo. Nat. Chem. Biol. 14, 72–78 (2018). Using isotope labelling and ultra-high-performance liquid chromatography coupled to tandem mass spectrometry, this study provides evidence of the direct deformylation of 5fC in mouse ESCs.

    CAS  PubMed  Google Scholar 

  18. Schiesser, S. et al. Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew. Chemie Int. Ed. 51, 6516–6520 (2012).

    CAS  Google Scholar 

  19. Nabel, C. S. et al. AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat. Chem. Biol. 8, 751–758 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cortellino, S. et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146, 67–79 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo, J. U., Su, Y., Zhong, C., Ming, G. & Song, H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kubik, G. & Summerer, D. Deciphering epigenetic cytosine modifications by direct molecular recognition. ACS Chem. Biol. 10, 1580–1589 (2015).

    CAS  PubMed  Google Scholar 

  23. Szulik, M. W. et al. Differential stabilities and sequence-dependent base pair opening dynamics of watson–crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine. Biochemistry 54, 1294–1305 (2015). This is a study on the effect of 5hmC, 5fC and 5caC on duplex structure, which also provides evidence for intramolecular hydrogen bonding in 5fC and 5caC.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell. Biol. 14, 341–356 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pastor, W., Pape, U., Huang, Y. & Henderson, H. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473, 394–397 (2011). This study describes the development of the GLIB method and an immunoprecipitation method for the study of 5hmC and the use of these methods to gain insight into the role of 5hmC in the regulation of transcription.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Su, M. et al. 5-Formylcytosine could be a semipermanent base in specific genome sites. Angew. Chem. Int. Ed. 55, 11797–11800 (2016). This paper reports the first example of a crosslinking oligonucleotide probe for the detection of 5fC and the use of this method to study the excision of 5fC by TDG.

    CAS  Google Scholar 

  28. Song, C. X. et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153, 678–691 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Iurlaro, M. et al. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 14, R119 (2013).

    PubMed  PubMed Central  Google Scholar 

  30. Li, F. et al. 5-Formylcytosine yields DNA–protein cross-links in nucleosome core particles. J. Am. Chem. Soc. 139, 10617–10620 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ji, S., Shao, H., Han, Q., Seiler, C. L. & Tretyakova, N. Y. Reversible DNA–protein cross-linking at epigenetic DNA marks. Angew. Chemie Int. Ed. 56, 14130–14134 (2017).

    CAS  Google Scholar 

  32. Kellinger, M. W. et al. 5-Formyl- and 5-carboxyl-cytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 19, 831–833 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lusic, H. et al. Synthesis and investigation of the 5-formylcytidine modified, anticodon stem and loop of the human mitochondrial tRNAMet. Nucleic Acids Res. 36, 6548–6557 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hashimoto, H., Olanrewaju, Y. O., Zheng, Y., Wilson, G. G. & Zhang, X. Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes Dev. 28, 2304–2313 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Wang, D. et al. MAX is an epigenetic sensor of 5-carboxylcytosine and is altered in multiple myeloma. Nucleic Acids Res. 45, 2396–2407 (2017).

    CAS  PubMed  Google Scholar 

  36. Basanta-Sanchez, M. et al. TET1-mediated oxidation of 5-formylcytosine (5fC) to 5-carboxycytosine (5caC) in RNA. ChemBioChem 18, 72–76 (2017).

    CAS  PubMed  Google Scholar 

  37. Fu, L. et al. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J. Am. Chem. Soc. 136, 11582–11585 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Huber, S. M. et al. Formation and abundance of 5-hydroxymethylcytosine in RNA. ChemBioChem 16, 752–755 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, H.-Y., Xiong, J., Qi, B.-L., Feng, Y.-Q. & Yuan, B.-F. The existence of 5-hydroxymethylcytosine and 5-formylcytosine in both DNA and RNA in mammals. Chem. Commun. 52, 737–740 (2016).

    CAS  Google Scholar 

  40. Delatte, B. et al. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351, 282–285 (2016).

    CAS  PubMed  Google Scholar 

  41. Djuric, Z. et al. Levels of 5-hydroxymethyl-2ʹ-deoxyuridine in DNA from blood of women scheduled for breast biopsy. Cancer Epidemiol. Biomarkers Prev. 10, 147–149 (2001).

    CAS  PubMed  Google Scholar 

  42. Klungland, A. et al. 5-Formyluracil and its nucleoside derivatives confer toxicity and mutagenicity to mammalian cells by interfering with normal RNA and DNA metabolism. Toxicol. Lett. 119, 71–78 (2001).

    CAS  PubMed  Google Scholar 

  43. Pfaffeneder, T. et al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat. Chem. Biol. 10, 574–581 (2014). This study shows that 5hmU is produced by the oxidation of thymine by TET enzymes and that 5hmU influences the binding of some transcription factors to DNA.

    CAS  PubMed  Google Scholar 

  44. Globisch, D. et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLOS One 5, e15367 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wagner, M. et al. Age-dependent levels of 5-methyl-, 5-hydroxymethyl-, and 5-formylcytosine in human and mouse brain tissues. Angew. Chem. Int. Ed. 54, 12511–12514 (2015).

    CAS  Google Scholar 

  46. Gama-Sosa, M. A. et al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 11, 6883–6894 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pfaffeneder, T. et al. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew. Chemie Int. Ed. 50, 7008–7012 (2011).

    CAS  Google Scholar 

  48. Friso, S., Choi, S.-W., Dolnikowski, G. G. & Selhub, J. A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal. Chem. 74, 4526–4531 (2002).

    CAS  PubMed  Google Scholar 

  49. Münzel, M. et al. Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew. Chem. Int. Ed. 49, 5375–5377 (2010).

    Google Scholar 

  50. Tang, Y., Zheng, S.-J., Qi, C.-B., Feng, Y.-Q. & Yuan, B.-F. Sensitive and simultaneous determination of 5-methylcytosine and its oxidation products in genomic DNA by chemical derivatization coupled with liquid chromatography-tandem mass spectrometry analysis. Anal. Chem. 87, 3445–3452 (2015).

    CAS  PubMed  Google Scholar 

  51. Zeng, H. et al. Formation and determination of endogenous methylated nucleotides in mammals by chemical labeling coupled with mass spectrometry analysis. Anal. Chem. 89, 4153–4160 (2017).

    CAS  PubMed  Google Scholar 

  52. Xiong, J. et al. Heavy metals induce decline of derivatives of 5-methycytosine in both DNA and RNA of stem cells. ACS Chem. Biol. 12, 1636–1643 (2017).

    CAS  PubMed  Google Scholar 

  53. Yuan, B.-F. & Feng, Y.-Q. Recent advances in the analysis of 5-methylcytosine and its oxidation products. TrAC Trends Anal. Chem. 54, 24–35 (2014).

    CAS  Google Scholar 

  54. Tang, Y. et al. Determination of oxidation products of 5-methylcytosine in plants by chemical derivatization coupled with liquid chromatography/tandem mass spectrometry analysis. Anal. Chem. 86, 7764–7772 (2014).

    CAS  PubMed  Google Scholar 

  55. Jiang, H.-P. et al. Determination of formylated DNA and RNA by chemical labeling combined with mass spectrometry analysis. Anal. Chim. Acta 981, 1–10 (2017).

    CAS  PubMed  Google Scholar 

  56. Tian, T., Shaoru, W., Jianguo, W. U. & Xiang, Z. Review: advances in methodology of DNA methylation assay. Sci. China Chem. 54, 1233–1243 (2011).

    CAS  Google Scholar 

  57. Fraga, F. M., Rodriguez, R. & Cañal, M. J. Rapid quantification of DNA methylation by high performance capillary electrophoresis. Electrophoresis 21, 2990–2994 (2000).

    CAS  PubMed  Google Scholar 

  58. Booth, M. J., Raiber, E. & Balasubramanian, S. Chemical methods for decoding cytosine modifications in DNA. Chem. Rev. 115, 2240–2254 (2015).

    CAS  PubMed  Google Scholar 

  59. Wang, T. et al. Application of N-halogeno-N-sodiobenzenesulfonamide reagents to the selective detection of 5-methylcytosine in DNA sequences. J. Am. Chem. Soc. 135, 1240–1243 (2013).

    CAS  PubMed  Google Scholar 

  60. Wang, Y. et al. Highly selective detection of 5-methylcytosine in genomic DNA based on asymmetric PCR and specific DNA damaging reagents. Anal. Chem. 88, 3348–3353 (2016).

    CAS  PubMed  Google Scholar 

  61. Matsushita, T., Moriyama, Y., Nagae, G., Aburatani, H. & Okamoto, A. DNA-friendly Cu(ii)/TEMPO-catalyzed 5-hydroxymethylcytosine-specific oxidation. Chem. Commun. 53, 5756–5759 (2017).

    CAS  Google Scholar 

  62. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA 89, 1827–1831 (1992).

    CAS  PubMed  Google Scholar 

  63. Li, Y. & Tollefsbol, T. O. DNA methylation detection: bisulfite genomic sequencing analysis. Methods Mol. Biol. 791, 11–21 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang, Y. et al. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLOS One 5, e8888 (2010).

    PubMed  PubMed Central  Google Scholar 

  65. Booth, M. J., Marsico, G., Bachman, M., Beraldi, D. & Balasubramanian, S. Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Nat. Chem. 6, 435–440 (2014). This paper describes the development of redBS-seq for the detection of 5fC and the use of redBS-seq in parallel with oxBS-seq to map 5mC, 5hmC and 5fC in mouse ESCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fukuzawa, S., Takahashi, S., Tachibana, K., Tajima, S. & Suetake, I. Simple and accurate single base resolution analysis of 5-hydroxymethylcytosine by catalytic oxidative bisulfite sequencing using micelle incarcerated oxidants. Bioorg. Med. Chem. 24, 4254–4262 (2016).

    CAS  PubMed  Google Scholar 

  67. Yu, M. et al. Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat. Protoc. 7, 2159–2170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lu, X. et al. Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. J. Am. Chem. Soc. 135, 9315–9317 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lu, X. et al. Base-resolution maps of 5-formylcytosine and 5-carboxylcytosine reveal genome-wide DNA demethylation dynamics. Cell Res. 25, 386–389 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Neri, F. et al. Single-base resolution analysis of 5-formyl and 5-carboxyl cytosine reveals promoter DNA methylation dynamics. Cell Rep. 10, 674–683 (2015).

    CAS  Google Scholar 

  72. Wu, H., Wu, X., Shen, L. & Zhang, Y. Single-base resolution analysis of active DNA demethylation using methylase-assisted bisulfite sequencing. Nat. Biotechnol. 32, 1231–1240 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Grunau, C., Clark, S. J. & Rosenthal, A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 29, e65 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gravina, S., Dong, X., Yu, B. & Vijg, J. Single-cell genome-wide bisulfite sequencing uncovers extensive heterogeneity in the mouse liver methylome. Genome Biol. 17, 150 (2016).

    PubMed  PubMed Central  Google Scholar 

  75. Farlik, M. et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 10, 1386–1397 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Clark, S. J. et al. Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat. Protoc. 12, 534–547 (2017).

    CAS  PubMed  Google Scholar 

  78. Genereux, D. P., Johnson, W. C., Burden, A. F., Stöger, R. & Laird, C. D. Errors in the bisulfite conversion of DNA: modulating inappropriate- and failed-conversion frequencies. Nucleic Acids Res. 36, e150 (2008).

    PubMed  PubMed Central  Google Scholar 

  79. Clark, S. J., Statham, A., Stirzaker, C., Molloy, P. L. & Frommer, M. DNA methylation: bisulphite modification and analysis. Nat. Protoc. 1, 2353–2364 (2006).

    CAS  PubMed  Google Scholar 

  80. Tusnády, G. E., Simon, I., Váradi, A. & Arányi, T. BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Res. 33, e9 (2005).

    PubMed  PubMed Central  Google Scholar 

  81. Xiong, Z. & Laird, P. W. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 25, 2532–2534 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Herman, J. G., Graff, J. R., Myöhänen, S., Nelkin, B. D. & Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA 93, 9821–9826 (1996).

    CAS  PubMed  Google Scholar 

  83. Bibikova, M. et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 16, 383–393 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Olek, A., Oswald, J. & Walter, J. A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res. 24, 5064–5066 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Eads, C. A. et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 28, e32 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Gonzalgo, M. L. & Jones, P. A. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 25, 2529–2531 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Okamoto, A., Tainaka, K. & Kamei, T. Sequence-selective osmium oxidation of DNA: efficient distinction between 5-methylcytosine and cytosine. Org. Biomol. Chem. 4, 1638–1640 (2006).

    CAS  PubMed  Google Scholar 

  88. Tanaka, K., Tainaka, K., Kamei, T. & Okamoto, A. Direct labeling of 5-methylcytosine and its applications. J. Am. Chem. Soc. 129, 5612–5620 (2007).

    CAS  PubMed  Google Scholar 

  89. Bareyt, S. & Carell, T. Selective detection of 5-methylcytosine sites in DNA. Angew. Chemie Int. Ed. 47, 181–184 (2008).

    CAS  Google Scholar 

  90. Zhang, L. et al. Tet-mediated covalent labelling of 5-methylcytosine for its genome-wide detection and sequencing. Nat. Commun. 4, 1517 (2013).

    PubMed  PubMed Central  Google Scholar 

  91. Kato, D. et al. A nanocarbon film electrode as a platform for exploring DNA methylation. J. Am. Chem. Soc. 130, 3716–3717 (2008).

    CAS  PubMed  Google Scholar 

  92. Wang, P., Mai, Z., Dai, Z. & Zou, X. Investigation of DNA methylation by direct electrocatalytic oxidation. Chem. Commun. 46, 7781–7783 (2010).

    CAS  Google Scholar 

  93. Wang, P., Han, P., Dong, L. & Miao, X. Direct potential resolution and simultaneous detection of cytosine and 5-methylcytosine based on the construction of polypyrrole functionalized graphene nanowall interface. Electrochem. Commun. 61, 36–39 (2015).

    CAS  Google Scholar 

  94. Wang, P., Chen, H., Tian, J., Dai, Z. & Zou, X. Electrochemical evaluation of DNA methylation level based on the stoichiometric relationship between purine and pyrimidine bases. Biosens. Bioelectron. 45, 34–39 (2013).

    CAS  PubMed  Google Scholar 

  95. Yamada, H., Tanabe, K. & Nishimoto, S. Photocurrent response after enzymatic treatment of DNA duplexes immobilized on gold electrodes: electrochemical discrimination of 5-methylcytosine modification in DNA. Org. Biomol. Chem. 6, 272–277 (2008).

    CAS  PubMed  Google Scholar 

  96. Wang, P., Wu, H., Dai, Z. & Zou, X. Picomolar level profiling of the methylation status of the p53 tumor suppressor gene by a label-free electrochemical biosensor. Chem. Commun. 48, 10754–10756 (2012).

    CAS  Google Scholar 

  97. Wu, M., Wang, X., Wang, K. & Guo, Z. Sequence-specific detection of cytosine methylation in DNA via the FRET mechanism between upconversion nanoparticles and gold nanorods. Chem. Commun. 52, 8377–8380 (2016).

    CAS  Google Scholar 

  98. Wang, Z.-Y., Wang, L.-J., Zhang, Q., Tang, B. & Zhang, C.-Y. Single quantum dot-based nanosensor for sensitive detection of 5-methylcytosine at both CpG and non-CpG sites. Chem. Sci. 9, 1330–1338 (2018).

    CAS  PubMed  Google Scholar 

  99. Feng, F., Wang, H., Han, L. & Wang, S. Fluorescent conjugated polyelectrolyte as an indicator for convenient detection of DNA methylation. J. Am. Chem. Soc. 130, 11338–11343 (2008).

    CAS  PubMed  Google Scholar 

  100. Münzel, M., Lercher, L., Müller, M. & Carell, T. Chemical discrimination between dC and 5MedC via their hydroxylamine adducts. Nucleic Acids Res. 38, e192 (2010).

    PubMed  PubMed Central  Google Scholar 

  101. Szwagierczak, A. et al. Characterization of PvuRts1I endonuclease as a tool to investigate genomic 5–hydroxymethylcytosine. Nucleic Acids Res. 39, 5149–5156 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, H. et al. Comparative characterization of the PvuRts1I family of restriction enzymes and their application in mapping genomic 5-hydroxymethylcytosine. Nucleic Acids Res. 39, 9294–9305 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Song, C.-X., Yu, M., Dai, Q. & He, C. Detection of 5-hydroxymethylcytosine in a combined glycosylation restriction analysis (CGRA) using restriction enzyme TaqαI. Bioorg. Med. Chem. Lett. 21, 5075–5077 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Szwagierczak, A., Bultmann, S., Schmidt, C. S., Spada, F. & Leonhardt, H. Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res. 38, e181 (2010).

    PubMed  PubMed Central  Google Scholar 

  105. Song, C.-X. et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29, 68–72 (2011).

    CAS  PubMed  Google Scholar 

  106. Song, C.-X. et al. 5-hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. Cell Res. 27, 1231–1242 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Han, D. et al. A highly sensitive and robust method for genome-wide 5hmC profiling of rare cell populations. Mol. Cell 63, 711–719 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu, Q., Amrutkar, S. M. & Shao, F. Sulfinate based selective labeling of 5-hydroxymethylcytosine: application to biotin pull down assay. Bioconjug. Chem. 29, 245–249 (2018).

    CAS  PubMed  Google Scholar 

  109. Chen, H. Y. et al. Spectroscopic quantification of 5-hydroxymethylcytosine in genomic DNA using boric acid-functionalized nano-microsphere fluorescent probes. Biosens. Bioelectron. 91, 328–333 (2017).

    CAS  PubMed  Google Scholar 

  110. Zhao, C. et al. Boronic acid-mediated polymerase chain reaction for gene- and fragment-specific detection of 5-hydroxymethylcytosine. Nucleic Acids Res. 42, e81 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhou, Y. et al. Electrochemical biosensor for detection of DNA hydroxymethylation based on glycosylation and alkaline phosphatase catalytic signal amplification. Electrochim. Acta 174, 647–652 (2015).

    CAS  Google Scholar 

  112. Yang, Z., Shi, Y., Liao, W., Yin, H. & Ai, S. A novel signal-on photoelectrochemical biosensor for detection of 5-hydroxymethylcytosine based on in situ electron donor producing strategy and all wavelengths of light irradiation. Sens. Actuators B Chem. 223, 621–625 (2016).

    CAS  Google Scholar 

  113. Jiang, W., Lu, Y., Wang, H., Wang, M. & Yin, H. Amperometric biosensor for 5-hydroxymethylcytosine based on enzymatic catalysis and using spherical poly(acrylic acid) brushes. Microchim. Acta 184, 3789–3796 (2017).

    CAS  Google Scholar 

  114. Zhang, Y., Li, Y., Wei, Y., Sun, H. & Wang, H. A sensitive signal-off electrogenerated chemiluminescence biosensing method for the discrimination of DNA hydroxymethylation based on glycosylation modification and signal quenching from ferroceneboronic acid. Talanta 170, 546–551 (2017).

    CAS  PubMed  Google Scholar 

  115. Wei, Y. et al. Electrogenerated chemiluminescence biosensing method for highly sensitive detection of DNA hydroxymethylation: combining glycosylation with Ru(phen)3 2+-assembled graphene oxide. J. Electroanal. Chem. 795, 123–129 (2017).

    CAS  Google Scholar 

  116. Jiang, W., Wu, L., Duan, J., Yin, H. & Ai, S. Ultrasensitive electrochemiluminescence immunosensor for 5-hydroxymethylcytosine detection based on Fe3O4@SiO2 nanoparticles and PAMAM dendrimers. Biosens. Bioelectron. 99, 660–666 (2018).

    CAS  PubMed  Google Scholar 

  117. Yang, Y. et al. Electrochemical signal-amplified detection of 5-methylcytosine and 5-hydroxymethylcytosine in DNA using glucose modification coupled with restriction endonucleases. Analyst 143, 2051–2056 (2018).

    CAS  PubMed  Google Scholar 

  118. Hayashi, G. et al. Base-resolution analysis of 5-hydroxymethylcytosine by one-pot bisulfite-free chemical conversion with peroxotungstate. J. Am. Chem. Soc. 138, 14178–14181 (2016).

    CAS  PubMed  Google Scholar 

  119. Hong, T. et al. Fluorescent strategy based on cationic conjugated polymer fluorescence resonance energy transfer for the quantification of 5-(hydroxymethyl)cytosine in genomic DNA. Anal. Chem. 85, 10797–10802 (2013).

    CAS  PubMed  Google Scholar 

  120. Song, C.-X., Diao, J., Brunger, A. T. & Quake, S. R. Simultaneous single-molecule epigenetic imaging of DNA methylation and hydroxymethylation. Proc. Natl Acad. Sci. USA 113, 4338–4343 (2016).

    CAS  PubMed  Google Scholar 

  121. Raiber, E.-A. et al. Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol. 13, R69 (2012).

    PubMed  PubMed Central  Google Scholar 

  122. Xia, B. et al. Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Nat. Methods 12, 1047–1050 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhu, C. et al. Single-cell 5-formylcytosine landscapes of mammalian early embryos and ESCs at single-base resolution. Cell Stem Cell 20, 720–731.e5 (2017). This paper describes the CLEVER-seq method for the sequence-specific detection of 5fC in single cells and the use of this technique to study the role of 5fC in mouse development.

    CAS  PubMed  Google Scholar 

  124. Wang, S.-R. et al. Cucurbit[7]uril-driven host–guest chemistry for reversible intervention of 5-formylcytosine-targeted biochemical reactions. J. Am. Chem. Soc. 139, 16903–16912 (2017).

    CAS  PubMed  Google Scholar 

  125. Samanta, B., Seikowski, J. & Höbartner, C. Fluorogenic labeling of 5-formylpyrimidine nucleotides in DNA and RNA. Angew. Chemie Int. Ed. 55, 1912–1916 (2016). This study details the use of trimethylindole derivatives for the detection of 5fC and 5fU.

    CAS  Google Scholar 

  126. Liu, C. et al. Fluorogenic labeling and single-base resolution analysis of 5-formylcytosine in DNA. Chem. Sci. 8, 7443–7447 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, Y. et al. Gene specific-loci quantitative and single-base resolution analysis of 5-formylcytosine by compound-mediated polymerase chain reaction. Chem. Sci. 9, 3723–3728 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Xu, L. et al. Pyrene-based quantitative detection of the 5-formylcytosine loci symmetry in the CpG duplex content during TET-dependent demethylation. Angew. Chemie Int. Ed. 53, 11223–11227 (2014).

    CAS  Google Scholar 

  129. Kaput, J. & Sneider, T. W. Methylation of somatic versus germ cell DNAs analyzed by restriction endonuclease digestions. Nucleic Acids Res. 7, 2303–2322 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Mooijman, D., Dey, S. S., Boisset, J. C., Crosetto, N. & Van Oudenaarden, A. Single-cell 5hmC sequencing reveals chromosome-wide cell-to-cell variability and enables lineage reconstruction. Nat. Biotechnol. 34, 852–856 (2016).

    CAS  PubMed  Google Scholar 

  131. Sun, Z. et al. A sensitive approach to map genome-wide 5-hydroxymethylcytosine and 5-formylcytosine at single-base resolution. Mol. Cell 57, 750–761 (2015).

    CAS  PubMed  Google Scholar 

  132. Sérandour, A. A. et al. Single-CpG resolution mapping of 5-hydroxymethylcytosine by chemical labeling and exonuclease digestion identifies evolutionarily unconserved CpGs as TET targets. Genome Biol. 17, 56–67 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. Gao, F. et al. Highly efficient electrochemical sensing platform for sensitive detection DNA methylation, and methyltransferase activity based on Ag NPs decorated carbon nanocubes. Biosens. Bioelectron. 99, 201–208 (2018).

    CAS  PubMed  Google Scholar 

  134. Yang, Z. et al. A novel electrochemical immunosensor for the quantitative detection of 5-hydroxymethylcytosine in genomic DNA of breast cancer tissue. Chem. Commun. 51, 14671–14673 (2015).

    CAS  Google Scholar 

  135. Stains, C. I., Furman, J. L., Segal, D. J. & Ghosh, I. Site-specific detection of DNA methylation utilizing mCpG-SEER. J. Am. Chem. Soc. 128, 9761–9765 (2006).

    CAS  PubMed  Google Scholar 

  136. Hiraoka, D. et al. Development of a method to measure DNA methylation levels by using methyl CpG-binding protein and luciferase-fused zinc finger protein. Anal. Chem. 84, 8259–8264 (2012).

    CAS  PubMed  Google Scholar 

  137. Serre, D., Lee, B. H. & Ting, A. H. MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res. 38, 391–399 (2010).

    CAS  PubMed  Google Scholar 

  138. Robertson, A. B. et al. A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res. 39, e55 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Nomura, A. & Okamoto, A. Phosphopeptides designed for 5-methylcytosine recognition. Biochemistry 50, 3376–3385 (2011).

    CAS  PubMed  Google Scholar 

  140. Kubik, G. & Summerer, D. TALEored epigenetics: a DNA-binding scaffold for programmable epigenome editing and analysis. ChemBioChem 17, 975–980 (2016).

    CAS  PubMed  Google Scholar 

  141. Zhang, Y. et al. Deciphering TAL effectors for 5-methylcytosine and 5-hydroxymethylcytosine recognition. Nat. Commun. 8, 901 (2017).

    PubMed  PubMed Central  Google Scholar 

  142. Rathi, P., Witte, A. & Summerer, D. Engineering DNA backbone interactions results in TALE scaffolds with enhanced 5-methylcytosine selectivity. Sci. Rep. 7, 15067 (2017).

    PubMed  PubMed Central  Google Scholar 

  143. Kubik, G., Batke, S. & Summerer, D. Programmable sensors of 5-hydroxymethylcytosine. J. Am. Chem. Soc. 137, 2–5 (2015).

    CAS  PubMed  Google Scholar 

  144. Grzegorz, K., Schmidt, M. J., Penner, J. E. & Daniel, S. Programmable and highly resolved in vitro detection of 5-methylcytosine by TALEs. Angew. Chemie Int. Ed. 53, 6002–6006 (2014).

    Google Scholar 

  145. Maurer, S., Giess, M., Koch, O. & Summerer, D. Interrogating key positions of size-reduced TALE repeats reveals a programmable sensor of 5-carboxylcytosine. ACS Chem. Biol. 11, 3294–3299 (2016).

    CAS  PubMed  Google Scholar 

  146. Dalhoff, C., Lukinavic˘ius, G., Klimašauskas, S. & Weinhold, E. Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases. Nat. Chem. Biol. 2, 31–32 (2006).

    CAS  PubMed  Google Scholar 

  147. Dalhoff, C., Lukinavic˘ius, G., Klimašauskas, S. & Weinhold, E. Synthesis of S-adenosyl-L-methionine analogs and their use for sequence-specific transalkylation of DNA by methyltransferases. Nat. Protoc. 1, 1879–1886 (2006).

    CAS  PubMed  Google Scholar 

  148. Lukinavic˘ius, G. et al. Targeted labeling of DNA by methyltransferase-directed transfer of activated groups (mTAG). J. Am. Chem. Soc. 129, 2758–2759 (2007).

    Google Scholar 

  149. Kriukiene, E. et al. DNA unmethylome profiling by covalent capture of CpG sites. Nat. Commun. 4, 2190 (2013).

    PubMed  Google Scholar 

  150. Staševskij, Z., Gibas, P., Gordevic˘ius, J., Kriukiene˙, E. & Klimašauskas, S. Tethered oligonucleotide-primed sequencing, TOP-Seq: a high-resolution economical approach for DNA epigenome profiling. Mol. Cell 65, 554–564.e6 (2017).

    PubMed  PubMed Central  Google Scholar 

  151. Kawasaki, Y. et al. A novel method for the simultaneous identification of methylcytosine and hydroxymethylcytosine at a single base resolution. Nucleic Acids Res. 45, e24 (2016).

    PubMed Central  Google Scholar 

  152. Takahashi, S., Suetake, I., Engelhardt, J. & Tajima, S. A novel method to analyze 5-hydroxymethylcytosine in CpG sequences using maintenance DNA methyltransferase, DNMT1. FEBS Open Bio 5, 741–747 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Larkin, J., Henley, R. Y., Jadhav, V., Korlach, J. & Wanunu, M. Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nat. Nanotechnol. 12, 1169–1175 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Flusberg, B. A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7, 461–465 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Clark, T. A. et al. Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation. BMC Biol. 11, 4–13 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Pais, J. E. et al. Biochemical characterization of a Naegleria TET-like oxygenase and its application in single molecule sequencing of 5-methylcytosine. Proc. Natl Acad. Sci. USA 112, 4316–4321 (2015).

    CAS  PubMed  Google Scholar 

  157. Yang, Y. et al. Quantitative and multiplexed DNA methylation analysis using long-read single-molecule real-time bisulfite sequencing (SMRT-BS). BMC Genomics 16, 350–359 (2015).

    PubMed  PubMed Central  Google Scholar 

  158. Song, C.-X. et al. Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat. Methods 9, 75–77 (2011).

    PubMed  PubMed Central  Google Scholar 

  159. Chavez, L. et al. Simultaneous sequencing of oxidized methylcytosines produced by TET/JBP dioxygenases in Coprinopsis cinerea. Proc. Natl Acad. Sci. USA 111, E5149–E5158 (2014). This article details the use of a SMRT-seq method for the simultaneous mapping of 5hmC, 5fC and 5caC in genomic DNA.

    CAS  PubMed  Google Scholar 

  160. Travers, K. J., Chin, C.-S., Rank, D. R., Eid, J. S. & Turner, S. W. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res. 38, e159 (2010).

    PubMed  PubMed Central  Google Scholar 

  161. Laszlo, A. H. et al. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc. Natl Acad. Sci. USA 110, 18904–18909 (2013).

    CAS  PubMed  Google Scholar 

  162. Wescoe, Z. L., Schreiber, J. & Akeson, M. Nanopores discriminate among five C5-cytosine variants in DNA. J. Am. Chem. Soc. 136, 16582–16587 (2014). This paper describes the detection of 5mC, 5hmC, 5fC and 5caC using MspA nanopores.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Johnson, R. P., Fleming, A. M., Perera, R. T., Burrows, C. J. & White, H. S. Dynamics of a DNA mismatch site held in confinement discriminate epigenetic modifications of cytosine. J. Am. Chem. Soc. 139, 2750–2756 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Zeng, T. et al. Detection of 5-methylcytosine and 5-hydroxymethylcytosine in DNA via host-guest interactions inside α-hemolysin nanopores. Chem. Sci. 6, 5628–5634 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Li, W., Gong, L. & Bayley, H. Single-molecule detection of 5-hydroxymethylcytosine in DNA through chemical modification and nanopore analysis. Angew. Chemie Int. Ed. 52, 4350–4355 (2013).

    CAS  Google Scholar 

  166. Yu, J., Cao, C. & Long, Y.-T. Selective and sensitive detection of methylcytosine by aerolysin nanopore under serum condition. Anal. Chem. 89, 11685–11689 (2017).

    CAS  PubMed  Google Scholar 

  167. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    CAS  PubMed  Google Scholar 

  168. Rand, A. C. et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat. Methods 14, 411–413 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Liu, L., Yang, C., Zhao, K., Li, J. & Wu, H. C. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nat. Commun. 4, 2989 (2013).

    PubMed  PubMed Central  Google Scholar 

  170. Wanunu, M. et al. Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules. J. Am. Chem. Soc. 133, 486–492 (2011).

    CAS  PubMed  Google Scholar 

  171. Shim, J. et al. Detection and quantification of methylation in DNA using solid-state nanopores. Sci. Rep. 3, 1389 (2013).

    PubMed  PubMed Central  Google Scholar 

  172. Beaucage, S. L. & Iyer, R. P. The functionalization of oligonucleotides via phosphoramidite derivatives. Tetrahedron 49, 1925–1963 (1993).

    CAS  Google Scholar 

  173. Jl, Y., Bannwarth, W. & Luu, B. Application of the phosphoramidite-phosphite triester approach for the synthesis of combinations between oxygenated sterols and nucleoside analogues linked by phosphodiester bonds. Tetrahedron 46, 487–502 (1990).

    Google Scholar 

  174. Pon, R. T. A long chain biotin phosphoramidite reagent for the automated synthesis of 5ʹ-biotinylated oligonucleotides. Tetrahedron Lett. 32, 1715–1718 (1991).

    CAS  Google Scholar 

  175. Stetsenko, D. A. & Gait, M. J. New phosphoramidite reagents for the synthesis of oligonucleotides containing a cysteine residue useful in peptide conjugation. Nucleosides, Nucleotides Nucleic Acids 19, 1751–1764 (2000).

    CAS  PubMed  Google Scholar 

  176. Ogino, M., Taya, Y. & Fujimoto, K. Detection of methylcytosine by DNA photoligation via hydrophobic interaction of the alkyl group. Org. Biomol. Chem. 7, 3163–3167 (2009).

    CAS  Google Scholar 

  177. Ogino, M., Taya, Y. & Fujimoto, K. Highly selective detection of 5-methylcytosine using photochemical ligation. Chem. Commun. 0, 5996–5998 (2008).

    CAS  Google Scholar 

  178. Sakamoto, T., Ami, T. & Fujimoto, K. 5-Methylcytosine selective photoligation using photoresponsive oligonucleotides containing various 5-vinyl-2ʹ-deoxyuridines having an aromatic group. Chem. Lett. 41, 47–49 (2011).

    Google Scholar 

  179. Yamayoshi, A., Matsuyama, Y., Kushida, M., Kobori, A. & Murakami, A. Novel photodynamic effect of a psoralen-conjugated oligonucleotide for the discrimination of the methylation of cytosine in DNA. Photochem. Photobiol. 90, 716–722 (2014).

    CAS  PubMed  Google Scholar 

  180. Fujimo, K., Konishi-Hiratsuka, K. & Sakamoto, T. Quick, selective and reversible photocrosslinking reaction between 5-methylcytosine and 3-cyanovinylcarbazole in DNA double strand. Int. J. Mol. Sci. 14, 5765–5774 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Tanabe, K., Yamada, H. & Nishimoto, S. I. One-electron photooxidation and site-selective strand cleavage at 5-methylcytosine in DNA by sensitization with 2-methyl-1,4-naphthoquinone- tethered oligonucleotides. J. Am. Chem. Soc. 129, 8034–8040 (2007).

    CAS  PubMed  Google Scholar 

  182. Yamada, H., Tanabe, K., Ito, T. & Nishimoto, S. The pH effect on the naphthoquinone-photosensitized oxidation of 5-methylcytosine. Chem. Eur. J. 14, 10453–10461 (2008).

    CAS  PubMed  Google Scholar 

  183. Duprey, J.-L. H. A. et al. Detection of DNA base variation and cytosine methylation at a single nucleotide site using a highly sensitive fluorescent probe. Chem. Commun. 47, 6629–6631 (2011).

    CAS  Google Scholar 

  184. Duprey, J.-L. H. A. et al. Single site discrimination of cytosine, 5-methylcytosine, and 5-hydroxymethylcytosine in target DNA using anthracene-tagged fluorescent probes. ACS Chem. Biol. 11, 717–721 (2016).

    CAS  PubMed  Google Scholar 

  185. Taskova, M., Barducci, M. C. & Astakhova, K. Environmentally sensitive molecular probes reveal mutations and epigenetic 5-methyl cytosine in human oncogenes. Org. Biomol. Chem. 15, 5680–5684 (2017).

    CAS  PubMed  Google Scholar 

  186. Okamoto, A., Tanabe, K. & Saito, I. Site-specific discrimination of cytosine and 5-methylcytosine in duplex DNA by peptide nucleic acids. J. Am. Chem. Soc. 124, 10262–10263 (2002).

    CAS  PubMed  Google Scholar 

  187. Xu, C. et al. Detecting 5-methylcytosine using an enzyme-free DNA strand exchange reaction without pretreatment under physiological conditions. Chem. Commun. 52, 6833–6836 (2016).

    CAS  Google Scholar 

  188. Liu, S., Wu, P., Li, W., Zhang, H. & Cai, C. An electrochemical approach for detection of DNA methylation and assay of the methyltransferase activity. Chem. Commun. 47, 2844–2846 (2011).

    CAS  Google Scholar 

  189. Wang, J., Zhu, Z. & Ma, H. Label-free real-time detection of DNA methylation based on quartz crystal microbalance measurement. Anal. Chem. 85, 2096–2101 (2013).

    CAS  PubMed  Google Scholar 

  190. von Watzdorf, J., Leitner, K. & Marx, A. Modified nucleotides for discrimination between cytosine and the epigenetic marker 5-methylcytosine. Angew. Chemie Int. Ed. 55, 3229–3232 (2016).

    Google Scholar 

  191. Johannsen, M. W., Gerrard, S. R., Melvin, T. & Brown, T. Triplex-mediated analysis of cytosine methylation at CpA sites in DNA. Chem. Commun. 50, 551–553 (2014).

    CAS  Google Scholar 

  192. Tainaka, K., Tanaka, K. & Okamoto, A. Development of bipyridine-modified nucleobase for methylcytosine-selective crosslink reaction. Nucleic Acids Symp. Ser. 50, 129–130 (2006).

    Google Scholar 

  193. Tanaka, K., Tainaka, K., Umemoto, T., Nomura, A. & Okamoto, A. An osmium-DNA interstrand complex: application to facile DNA methylation analysis. J. Am. Chem. Soc. 129, 14511–14517 (2007).

    CAS  PubMed  Google Scholar 

  194. Sugizaki, K., Ikeda, S., Yanagisawa, H. & Okamoto, A. Facile synthesis of hydroxymethylcytosine-containing oligonucleotides and their reactivity upon osmium oxidation. Org. Biomol. Chem. 9, 4176–4181 (2011).

    CAS  PubMed  Google Scholar 

  195. Sugizaki, K., Umemoto, T. & Okamoto, A. On-chip DNA methylation analysis using osmium complexation. J. Nucleic Acids 2011, 480570 (2011).

    PubMed  PubMed Central  Google Scholar 

  196. Tanaka, K., Tainaka, K. & Okamoto, A. Fluorescence quenching by methylcytosine-metal complexation. Nucleic Acids Symp. Ser. 2006, 139–140 (2006).

    Google Scholar 

  197. Sugizaki, K., Nakamura, A., Yanagisawa, H. & Okamoto, A. Ligand-incorporation site in 5-methylcytosine-detection probe modulating the site of osmium complexation with the target DNA. Chem. Biodivers. 9, 2000–2007 (2012).

    CAS  PubMed  Google Scholar 

  198. Li, Y. et al. Sequence-specific microscopic visualization of DNA methylation status at satellite repeats in individual cell nuclei and chromosomes. Nucleic Acids Res. 41, e186 (2013). This paper reports the use of fluorescent oligonucleotide probes for the sequence-specific visualization of 5mC in cells by microscopy.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Hardisty, R. E., Kawasaki, F., Sahakyan, A. B. & Balasubramanian, S. Selective chemical labeling of natural T modifications in DNA. J. Am. Chem. Soc. 137, 9270–9272 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Liu, C. et al. Enrichment and fluorogenic labelling of 5-formyluracil in DNA. Chem. Sci. 8, 4505–4510 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Hirose, W., Sato, K. & Matsuda, A. Selective detection of 5-formyl-2ʹ-deoxyuridine, an oxidative lesion of thymidine, in DNA by a fluorogenic reagent. Angew. Chemie Int. Ed. 49, 8392–8394 (2010).

    CAS  Google Scholar 

  202. Hirose, W., Sato, K. & Matsuda, A. Fluorescence properties of 5-(5,6-dimethoxybenzothiazol-2-yl)-2ʹ- deoxyuridine (dbtU) and oligodeoxyribonucleotides containing dbtU. Eur. J. Org. Chem. 2011, 6206–6217 (2011).

    CAS  Google Scholar 

  203. Wang, Y. et al. Naphthalimide derivatives as multifunctional molecules for detecting 5-formylpyrimidine by both PAGE analysis and dot-blot assays. Chem. Commun. 54, 1497–1500 (2018).

    CAS  Google Scholar 

  204. Guo, P. et al. Synthesis and spectroscopic properties of fluorescent 5-benzimidazolyl-2ʹ-deoxyuridines 5-fdU probes obtained from o-phenylenediamine derivatives. Org. Biomol. Chem. 11, 1610–1613 (2013).

    CAS  PubMed  Google Scholar 

  205. Liu, C. et al. A highly efficient fluorescence-based switch-on detection method of 5-formyluracil in DNA. Nano Res. 10, 2449–2458 (2017).

    CAS  Google Scholar 

  206. Yu, M., Song, C. X. & He, C. Detection of mismatched 5-hydroxymethyluracil in DNA by selective chemical labeling. Methods 72, 16–20 (2015).

    CAS  PubMed  Google Scholar 

  207. Kawasaki, F. et al. Sequencing 5-hydroxymethyluracil at single-base resolution. Angew. Chem. Int. Ed. 57, 9694–9696 (2018). This study describes the oxidation of 5hmU to 5fU and the detection of 5fU by taking advantage of its ability to base pair with guanine when ionized under alkaline conditions.

    CAS  Google Scholar 

  208. Moran, S., Arribas, C. & Esteller, M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 8, 389–399 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work was supported by the Irish Research Council (M.B., GOIPG/2017/1453) and the Wellcome Trust Trinity College Dublin (TCD) institutional strategic support fund (J.M.).

Reviewer information

Nature Reviews Chemistry thanks S. Kriaucionis and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

M.B. drafted the initial manuscript. M.B. and J.M. contributed equally to the discussion of the content and the reviewing and editing of the article.

Corresponding author

Correspondence to Joanna F. McGouran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Transcription factors

Proteins that bind to specific DNA sequences and thereby regulate the transcription of genes.

Abasic site

A site in DNA that consists of a deoxyribose unit lacking a purine or pyrimidine base.

Base excision repair

(BER). A cellular DNA repair pathway that removes and replaces damaged or mismatched nucleobases in DNA.

Promoters

Regions of DNA close to transcription start sites, which control transcription initiation by providing binding sites for transcription factors and RNA polymerase.

Poised and active enhancers

DNA sequences to which transcription factors bind to regulate the transcription of associated genes.

Exons

Sequences within genes that encode the amino acids in proteins. Unlike introns, exons are not removed from the RNA transcript during splicing.

Affinity isolation

The use of non-covalent interactions with a protein to facilitate the isolation of a target molecule.

Restriction endonucleases

Enzymes found in bacteria and archaea that are used for antiviral defence and that cleave DNA at or near specific recognition sites.

Electrogenerated chemiluminescence

A process in which reactive intermediates that are generated electrochemically undergo reactions to form excited-state species that emit light.

Excimer

A dimer formed from two monomers, one of which is in an excited electronic state.

Locked nucleic acid

(LNA). A synthetic oligonucleotide analogue in which ribose units are conformationally restricted by a 2ʹ-O-4ʹ-C methylene bridge.

Peptide nucleic acid

A synthetic oligonucleotide analogue in which the sugar–phosphate backbone is replaced by a peptide chain.

Duplex melting temperature

The temperature at which half the DNA strands in a solution are found in a single-stranded state, which is used as a measure of duplex stability.

Fluorescence in situ hybridization

(FISH). A technique for detecting specific sequences in chromosomal DNA using a fluorescent oligonucleotide probe that binds to a target site on a chromosome and is then visualized by fluorescence microscopy.

Droplet digital PCR

A procedure in which template DNA molecules are partitioned into droplets in a water–oil emulsion. PCR amplification occurs within each droplet and is then analysed to determine the fraction of droplets in which the PCR was successful, enabling the concentration of template DNA in the original sample to be determined.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berney, M., McGouran, J.F. Methods for detection of cytosine and thymine modifications in DNA. Nat Rev Chem 2, 332–348 (2018). https://doi.org/10.1038/s41570-018-0044-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0044-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing