Heterogeneous single-atom catalysis

Abstract

Single-atom catalysis has arguably become the most active new frontier in heterogeneous catalysis. Aided by recent advances in practical synthetic methodologies, characterization techniques and computational modelling, we now have a large number of single-atom catalysts (SACs) that exhibit distinctive performances for a wide variety of chemical reactions. This Perspective summarizes recent experimental and computational efforts aimed at understanding the bonding in SACs and how this relates to catalytic performance. The examples described here illustrate the utility of SACs in a broad scope of industrially important reactions and highlight the advantages these catalysts have over those presently used. SACs have well-defined active centres, such that unique opportunities exist for the rational design of new catalysts with high activities, selectivities and stabilities. Indeed, given a certain practical application, we can often design a suitable SAC; thus, the field has developed very rapidly and afforded promising catalyst leads. Moreover, the control we have over certain SAC structures paves the way for designing base metal catalysts with the activities of noble metal catalysts. It appears that we are entering a new era of heterogeneous catalysis in which we have control over well-dispersed single-atom active sites whose properties we can readily tune.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Single-atom catalysts (SACs) incorporate many advantageous features of homogeneous and heterogeneous catalysts.
Fig. 2: Atomic structures of Pt1/FeO x catalysts.
Fig. 3: Single Pt centres can bond to N-rich or S-rich regions in doped carbonaceous supports.
Fig. 4: Structural identification of a Co–N–C single-atom catalyst.
Fig. 5: Au clusters on oxides can act as dynamic single-atom catalysts for CO oxidation.
Fig. 6: A single-atom Fe–N–C oxidation catalyst and related metalloprotein.

References

  1. 1.

    Ye, R., Hurlburt, T. J., Sabyrov, K., Alayoglu, S. & Somorjai, G. A. Molecular catalysis science: perspective on unifying the fields of catalysis. Proc. Natl Acad. Sci. USA 113, 5159–5166 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 3, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Taylor, H. S. A theory of the catalytic surface. Proc. R. Soc. Lond. A 108, 105–111 (1925).

    Article  CAS  Google Scholar 

  4. 4.

    Rooney, J. J. & Webb, G. The importance of π-bonded intermediates in hydrocarbon reactions on transition metal catalysts. J. Catal. 3, 488–501 (1964).

    Article  CAS  Google Scholar 

  5. 5.

    Patterson, W. R. & Rooney, J. J. Single atom sites and hydrocarbon reaction mechanisms. Catal. Today 12, 113–129 (1992).

    Article  CAS  Google Scholar 

  6. 6.

    Böhme, D. K. & Schwarz, H. Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew. Chem. Int. Ed. 44, 2336–2354 (2005).

    Article  CAS  Google Scholar 

  7. 7.

    Kirlin, P. S. & Gates, B. C. Activation of the C–C bond provides a molecular basis for structure sensitivity in metal catalysis. Nature 325, 38–40 (1987).

    Article  CAS  Google Scholar 

  8. 8.

    Vidal, V., Théolier, A., Thivolle-Cazat, J. & Basset, J.-M. Metathesis of alkanes catalyzed by silica-supported transition metal hydrides. Science 276, 99–102 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Copéret, C., Chabanas, M., Saint-Arroman, R. P. & Basset, J.-M. Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew. Chem. Int. Ed. 42, 156–181 (2003).

    Article  Google Scholar 

  10. 10.

    Serna, P. & Gates, B. C. Molecular metal catalysts on supports: organometallic chemistry meets surface science. Acc. Chem. Res. 47, 2612–2620 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Bayram, E. et al. Agglomerative sintering of an atomically dispersed Ir-1/Zeolite Y catalyst: compelling evidence against Ostwald ripening but for bimolecular and autocatalytic agglomeration catalyst sintering steps. ACS Catal. 5, 3514–3527 (2015).

    Article  CAS  Google Scholar 

  12. 12.

    Serna, P., Yardimci, D., Kistler, J. D. & Gates, B. C. Formation of supported rhodium clusters from mononuclear rhodium complexes controlled by the support and ligands on rhodium. Phys. Chem. Chem. Phys. 16, 1262–1270 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Serna, P. & Gates, B. C. A bifunctional mechanism for ethene dimerization: catalysis by rhodium complexes on Zeolite HY in the absence of halides. Angew. Chem. Int. Ed. 50, 5528–5531 (2011).

    Article  CAS  Google Scholar 

  14. 14.

    Asakura, K., Nagahiro, H., Ichikuni, N. & Iwasawa, Y. Structure and catalytic combustion activity of atomically dispersed Pt species at MgO surface. Appl. Catal. A Gen. 188, 313–324 (1999).

    Article  CAS  Google Scholar 

  15. 15.

    Li, Z. Y. et al. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451, 46–48 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Kaden, W. E., Wu, T., Kunkel, W. A. & Anderson, S. L. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326, 826–829 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Vajda, S. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 8, 213–216 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Abbet, S. et al. Acetylene cyclotrimerization on supported size-selected Pd n clusters (1 ≤ n ≤ 30): one atom is enough. J. Am. Chem. Soc. 122, 3453–3457 (2000).

    Article  CAS  Google Scholar 

  19. 19.

    Fu, Q., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935–938 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Zhang, X., Shi, H. & Xu, B.-Q. Catalysis by gold: isolated surface Au3+ ions are active sites for selective hydrogenation of 1,3-butadiene over Au/ZrO2 catalysts. Angew. Chem. Int. Ed. 44, 7132–7135 (2005).

    Article  CAS  Google Scholar 

  21. 21.

    Hackett, S. F. J. et al. High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew. Chem. Int. Ed. 46, 8593–8596 (2007).

    Article  CAS  Google Scholar 

  22. 22.

    Yang, X.-F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Thomas, J. M., Raja, R. & Lewis, D. W. Single-site heterogeneous catalysts. Angew. Chem. Int. Ed. 44, 6456–6482 (2005).

    Article  CAS  Google Scholar 

  24. 24.

    Liu, J. Aberration-corrected scanning transmission electron microscopy in single-atom catalysis: probing the catalytically active centers. Chin. J. Catal. 38, 1460–1472 (2017).

    Article  CAS  Google Scholar 

  25. 25.

    Ogino, I. X-Ray absorption spectroscopy for single-atom catalysts: critical importance and persistent challenges. Chin. J. Catal. 38, 1481–1488 (2017).

    Article  Google Scholar 

  26. 26.

    Asokan, C., DeRita, L. & Christopher, P. Using probe molecule FTIR spectroscopy to identify and characterize Pt-group metal based single atom catalysts. Chin. J. Catal. 38, 1473–1480 (2017).

    Article  CAS  Google Scholar 

  27. 27.

    Parkinson, G. S. Unravelling single atom catalysis: the surface science approach. Chin. J. Catal. 38, 1454–1459 (2017).

    Article  CAS  Google Scholar 

  28. 28.

    Hutchings, G. J. Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. J. Catal. 96, 292–295 (1985).

    Article  CAS  Google Scholar 

  29. 29.

    Malta, G. et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 355, 1399–1403 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Wei, H. et al. FeO x -supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 5, 5634 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Zhou, H. et al. PdZn intermetallic nanostructure with Pd−Zn−Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal. 6, 1054–1061 (2016).

    Article  CAS  Google Scholar 

  32. 32.

    Matsubu, J. C., Yang, V. N. & Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 137, 3076–3084 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Yang, S., Kim, J., Tak, Y. J., Soon, A. & Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed. 55, 2058–2062 (2016).

    Article  CAS  Google Scholar 

  34. 34.

    Qiao, B. et al. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal. 5, 6249–6254 (2015).

    Article  CAS  Google Scholar 

  35. 35.

    Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Zhang, Z. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 8, 16100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Liu, W. et al. Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 7, 5758–5764 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Wei, H. et al. Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 8, 1490 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Yan, H. et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 137, 10484–10487 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Yin, P. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016).

    Article  CAS  Google Scholar 

  43. 43.

    Liu, J. Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2017).

    Article  CAS  Google Scholar 

  44. 44.

    Schwarz, H. Ménage-à-trois: single-atom catalysis, mass spectrometry, and computational chemistry. Catal. Sci. Technol. 7, 4302–4314 (2017).

    Article  CAS  Google Scholar 

  45. 45.

    Flytzani-Stephanopoulos, M. Supported metal catalysts at the single-atom limit — a viewpoint.Chin. J. Catal. 38, 1432–1442 (2017).

    Article  CAS  Google Scholar 

  46. 46.

    Kim, J., Kim, H.-E. & Lee, H. Single-atom catalysts of precious metals for electrochemical reactions. ChemSusChem 11, 104–113 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Zhu, C., Fu, S., Shi, Q., Du, D. & Lin, Y. Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56, 13944–13960 (2017).

    Article  CAS  Google Scholar 

  48. 48.

    Qiao, B. T. et al. Ultrastable single-atom gold catalysts with strong covalent metal–support interaction (CMSI). Nano Res. 8, 2913–2924 (2015).

    Article  CAS  Google Scholar 

  49. 49.

    Lin, J. et al. Remarkable performance of Ir1/FeO x single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135, 15314–15317 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Lin, J. et al. Little do more: a highly effective Pt1/FeO x single-atom catalyst for the reduction of NO by H2. Chem. Commun. 51, 7911–7914 (2015).

    Article  CAS  Google Scholar 

  51. 51.

    Liang, J.-X. et al. Theoretical and experimental investigations on single-atom catalysis: Ir1/FeO x for CO oxidation. J. Phys. Chem. C 118, 21945–21951 (2014).

    Article  CAS  Google Scholar 

  52. 52.

    Novotný, Z. et al. Ordered array of single adatoms with remarkable thermal stability: Au/Fe3O4(001). Phys. Rev. Lett. 108, 216103 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Parkinson, G. S. et al. Carbon monoxide-induced adatom sintering in a Pd–Fe3O4 model catalyst. Nat. Mater. 12, 724–728 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Bliem, R. et al. Cluster nucleation and growth from a highly supersaturated adatom phase: silver on magnetite. ACS Nano 8, 7531–7537 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Bliem, R. et al. Adsorption and incorporation of transition metals at the magnetite Fe3O4(001) surface. Phys. Rev. B 92, 075440 (2015).

    Article  CAS  Google Scholar 

  56. 56.

    Bliem, R. et al. Subsurface cation vacancy stabilization of the magnetite (001) surface. Science 346, 1215–1218 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Zhang, S. et al. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 6, 7938 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Ma, X.-L., Liu, J.-C., Xiao, H. & Li, J. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J. Am. Chem. Soc. 140, 46–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Bruix, A. et al. Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. Angew. Chem. Int. Ed. 53, 10525–10530 (2014).

    Article  CAS  Google Scholar 

  60. 60.

    Neitzel, A. et al. Atomically dispersed Pd, Ni, and Pt species in ceria-based catalysts: principal differences in stability and reactivity. J. Phys. Chem. C 120, 9852–9862 (2016).

    Article  CAS  Google Scholar 

  61. 61.

    Dvorák, F. et al. Creating single-atom Pt–ceria catalysts by surface step decoration. Nat. Commun. 7, 10801 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Zhang, S. et al. Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2. Nat. Commun. 8, 15266 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Zhang, B. et al. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem. Int. Ed. 55, 8319–8323 (2016).

    Article  CAS  Google Scholar 

  64. 64.

    Huang, W. et al. Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate. Angew. Chem. Int. Ed. 55, 13441–13445 (2016).

    Article  CAS  Google Scholar 

  65. 65.

    Cotton, A. G. W. F., Murillo, C. A. & Bochmann, M. Advanced Inorganic Chemistry 6th edn (Wiley, New York, 1999).

    Google Scholar 

  66. 66.

    Peterson, E. J. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 5, 4885 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    Kwak, J. H. et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 325, 1670–1673 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Bulushev, D. A. et al. Single atoms of Pt-group metals stabilized by N-doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catal. 6, 3442–3451 (2016).

    Article  CAS  Google Scholar 

  69. 69.

    Vilé, G. et al. A stable single-site palladium catalyst for hydrogenations. Angew. Chem. Int. Ed. 54, 11265–11269 (2015).

    Article  CAS  Google Scholar 

  70. 70.

    Li, X. et al. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 28, 2427–2431 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. 71.

    Gao, G., Jiao, Y., Waclawik, E. R. & Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 138, 6292–6297 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. 72.

    Li, F. Y., Li, Y. F., Zeng, X. C. & Chen, Z. F. Exploration of high-performance single-atom catalysts on support M1/FeO x for CO oxidation via computational study. ACS Catal. 5, 544–552 (2015).

    Article  CAS  Google Scholar 

  73. 73.

    Choi, C. H. et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Choi, M., Wu, Z. & Iglesia, E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J. Am. Chem. Soc. 132, 9129–9137 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. 75.

    Fei, H. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Wu, H. et al. Highly doped and exposed Cu(i)–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries. Energy Environ. Sci. 9, 3736–3745 (2016).

    Article  CAS  Google Scholar 

  77. 77.

    Qiu, H.-J. et al. Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. 54, 14031–14035 (2015).

    Article  CAS  Google Scholar 

  78. 78.

    Cui, X. et al. A graphene composite material with single cobalt active sites: a highly efficient counter electrode for dye-sensitized solar cells. Angew. Chem. Int. Ed. 55, 6708–6712 (2016).

    Article  CAS  Google Scholar 

  79. 79.

    Chen, Y. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56, 6937–6941 (2017).

    Article  CAS  Google Scholar 

  80. 80.

    Chen, P. et al. Atomically dispersed iron–nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56, 610–614 (2017).

    Article  CAS  Google Scholar 

  81. 81.

    Zitolo, A. et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 14, 937–942 (2015).

    Article  CAS  Google Scholar 

  82. 82.

    Zitolo, A. et al. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat. Commun. 8, 957 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Zhang, L. et al. Co−N−C catalyst for C–C coupling reactions: on the catalytic performance and active sites. ACS Catal. 5, 6563–6572 (2015).

    Article  CAS  Google Scholar 

  84. 84.

    Liu, W. et al. Discriminating catalytically active FeN x species of atomically dispersed Fe–N–C catalyst for selective oxidation of C–H bond. J. Am. Chem. Soc. 139, 10790–10798 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. 85.

    Yang, M. et al. Catalytically active Au-O(OH) x species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. 86.

    Yang, M. et al. A common single-site Pt(ii)−O(OH) x − species stabilized by sodium on “active” and “inert” supports catalyzes the water–gas shift reaction. J. Am. Chem. Soc. 137, 3470–3473 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. 87.

    Wei, H. et al. Remarkable effect of alkalis on the chemoselective hydrogenation of functionalized nitroarenes over high-loading Pt/FeO x catalysts. Chem. Sci. 8, 5126–5131 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Zhang, L. et al. Efficient and durable Au alloyed Pd single-atom catalyst for the Ullmann reaction of aryl chlorides in water. ACS Catal. 4, 1546–1553 (2014).

    Article  CAS  Google Scholar 

  89. 89.

    Lucci, F. R. et al. Controlling hydrogen activation, spillover, and desorption with Pd–Au single-atom alloys. J. Phys. Chem. Lett. 7, 480–485 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. 90.

    Pei, G. X. et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 5, 3717–3725 (2015).

    Article  CAS  Google Scholar 

  91. 91.

    Pei, G. X. et al. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 7, 1491–1500 (2017).

    Article  CAS  Google Scholar 

  92. 92.

    Feng, Q. et al. Isolated single-atom Pd sites in intermetallic nanostructures: high catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 139, 7294–7301 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. 93.

    Lucci, F. R. et al. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit. Nat. Commun. 6, 8550 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Liu, J. et al. Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc. 138, 6396–6399 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. 95.

    Yang, M., Allard, L. F. & Flytzani-Stephanopoulos, M. Atomically dispersed Au−(OH) x species bound on titania catalyze the low-temperature water-gas shift reaction. J. Am. Chem. Soc. 135, 3768–3771 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. 96.

    Wang, C., Yang, M. & Flytzani-Stephanopoulos, M. Single gold atoms stabilized on nanoscale metal oxide supports are catalytic active centers for various reactions. AIChE J. 62, 429–439 (2016).

    Article  CAS  Google Scholar 

  97. 97.

    Guan, H. et al. Enhanced performance of Rh1/TiO2 catalyst without methanation in water–gas shift reaction. AIChE J. 63, 2081–2088 (2017).

    Article  CAS  Google Scholar 

  98. 98.

    Ding, K. et al. Identification of active sites in CO oxidation and water–gas shift over supported Pt catalysts. Science 350, 189–192 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. 99.

    Guo, L.-W. et al. Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation. Nat. Commun. 7, 13481 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Guan, H. et al. Catalytically active Rh sub-nanoclusters on TiO2 for CO oxidation at cryogenic temperatures. Angew. Chem. Int. Ed. 55, 2820–2824 (2016).

    Article  CAS  Google Scholar 

  101. 101.

    Therrien, A. J. et al. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 1, 192–198 (2018).

    Article  Google Scholar 

  102. 102.

    Wang, C. et al. Water-mediated Mars–Van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 7, 887–891 (2017).

    Article  CAS  Google Scholar 

  103. 103.

    Li, L. et al. Origin of the high activity of Au/FeO x for low-temperature CO oxidation: direct evidence for a redox mechanism. J. Catal. 299, 90–100 (2013).

    Article  CAS  Google Scholar 

  104. 104.

    Nie, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. 105.

    Yi, N., Si, R., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active gold species on cerium oxide nanoshapes for methanol steam reforming and the water gas shift reactions. Energy Environ. Sci. 3, 831–837 (2010).

    Article  CAS  Google Scholar 

  106. 106.

    Gu, X.-K. et al. Supported single Pt1/Au1 atoms for methanol steam reforming. ACS Catal. 4, 3886–3890 (2014).

    Article  CAS  Google Scholar 

  107. 107.

    Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. 108.

    Bayatsarmadi, B., Zheng, Y., Vasileff, A. & Qiao, S.-Z. Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion. Small 13, 1700191 (2017).

    Article  CAS  Google Scholar 

  109. 109.

    Wu, G. & Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 46, 1878–1889 (2013).

    Article  CAS  Google Scholar 

  110. 110.

    Cheng, N. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Liu, J. et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 8, 15938 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Deng, J. et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594–1601 (2015).

    Article  CAS  Google Scholar 

  113. 113.

    Zhang, S. et al. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes. J. Am. Chem. Soc. 138, 2629–2637 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. 114.

    Porosoff, M. D., Yan, B. & Chen, J. G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ. Sci. 9, 62–73 (2016).

    Article  CAS  Google Scholar 

  115. 115.

    Kwak, J. H., Kovarik, L. & Szanyi, J. Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts. ACS Catal. 3, 2094–2100 (2013).

    Article  CAS  Google Scholar 

  116. 116.

    Kwak, J. H., Kovarik, L. & Szanyi, J. CO2 reduction on supported Ru/Al2O3 catalysts: cluster size dependence of product selectivity. ACS Catal. 3, 2449–2455 (2013).

    Article  CAS  Google Scholar 

  117. 117.

    Li, S. et al. Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal–support interaction. Angew. Chem. Int. Ed. 56, 10761–10765 (2017).

    Article  CAS  Google Scholar 

  118. 118.

    Cheng, M.-J., Clark, E. L., Pham, H. H., Bell, A. T. & Head-Gordon, M. Quantum mechanical screening of single-atom bimetallic alloys for the selective reduction of CO2 to C1 hydrocarbons. ACS Catal. 6, 7769–7777 (2016).

    Article  CAS  Google Scholar 

  119. 119.

    Back, S., Lim, J., Kim, N.-Y., Kim, Y.-H. & Jung, Y. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 8, 1090–1096 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. 120.

    Back, S. & Jung, Y. TiC- and TiN-supported single-atom catalysts for dramatic improvements in CO2 electrochemical reduction to CH4. ACS Energy Lett. 2, 969–975 (2017).

    Article  CAS  Google Scholar 

  121. 121.

    Sarfraz, S., Garcia-Esparza, A. T., Jedidi, A., Cavallo, L. & Takanabe, K. Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal. 6, 2842–2851 (2016).

    Article  CAS  Google Scholar 

  122. 122.

    Zhao, C. et al. Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 139, 8078–8081 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. 123.

    Yang, H. B. et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    Article  CAS  Google Scholar 

  124. 124.

    Genovese, C. et al. Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon. Nat. Commun. 9, 935 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Yamanaka, I., Onizawa, T., Takenaka, S. & Otsuka, K. Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system. Angew. Chem. Int. Ed. 42, 3653–3655 (2003).

    Article  CAS  Google Scholar 

  126. 126.

    Siahrostami, S. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. 127.

    Verdaguer-Casadevall, A. et al. Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 14, 1603–1608 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. 128.

    Liu, G. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9, 810–816 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. 129.

    Wang, Y.-G., Yoon, Y., Glezakou, V.-A., Li, J. & Rousseau, R. The role of reducible oxide−metal cluster charge transfer in catalytic processes: new insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J. Am. Chem. Soc. 135, 10673–10683 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. 130.

    Wang, Y.-G., Mei, D. H., Glezakou, V. A., Li, J. & Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 6, 6511 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Liu, J.-C., Wang, Y.-G. & Li, J. Toward rational design of oxide-supported single-atom catalysts: atomic dispersion of gold on ceria. J. Am. Chem. Soc. 139, 6190–6199 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. 132.

    Wang, J. et al. Formation, migration, and reactivity of Au–CO complexes on gold surfaces. J. Am. Chem. Soc. 138, 1518–1526 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. 133.

    Eren, B. et al. Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption. Science 351, 475–478 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. 134.

    Bliem, R. et al. Dual role of CO in the stability of subnano Pt clusters at the Fe3O4(001) surface. Proc. Natl Acad. Sci. USA 113, 8921–8926 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. 135.

    Horch, S. et al. Enhancement of surface self-diffusion of platinum atoms by adsorbed hydrogen. Nature 398, 134–136 (1999).

    Article  CAS  Google Scholar 

  136. 136.

    Matsubu, J. C. et al. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. 137.

    Li, C. et al. Single atom dispersed Rh-biphephos&PPh3@porous organic copolymers: highly efficient catalysts for continuous fixed-bed hydroformylation of propene. Green Chem. 18, 2995–3005 (2016).

    Article  CAS  Google Scholar 

  138. 138.

    Lang, R. et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem. Int. Ed. 55, 16054–16058 (2016).

    Article  CAS  Google Scholar 

  139. 139.

    Wang, L. et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nat. Commun. 7, 14036 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Sahu, S. & Goldberg, D. P. Activation of dioxygen by iron and manganese complexes: a heme and nonheme perspective. J. Am. Chem. Soc. 138, 11410–11428 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    He, L., Weniger, F., Neumann, H. & Beller, M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angew. Chem. Int. Ed. 55, 12582–12594 (2016).

    Article  CAS  Google Scholar 

  142. 142.

    DeRita, L. et al. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 139, 14150–14165 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. 143.

    Liu, J. C. et al. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 9, 1610 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Yan, H. et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 8, 1070 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Ji, S. et al. Confined pyrolysis within metal−organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 139, 9795–9798 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. 146.

    Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. 147.

    Tang, Y. et al. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nat. Commun. 9, 1231 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Jasion, V. S. & Poulos, T. L. Leishmania major peroxidase is a cytochrome c peroxidase. Biochemistry 51, 2453–2460 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Liu, B. Qiao, Y.-G. Wang, X.-F. Yang and R. Rousseau for fruitful discussions. This work is supported by the National Key Projects for Fundamental Research and Development of China (2016YFA0202801), National Natural Science Foundation of China (21690080, 21690084, 21721004, 21673228, 21522608, 21503219, 21672210, 21590792 and 91645203), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17000000 and 17020100). The authors thank Y. Ren, S. Niu, W. Liu, M. Zhou, J.-C. Liu and X. Yang for assisting in the preparation of some of the figures.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Aiqin Wang or Jun Li or Tao Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat Rev Chem 2, 65–81 (2018). https://doi.org/10.1038/s41570-018-0010-1

Download citation

Further reading