Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets

Abstract

Atherosclerosis is a progressive inflammatory disorder of the arterial vessel wall characterized by substantial infiltration of macrophages, which exert both favourable and detrimental functions. Early in atherogenesis, macrophages can clear cytotoxic lipoproteins and dead cells, preventing cytotoxicity. Efferocytosis — the efficient clearance of dead cells by macrophages — is crucial for preventing secondary necrosis and stimulating the release of anti-inflammatory cytokines. In addition, macrophages can promote tissue repair and proliferation of vascular smooth muscle cells, thereby increasing plaque stability. However, advanced atherosclerotic plaques contain large numbers of pro-inflammatory macrophages that secrete matrix-degrading enzymes, induce death in surrounding cells and contribute to plaque destabilization and rupture. Importantly, macrophages in the plaque can undergo apoptosis and several forms of regulated necrosis, including necroptosis, pyroptosis and ferroptosis. Regulated necrosis has an important role in the formation and expansion of the necrotic core during plaque progression, and several triggers for necrosis are present within atherosclerotic plaques. This Review focuses on the various forms of programmed macrophage death in atherosclerosis and the pharmacological interventions that target them as a potential means of stabilizing vulnerable plaques and improving the efficacy of currently available anti-atherosclerotic therapies.

Key points

  • Programmed death of macrophages, including apoptosis, necroptosis, pyroptosis and ferroptosis, has a role in atherogenesis and vulnerable plaque formation.

  • A balanced interplay exists between these forms of cell death; inhibiting one form can result in the activation of another.

  • Both invasive and non-invasive techniques can identify plaques that might benefit from therapy targeting programmed macrophage death, whereas specific cell death-related biomarkers can aid patient selection for treatment.

  • In early atherosclerotic plaques, the selective removal of macrophages via macrophage-specific death could have plaque-stabilizing effects.

  • In advanced atherosclerotic plaques, sufficient capacity for efferocytosis is essential to prevent secondary necrosis.

  • In addition to the use of inhibitors of necroptosis, pyroptosis or ferroptosis, employing resolvins or autophagy inducers represents a promising strategy to target programmed macrophage death as they can increase efferocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key steps in the progression of atherosclerosis.
Fig. 2: Main triggers of programmed macrophage death in atherosclerosis.
Fig. 3: Overview of mechanisms in apoptosis and secondary necrosis.
Fig. 4: Overview of mechanisms in regulated macrophage necrosis and promising therapeutic targets.
Fig. 5: Induction of autophagy in macrophages can lead to increased efferocytosis or autosis, depending on the level of autophagy induced.

Similar content being viewed by others

References

  1. Lusis, A. J. Atherosclerosis. Nature 407, 233–241 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kockx, M. M. & Herman, A. G. Apoptosis in atherosclerosis: beneficial or detrimental? Cardiovasc. Res. 45, 736–746 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Virmani, R. et al. in The Vulnerable Atherosclerotic Plaque: Strategies for Diagnosis and Management (eds. Virmani, R., Narula, J., Leon, M. & Willerson, J.) 21–36 (Blackwell Futura, 2007).

  4. Wilson, H. M. Macrophages heterogeneity in atherosclerosis — implications for therapy. J. Cell Mol. Med. 14, 2055–2065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schrijvers, D. M., De Meyer, G. R., Herman, A. G. & Martinet, W. Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability. Cardiovasc. Res. 73, 470–480 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Martinet, W. & Kockx, M. M. Apoptosis in atherosclerosis: focus on oxidized lipids and inflammation. Curr. Opin. Lipidol. 12, 535–541 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Puylaert, P., Zurek, M., Rayner, K. J., De Meyer, G. R. Y. & Martinet, W. Regulated necrosis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 42, 1283–1306 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Bedoui, S., Herold, M. J. & Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol. 21, 678–695 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Gui, Y., Zheng, H. & Cao, R. Y. Foam cells in atherosclerosis: novel insights into its origins, consequences, and molecular mechanisms. Front. Cardiovasc. Med. 9, 845942 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boada-Romero, E., Martinez, J., Heckmann, B. L. & Green, D. R. The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol. 21, 398–414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xiao, Z. et al. Programmed cell death and lipid metabolism of macrophages in NAFLD. Front. Immunol. 14, 1118449 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seimon, T. & Tabas, I. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J. Lipid Res. 50, S382–S387 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. van Vlijmen, B. J. et al. Macrophage p53 deficiency leads to enhanced atherosclerosis in APOE*3-Leiden transgenic mice. Circ. Res. 88, 780–786 (2001).

    Article  PubMed  Google Scholar 

  14. Liu, J. et al. Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. Arterioscler. Thromb. Vasc. Biol. 25, 174–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Arai, S. et al. A role for the apoptosis inhibitory factor AIM/Spα/Api6 in atherosclerosis development. Cell Metab. 1, 201–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Babaev, V. R. et al. Macrophage IKKα deficiency suppresses akt phosphorylation, reduces cell survival, and decreases early atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 36, 598–607 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rayner, K. J. Cell death in the vessel wall: the good, the bad, the ugly. Arterioscler. Thromb. Vasc. Biol. 37, e75–e81 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schrijvers, D. M., De Meyer, G. R., Kockx, M. M., Herman, A. G. & Martinet, W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arteroscler. Thromb. Vasc. Biol. 25, 1256–1261 (2005).

    Article  CAS  Google Scholar 

  19. Coornaert, I. et al. Impact of myeloid RIPK1 gene deletion on atherogenesis in ApoE-deficient mice. Atherosclerosis 322, 51–60 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Yurdagul, A. Jr, Doran, A. C., Cai, B., Fredman, G. & Tabas, I. A. Mechanisms and consequences of defective efferocytosis in atherosclerosis. Front. Cardiovasc. Med. 4, 86 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rogers, C. et al. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun. 10, 1689 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martinet, W., Schrijvers, D. M. & De Meyer, G. R. Necrotic cell death in atherosclerosis. Basic Res. Cardiol. 106, 749–760 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Mallat, Z. et al. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation 99, 348–353 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Li, Y. et al. Cholesterol-induced apoptotic macrophages elicit an inflammatory response in phagocytes, which is partially attenuated by the Mer receptor. J. Biol. Chem. 281, 6707–6717 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Thorp, E., Cui, D., Schrijvers, D. M., Kuriakose, G. & Tabas, I. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe-/- mice. Arterioscler. Thromb. Vasc. Biol. 28, 1421–1428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ait-Oufella, H. et al. Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28, 1429–1431 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, W. et al. Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2 (V617F) mice. Circ. Res. 123, e35–e47 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kojima, Y. et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536, 86–90 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brouckaert, G. et al. Phagocytosis of necrotic cells by macrophages is phosphatidylserine dependent and does not induce inflammatory cytokine production. Mol. Biol. Cell 15, 1089–1100 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shlomovitz, I., Speir, M. & Gerlic, M. Flipping the dogma - phosphatidylserine in non-apoptotic cell death. Cell Commun. Signal. 17, 139 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kumar, D., Pandit, R. & Yurdagul, A. Jr. Mechanisms of continual efferocytosis by macrophages and its role in mitigating atherosclerosis. Immunometabolism 5, e00017 (2023).

    Article  PubMed  Google Scholar 

  32. Yurdagul, A. Jr et al. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 31, 518–533.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Doran, A. C. Inflammation resolution: implications for atherosclerosis. Circ. Res. 130, 130–148 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Majno, G. & Joris, I. Apoptosis, oncosis, and necrosis. An overview of Cell death. Am. J. Pathol. 146, 3–15 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Crisby, M. et al. Cell death in human atherosclerotic plaques involves both oncosis and apoptosis. Atherosclerosis 130, 17–27 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Tabas, I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Aterioscler. Thromb. Vasc. Biol. 25, 2255–2264 (2005).

    Article  CAS  Google Scholar 

  37. Kalinina, N. et al. Increased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions: role of activated macrophages and cytokines. Arterioscler. Thromb. Vasc. Biol. 24, 2320–2325 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. de Souza, A. W., Westra, J., Limburg, P. C., Bijl, M. & Kallenberg, C. G. HMGB1 in vascular diseases: its role in vascular inflammation and atherosclerosis. Autoimmun. Rev. 11, 909–917 (2012).

    Article  PubMed  Google Scholar 

  39. Kanellakis, P. et al. High-mobility group box protein 1 neutralization reduces development of diet-induced atherosclerosis in apolipoprotein e-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31, 313–319 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Cuccurullo, C. et al. Suppression of RAGE as a basis of simvastatin-dependent plaque stabilization in type 2 diabetes. Arterioscler. Thromb. Vasc. Biol. 26, 2716–2723 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Calkin, A. C. et al. The HMG-CoA reductase inhibitor rosuvastatin and the angiotensin receptor antagonist candesartan attenuate atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes via effects on advanced glycation, oxidative stress and inflammation. Diabetologia 51, 1731–1740 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Yin, Y. X. et al. The effect of simvastatin on the expression of high mobility group box-1 protein in atherosclerotic rats [Chinese]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 22, 306–308 (2010).

    CAS  PubMed  Google Scholar 

  43. Liu, M. et al. Simvastatin suppresses vascular inflammation and atherosclerosis in ApoE−/− mice by downregulating the HMGB1-RAGE axis. Acta Pharmacol. Sin. 34, 830–836 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, Y. et al. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis. Free Radic. Biol. Med. 171, 55–68 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Uyy, E. et al. Regulated cell death joins in atherosclerotic plaque silent progression. Sci. Rep. 12, 2814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313–321 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Dondelinger, Y. et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 7, 971–981 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133–146 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Karunakaran, D. et al. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Sci. Adv. 2, e1600224 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tian, F. et al. 5-Aminolevulinic acid-mediated sonodynamic therapy inhibits RIPK1/RIPK3-dependent necroptosis in THP-1-derived foam cells. Sci. Rep. 6, 21992 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Karshovska, E. et al. HIF-1α (hypoxia-inducible factor-1α) promotes macrophage necroptosis by regulating miR-210 and miR-383. Arterioscler. Thromb. Vasc. Biol. 40, 583–596 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, C., Jiang, Z., Pan, Z. & Yang, L. The function, regulation and mechanism of programmed cell death of macrophages in atherosclerosis. Front. Cell Dev. Biol. 9, 809516 (2021).

    Article  PubMed  Google Scholar 

  58. Xu, Y. J., Zheng, L., Hu, Y. W. & Wang, Q. Pyroptosis and its relationship to atherosclerosis. Clin. Chim. Acta 476, 28–37 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Shi, J., Gao, W. & Shao, F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci. 42, 245–254 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Nirmala, J. G. & Lopus, M. Cell death mechanisms in eukaryotes. Cell Biol. Toxicol. 36, 145–164 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Shi, X., Xie, W. L., Kong, W. W., Chen, D. & Qu, P. Expression of the NLRP3 inflammasome in carotid atherosclerosis. J. Stroke Cerebrovasc. Dis. 24, 2455–2466 (2015).

    Article  PubMed  Google Scholar 

  62. Rajamaki, K. et al. p38δ MAPK: a novel regulator of NLRP3 inflammasome activation with increased expression in coronary atherogenesis. Arterioscler. Thromb. Vasc. Biol. 36, 1937–1946 (2016).

    Article  PubMed  Google Scholar 

  63. Paramel Varghese, G. et al. NLRP3 inflammasome expression and activation in human atherosclerosis. J. Am. Heart Assoc. 5, e003031 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rajamäki, K. et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE 5, e11765 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tall, A. R. & Westerterp, M. Inflammasomes, neutrophil extracellular traps, and cholesterol. J. Lipid Res. 60, 721–727 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yalcinkaya, M. et al. Cholesterol accumulation in macrophages drives NETosis in atherosclerotic plaques via IL-1β secretion. Cardiovasc. Res. 119, 969–981 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Jiang, M. et al. Caspase-11-gasdermin D-mediated pyroptosis is involved in the pathogenesis of atherosclerosis. Front. Pharmacol. 12, 657486 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Son, S. J. et al. Triglyceride-induced macrophage cell death is triggered by caspase-1. Biol. Pharm. Bull. 36, 108–113 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Zheng, F., Xing, S., Gong, Z. & Xing, Q. NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis. Heart Lung Circ. 22, 746–750 (2013).

    Article  PubMed  Google Scholar 

  71. Zheng, F., Xing, S., Gong, Z., Mu, W. & Xing, Q. Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Mediators Inflamm. 2014, 507208 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zeng, W. et al. The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages. Sci. Rep. 11, 19305 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sharma, A. et al. Specific NLRP3 inhibition protects against diabetes-associated atherosclerosis. Diabetes 70, 772–787 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. van der Heijden, T. et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report. Arterioscler. Thromb. Vasc. Biol. 37, 1457–1461 (2017).

    Article  PubMed  Google Scholar 

  75. Gage, J., Hasu, M., Thabet, M. & Whitman, S. C. Caspase-1 deficiency decreases atherosclerosis in apolipoprotein E-null mice. Can. J. Cardiol. 28, 222–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Li, Y. et al. VX-765 attenuates atherosclerosis in ApoE deficient mice by modulating VSMCs pyroptosis. Exp. Cell Res. 389, 111847 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Whitman, S. C., Ravisankar, P. & Daugherty, A. Interleukin-18 enhances atherosclerosis in apolipoprotein E−/− mice through release of interferon-γ. Circ. Res. 90, E34–E38 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Elhage, R. et al. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc. Res. 59, 234–240 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Kirii, H. et al. Lack of interleukin-1β decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 23, 656–660 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Borborema, M. E. A., Crovella, S., Oliveira, D. & de Azevêdo Silva, J. Inflammasome activation by NLRP1 and NLRC4 in patients with coronary stenosis. Immunobiology 225, 151940 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Hakimi, M., Peters, A., Becker, A., Böckler, D. & Dihlmann, S. Inflammation-related induction of absent in melanoma 2 (AIM2) in vascular cells and atherosclerotic lesions suggests a role in vascular pathogenesis. J. Vasc. Surg. 59, 794–803 (2014).

    Article  PubMed  Google Scholar 

  82. Paulin, N. et al. Double-strand DNA sensing aim2 inflammasome regulates atherosclerotic plaque vulnerability. Circulation 138, 321–323 (2018).

    Article  PubMed  Google Scholar 

  83. Pan, J. et al. AIM2 accelerates the atherosclerotic plaque progressions in ApoE−/− mice. Biochem. Biophys. Res. Commun. 498, 487–494 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yan, H. F. et al. Ferroptosis: mechanisms and links with diseases. Signal. Transduct. Target. Ther. 6, 49 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rasool, A., Mahmoud, T. & O’Tierney-Ginn, P. Lipid aldehydes 4-hydroxynonenal and 4-hydroxyhexenal exposure differentially impact lipogenic pathways in human placenta. Biology 12, 527 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fruhwirth, G. O., Loidl, A. & Hermetter, A. Oxidized phospholipids: from molecular properties to disease. Biochim. Biophys. Acta 1772, 718–736 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Hassannia, B., Vandenabeele, P. & Vanden Berghe, T. Targeting ferroptosis to iron out cancer. Cancer Cell 35, 830–849 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Youssef, L. A. et al. Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion. Blood 131, 2581–2593 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. De Meyer, G. R. et al. Platelet phagocytosis and processing of β-amyloid precursor protein as a mechanism of macrophage activation in atherosclerosis. Circ. Res. 90, 1197–1204 (2002).

    Article  PubMed  Google Scholar 

  93. Kockx, M. M. et al. Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23, 440–446 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Yuan, X. M., Li, W., Baird, S. K., Carlsson, M. & Melefors, O. Secretion of ferritin by iron-laden macrophages and influence of lipoproteins. Free Radic. Res. 38, 1133–1142 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Yuan, X. M., Anders, W. L., Olsson, A. G. & Brunk, U. T. Iron in human atheroma and LDL oxidation by macrophages following erythrophagocytosis. Atherosclerosis 124, 61–73 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Fuhrman, B., Oiknine, J. & Aviram, M. Iron induces lipid peroxidation in cultured macrophages, increases their ability to oxidatively modify LDL, and affects their secretory properties. Atherosclerosis 111, 65–78 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Yuan, X. M., Brunk, U. T. & Olsson, A. G. Effects of iron- and hemoglobin-loaded human monocyte-derived macrophages on oxidation and uptake of LDL. Arterioscler. Thromb. Vasc. Biol. 15, 1345–1351 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Meng, Z. et al. HMOX1 upregulation promotes ferroptosis in diabetic atherosclerosis. Life Sci. 284, 119935 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. David, K. K., Andrabi, S. A., Dawson, T. M. & Dawson, V. L. Parthanatos, a messenger of death. Front. Biosci. 14, 1116–1128 (2009).

    Article  CAS  Google Scholar 

  100. Martinet, W., Knaapen, M. W., De Meyer, G. R., Herman, A. G. & Kockx, M. M. Oxidative DNA damage and repair in experimental atherosclerosis are reversed by dietary lipid lowering. Circ. Res. 88, 733–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Martinet, W., Knaapen, M. W., De Meyer, G. R., Herman, A. G. & Kockx, M. M. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation 106, 927–932 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Oumouna-Benachour, K. et al. Poly(ADP-ribose) polymerase inhibition reduces atherosclerotic plaque size and promotes factors of plaque stability in apolipoprotein E-deficient mice: effects on macrophage recruitment, nuclear factor-kappaB nuclear translocation, and foam cell death. Circulation 115, 2442–2450 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Xie, J. J. et al. Poly (ADP-ribose) polymerase inhibition attenuates atherosclerotic plaque development in ApoE-/- mice with hyperhomocysteinemia. J. Atheroscler. Thromb. 16, 641–653 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Liu, Y. & Levine, B. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ. 22, 367–376 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Nah, J., Zablocki, D. & Sadoshima, J. Autosis: a new target to prevent cell death. JACC Basic Transl. Sci. 5, 857–869 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hassanpour, M. et al. Role of autophagy in atherosclerosis: foe or friend? J. Inflamm. 16, 8 (2019).

    Article  Google Scholar 

  107. De Meyer, G. R. Y. et al. Autophagy in vascular disease. Circ. Res. 116, 468–479 (2015).

    Article  PubMed  Google Scholar 

  108. Koenig, W. & Khuseyinova, N. Biomarkers of atherosclerotic plaque instability and rupture. Arterioscler. Thromb. Vasc. Biol. 27, 15–26 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Bassuk, S. S., Rifai, N. & Ridker, P. M. High-sensitivity C-reactive protein: clinical importance. Curr. Probl. Cardiol. 29, 439–493 (2004).

    PubMed  Google Scholar 

  110. Thompson, A. et al. Lipoprotein-associated phospholipase A2 and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet 375, 1536–1544 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Wimmer, K., Sachet, M. & Oehler, R. Circulating biomarkers of cell death. Clin. Chim. Acta 500, 87–97 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Vucur, M. et al. Elevated serum levels of mixed lineage kinase domain-like protein predict survival of patients during intensive care unit treatment. Dis. Markers 2018, 1983421 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hu, B. et al. Prognostic and clinicopathological significance of MLKL expression in cancer patients: a meta-analysis. BMC Cancer 18, 736 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Shen, H. et al. Pyroptosis executive protein GSDMD as a biomarker for diagnosis and identification of Alzheimer’s disease. Brain Behav. 11, e02063 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang, D. et al. Assessment of pyroptosis-related indicators as potential biomarkers and their association with severity in patients with liver cirrhosis. J. Inflamm. Res. 14, 3185–3196 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Tang, D., Chen, X., Kang, R. & Kroemer, G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 31, 107–125 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Wiernicki, B. et al. Excessive phospholipid peroxidation distinguishes ferroptosis from other cell death modes including pyroptosis. Cell Death Dis. 11, 922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Szilágyi, M. et al. Circulating cell-free nucleic acids: main characteristics and clinical application. Int. J. Mol. Sci. 21, 6827 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Polina, I. A., Ilatovskaya, D. V. & DeLeon-Pennell, K. Y. Cell free DNA as a diagnostic and prognostic marker for cardiovascular diseases. Clin. Chim. Acta 503, 145–150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zemmour, H. et al. Non-invasive detection of human cardiomyocyte death using methylation patterns of circulating DNA. Nat. Commun. 9, 1443 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Mushenkova, N. V. et al. Current advances in the diagnostic imaging of atherosclerosis: insights into the pathophysiology of vulnerable plaque. Int. J. Mol. Sci. 21, 2992 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. De Dominicis, C. et al. [18F]ZCDD083: a PFKFB3-targeted PET tracer for atherosclerotic plaque imaging. ACS Med. Chem. Lett. 11, 933–939 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Liu, H., Xiang, C., Wang, Z. & Song, Y. Identification of potential ferroptosis-related biomarkers and immune infiltration in human coronary artery atherosclerosis. Int. J. Gen. Med. 15, 2979–2990 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Martinet, W., Coornaert, I., Puylaert, P. & De Meyer, G. R. Y. Macrophage death as a pharmacological target in atherosclerosis. Front. Pharmacol. 10, 306 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Croons, V., Martinet, W., Herman, A. G., Timmermans, J. P. & De Meyer, G. R. Selective clearance of macrophages in atherosclerotic plaques by the protein synthesis inhibitor cycloheximide. J. Pharmacol. Exp. Ther. 320, 986–993 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Kojima, Y., Weissman, I. L. & Leeper, N. J. The role of efferocytosis in atherosclerosis. Circulation 135, 476–489 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Garabuczi, E., Sarang, Z. & Szondy, Z. Glucocorticoids enhance prolonged clearance of apoptotic cells by upregulating liver X receptor, peroxisome proliferator-activated receptor-δ and UCP2. Biochim. Biophys. Acta 1853, 573–582 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Maderna, P., Yona, S., Perretti, M. & Godson, C. Modulation of phagocytosis of apoptotic neutrophils by supernatant from dexamethasone-treated macrophages and annexin-derived peptide Ac(2-26). J. Immunol. 174, 3727–3733 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Scannell, M. et al. Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages. J. Immunol. 178, 4595–4605 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Fredman, G. et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat. Commun. 7, 12859 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hasturk, H. et al. Resolvin E1 (RvE1) attenuates atherosclerotic plaque formation in diet and inflammation-induced atherogenesis. Arterioscler. Thromb. Vasc. Biol. 35, 1123–1133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Viola, J. R. et al. Resolving lipid mediators maresin 1 and resolvin D2 prevent atheroprogression in mice. Circ. Res. 119, 1030–1038 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Lee, H. N., Kundu, J. K., Cha, Y. N. & Surh, Y. J. Resolvin D1 stimulates efferocytosis through p50/p50-mediated suppression of tumor necrosis factor-α expression. J. Cell Sci. 126, 4037–4047 (2013).

    CAS  PubMed  Google Scholar 

  134. Fredman, G. & Serhan, C. N. Specialized proresolving mediator targets for RvE1 and RvD1 in peripheral blood and mechanisms of resolution. Biochem. J. 437, 185–197 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. van Gils, J. M. et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat. Immunol. 13, 136–143 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Schlegel, M. et al. Silencing myeloid netrin-1 induces inflammation resolution and plaque regression. Circ. Res. 129, 530–546 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wanschel, A. et al. Neuroimmune guidance cue Semaphorin 3E is expressed in atherosclerotic plaques and regulates macrophage retention. Arterioscler. Thromb. Vasc. Biol. 33, 886–893 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Proto, J. D. et al. Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity 49, 666–677.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Karunakaran, D. et al. RIPK1 expression associates with inflammation in early atherosclerosis in humans and can be therapeutically silenced to reduce NF-κB activation and atherogenesis in mice. Circulation 143, 163–177 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Puylaert, P. et al. The impact of RIPK1 kinase inhibition on atherogenesis: a genetic and a pharmacological approach. Biomedicines 10, 1016 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rasheed, A. et al. Loss of MLKL (mixed lineage kinase domain-like protein) decreases necrotic core but increases macrophage lipid accumulation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 40, 1155–1167 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Hosseini, Z. et al. Resolvin D1 enhances necroptotic cell clearance through promoting macrophage fatty acid oxidation and oxidative phosphorylation. Arterioscler. Thromb. Vasc. Biol. 41, 1062–1075 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lin, J. et al. A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep. 3, 200–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Bhaskar, V. et al. Monoclonal antibodies targeting IL-1 beta reduce biomarkers of atherosclerosis in vitro and inhibit atherosclerotic plaque formation in Apolipoprotein E-deficient mice. Atherosclerosis 216, 313–320 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Gomez, D. et al. Interleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of mice. Nat. Med. 24, 1418–1429 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ridker, P. M., MacFadyen, J. G., Thuren, T. & Libby, P. Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1β inhibition with canakinumab: further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis. Eur. Heart J. 41, 2153–2163 (2019).

    Article  Google Scholar 

  148. Koritala, T. et al. Infection risk with the use of interleukin inhibitors in hospitalized patients with COVID-19: a narrative review. Infez. Med. 29, 495–503 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Thompson, P. L. & Nidorf, S. M. Anti-inflammatory therapy with canakinumab for atherosclerotic disease: lessons from the CANTOS trial. J. Thorac. Dis. 10, 695–698 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Olsen, M. B. et al. Targeting the inflammasome in cardiovascular disease. JACC Basic Transl. Sci. 7, 84–98 (2022).

    Article  PubMed  Google Scholar 

  151. Martinez, G. J. et al. Colchicine acutely suppresses local cardiac production of inflammatory cytokines in patients with an acute coronary syndrome. J. Am. Heart Assoc. 4, e002128 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Nidorf, M. & Thompson, P. L. Effect of colchicine (0.5 mg twice daily) on high-sensitivity C-reactive protein independent of aspirin and atorvastatin in patients with stable coronary artery disease. Am. J. Cardiol. 99, 805–807 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Nidorf, S. M., Eikelboom, J. W., Budgeon, C. A. & Thompson, P. L. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol. 61, 404–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Soehnlein, O. & Tall, A. R. AIMing 2 treat atherosclerosis. Nat. Rev. Cardiol. 19, 567–568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44.e36 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Hu, J. J. et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat. Immunol. 21, 736–745 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Humphries, F. et al. Succination inactivates gasdermin D and blocks pyroptosis. Science 369, 1633–1637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Luo, M., Sun, Q., Zhao, H., Tao, J. & Yan, D. The effects of dimethyl fumarate on atherosclerosis in the apolipoprotein E-Deficient mouse model with streptozotocin-induced hyperglycemia mediated by the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway. Med. Sci. Monit. 25, 7966–7975 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Matheeussen, V. et al. Dipeptidyl peptidases in atherosclerosis: expression and role in macrophage differentiation, activation and apoptosis. Basic Res. Cardiol. 108, 3504 (2013).

    Article  Google Scholar 

  160. Wisniewska, A. et al. The antiatherosclerotic action of 1G244 - An inhibitor of dipeptidyl peptidases 8/9 - is mediated by the induction of macrophage death. Eur. J. Pharmacol. 944, 175566 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Zilka, O. et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent. Sci. 3, 232–243 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Skouta, R. et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J. Am. Chem. Soc. 136, 4551–4556 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bai, T., Li, M., Liu, Y., Qiao, Z. & Wang, Z. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic. Biol. Med. 160, 92–102 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Guo, Z. et al. Suppression of atherogenesis by overexpression of glutathione peroxidase-4 in apolipoprotein E-deficient mice. Free Radic. Biol. Med. 44, 343–352 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Hofmans, S. et al. Novel ferroptosis inhibitors with improved potency and ADME properties. J. Med. Chem. 59, 2041–2053 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Devisscher, L. et al. Discovery of novel, drug-like ferroptosis inhibitors with in vivo efficacy. J. Med. Chem. 61, 10126–10140 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Puylaert, P. et al. Effect of erythrophagocytosis-induced ferroptosis during angiogenesis in atherosclerotic plaques. Angiogenesis 26, 505–522 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Xu, J., Han, X., Xia, N., Zhao, Q. & Cheng, Z. IL-37 suppresses macrophage ferroptosis to attenuate diabetic atherosclerosis via the NRF2 pathway. Exp. Ther. Med. 25, 289 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Nikoletopoulou, V., Markaki, M., Palikaras, K. & Tavernarakis, N. Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta 1833, 3448–3459 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z. G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514–2526 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ofengeim, D. & Yuan, J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat. Rev. Mol. Cell Biol. 14, 727–736 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Fritsch, M. et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575, 683–687 (2019).

    Article  CAS  PubMed  Google Scholar 

  174. Schneider, K. S. et al. The inflammasome drives GSDMD-independent secondary pyroptosis and IL-1 release in the absence of caspase-1 protease activity. Cell Rep. 21, 3846–3859 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Speir, M. & Lawlor, K. E. RIP-roaring inflammation: RIPK1 and RIPK3 driven NLRP3 inflammasome activation and autoinflammatory disease. Semin. Cell Dev. Biol. 109, 114–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Lawlor, K. E. et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun. 6, 6282 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Tao, L. et al. The kinase receptor-interacting protein 1 is required for inflammasome activation induced by endoplasmic reticulum stress. Cell Death Dis. 9, 641 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Puylaert, P. et al. Gasdermin D deficiency limits the transition of atherosclerotic plaques to an inflammatory phenotype in ApoE knock-out mice. Biomedicines 10, 1171 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zheng, M. & Kanneganti, T. D. The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol. Rev. 297, 26–38 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Liu, W. et al. Erythroid lineage Jak2V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis. J. Clin. Invest. 132, e155724 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Michel, J. B., Virmani, R., Arbustini, E. & Pasterkamp, G. Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur. Heart J. 32, 1977–1985 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Dutra, F. F. et al. Hemolysis-induced lethality involves inflammasome activation by heme. Proc. Natl Acad. Sci. USA 111, E4110–E4118 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Cherubini, A. et al. Role of antioxidants in atherosclerosis: epidemiological and clinical update. Curr. Pharm. Des. 11, 2017–2032 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Kim, H. J. et al. NecroX as a novel class of mitochondrial reactive oxygen species and ONOO- scavenger. Arch. Pharm. Res. 33, 1813–1823 (2010).

    Article  CAS  PubMed  Google Scholar 

  185. Grootaert, M. O. et al. NecroX-7 reduces necrotic core formation in atherosclerotic plaques of Apoe knockout mice. Atherosclerosis 252, 166–174 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Kim, E. et al. Pharmacokinetics and tolerability of LC28-0126, a novel necrosis inhibitor, after multiple ascending doses: a phase I randomized, double-blind, placebo-controlled study in healthy male subjects. Clin. Ther. 42, 1946–1954.e2 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Marlevi, D. & Edelman, E. R. Vascular lesion-specific drug delivery systems: JACC state-of-the-art review. J. Am. Coll. Cardiol. 77, 2413–2431 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Bejarano, J. et al. Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: evolution toward prospective theranostic approaches. Theranostics 8, 4710–4732 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tao, H. et al. Scavenging of reactive dicarbonyls with 2-hydroxybenzylamine reduces atherosclerosis in hypercholesterolemic Ldlr-/- mice. Nat. Commun. 11, 4084 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Pitchford, L. M. et al. Safety, tolerability, and pharmacokinetics of repeated oral doses of 2-hydroxybenzylamine acetate in healthy volunteers: a double-blind, randomized, placebo-controlled clinical trial. BMC Pharmacol. Toxicol. 21, 3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Huang, J. et al. Scavenging dicarbonyls with 5’-O-pentyl-pyridoxamine increases HDL net cholesterol efflux capacity and attenuates atherosclerosis and insulin resistance. Mol. Metab. 67, 101651 (2023).

    Article  CAS  PubMed  Google Scholar 

  192. Martinet, W., Verheye, S. & De Meyer, G. R. Y. Selective depletion of macrophages in atherosclerotic plaques via macrophage-specific initiation of cell death. Trends Cardiovasc. Med. 17, 69–75 (2007).

    Article  CAS  PubMed  Google Scholar 

  193. Verheye, S. et al. Selective clearance of macrophages in atherosclerotic plaques by autophagy. J. Am. Coll. Cardiol. 49, 706–715 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Wang, X. et al. Knockdown of mTOR by lentivirus-mediated RNA interference suppresses atherosclerosis and stabilizes plaques via a decrease of macrophages by autophagy in apolipoprotein E-deficient mice. Int. J. Mol. Med. 32, 1215–1221 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Zhai, C. et al. Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque. PLoS ONE 9, e90563 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Martinet, W. et al. Drug-induced macrophage autophagy in atherosclerosis: for better or worse? Basic Res. Cardiol. 108, 321 (2013).

    Article  PubMed  Google Scholar 

  197. Martinet, W. et al. Everolimus triggers cytokine release by macrophages: rationale for stents eluting everolimus and a glucocorticoid. Arterioscler. Thromb. Vasc. Biol. 32, 1228–1235 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were supported by iBOF (interuniversitair Bijzonder Onderzoeksfonds) ATLANTIS (grant iBOF-21-053) and the FWO-Flanders (grant G026723N).

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article and discussed the content of the article. G.R.Y.D.M. and W.M. wrote the manuscript. All the authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Guido R. Y. De Meyer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Joseph Boyle; Edward Thorp, who co-reviewed with Kristofor Glinton; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Meyer, G.R.Y., Zurek, M., Puylaert, P. et al. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat Rev Cardiol 21, 312–325 (2024). https://doi.org/10.1038/s41569-023-00957-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00957-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing