Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oxidized phospholipids in cardiovascular disease

Abstract

Prolonged or excessive exposure to oxidized phospholipids (OxPLs) generates chronic inflammation. OxPLs are present in atherosclerotic lesions and can be detected in plasma on apolipoprotein B (apoB)-containing lipoproteins. When initially conceptualized, OxPL–apoB measurement in plasma was expected to reflect the concentration of minimally oxidized LDL, but, surprisingly, it correlated more strongly with plasma lipoprotein(a) (Lp(a)) levels. Indeed, experimental and clinical studies show that Lp(a) particles carry the largest fraction of OxPLs among apoB-containing lipoproteins. Plasma OxPL–apoB levels provide diagnostic information on the presence and extent of atherosclerosis and improve the prognostication of peripheral artery disease and first and recurrent myocardial infarction and stroke. The addition of OxPL–apoB measurements to traditional cardiovascular risk factors improves risk reclassification, particularly in patients in intermediate risk categories, for whom improving decision-making is most impactful. Moreover, plasma OxPL–apoB levels predict cardiovascular events with similar or greater accuracy than plasma Lp(a) levels, probably because this measurement reflects both the genetics of elevated Lp(a) levels and the generalized or localized oxidation that modifies apoB-containing lipoproteins and leads to inflammation. Plasma OxPL–apoB levels are reduced by Lp(a)-lowering therapy with antisense oligonucleotides and by lipoprotein apheresis, niacin therapy and bariatric surgery. In this Review, we discuss the role of role OxPLs in the pathophysiology of atherosclerosis and Lp(a) atherogenicity, and the use of OxPL–apoB measurement for improving prognosis, risk reclassification and therapeutic interventions.

Key points

  • Phosphocholine-containing oxidized phospholipids (OxPLs) induce chronic inflammation, including in atherosclerotic lesions, and can be detected in plasma on apolipoprotein B-100 (apoB-100)-containing lipoproteins.

  • A method has been developed to quantify OxPLs on a normalized amount of apoB-100 (OxPL–apoB), so that the measurement is independent of plasma apoB-100 and LDL cholesterol levels.

  • Lipoprotein(a) (Lp(a)) particles carry the largest fraction of OxPLs among apoB-containing lipoproteins; the OxPLs are bound covalently to apolipoprotein(a) and are free in the lipid phase of the associated LDL-like particle.

  • Plasma OxPL–apoB levels predict the presence and extent of anatomical atherosclerotic cardiovascular disease, and elevated levels are associated with disease in multiple arterial beds; measurement of OxPL–apoB improves prognostication of peripheral artery disease, as well as incident and recurrent myocardial infarction and stroke, and improves risk reclassification, particularly in patients in intermediate risk categories, for whom improving decision-making is most impactful.

  • Plasma OxPL–apoB levels are reduced by treatment with antisense oligonucleotides aimed at reducing Lp(a) production and by lipoprotein apheresis, niacin therapy and bariatric surgery.

  • Plasma OxPL–apoB levels predict cardiovascular events with a potency similar to or greater than that of plasma Lp(a) levels, probably because OxPL–apoB levels reflect the levels of the most atherogenic and pro-inflammatory Lp(a) and apoB-100-containing particles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oxidized phospholipid-binding specificity of the E06 mouse monoclonal antibody.
Fig. 2: Differential patterns of macrophages, oxidized phospholipids, apoB-100 and apo(a) in atherosclerotic lesions.
Fig. 3: ApoB-100, oxidized phospholipid and apo(a) content in atherosclerotic lesions.
Fig. 4: Relationship between oxidized phospholipids and lipoprotein(a).
Fig. 5: Relationship of OxPL–apoB and Lp(a) levels according to size of the major apo(a) isoform.
Fig. 6: Association of OxPL–apoB with anatomical pan-arterial disease and cardiovascular events.
Fig. 7: Effect of therapeutic interventions on plasma levels of OxPL–apoB and lipoprotein(a).
Fig. 8: Effect of dietary interventions or statin therapy on OxPL–apoB levels.

Similar content being viewed by others

References

  1. Sachdeva, A. et al. Lipid levels in patients hospitalized with coronary artery disease: an analysis of 136,905 hospitalizations in Get With The Guidelines. Am. Heart J. 157, 111–117.e2 (2009).

    CAS  PubMed  Google Scholar 

  2. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    CAS  PubMed  Google Scholar 

  3. Schwartz, G. G. et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med. 379, 2097–2107 (2018).

    CAS  PubMed  Google Scholar 

  4. Miller, Y. I. et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ. Res. 108, 235–248 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsiantoulas, D. et al. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J. Lipid Res. 56, 440–448 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Witztum, J. L. & Lichtman, A. H. The influence of innate and adaptive immune responses on atherosclerosis. Annu. Rev. Pathol. 9, 73–102 (2014).

    CAS  PubMed  Google Scholar 

  7. Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558, 301–306 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Sun, X. et al. Neutralization of oxidized phospholipids ameliorates non-alcoholic steatohepatitis. Cell Metab. 31, 189–206.e8 (2020).

    CAS  PubMed  Google Scholar 

  9. van der Valk, F. M. et al. Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans. Circulation 134, 611–624 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485–497 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest. 105, 1731–1740 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Palinski, W. et al. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J. Clin. invest. 98, 800–814 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Taleb, A., Witztum, J. L. & Tsimikas, S. Oxidized phospholipids on apolipoprotein B-100 (OxPL/apoB) containing lipoproteins: a biomarker predicting cardiovascular disease and cardiovascular events. Biomark. Med. 5, 673–694 (2011).

    CAS  PubMed  Google Scholar 

  14. Glavinovic, T. et al. Physiological bases for the superiority of apolipoprotein B over low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol as a marker of cardiovascular risk. J. Am. Heart Assoc. 11, e025858 (2022).

    PubMed  PubMed Central  Google Scholar 

  15. Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C. & Witztum, J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 320, 915–924 (1989).

    CAS  PubMed  Google Scholar 

  16. Gillotte, K. L., Horkko, S., Witztum, J. L. & Steinberg, D. Oxidized phospholipids, linked to apolipoprotein B of oxidized LDL, are ligands for macrophage scavenger receptors. J. Lipid Res. 41, 824–833 (2000).

    CAS  PubMed  Google Scholar 

  17. Steinberg, D. & Witztum, J. L. Oxidized low-density lipoprotein and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30, 2311–2316 (2010).

    CAS  PubMed  Google Scholar 

  18. Chang, M. K. et al. Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J. Exp. Med. 200, 1359–1370 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Friedman, P., Horkko, S., Steinberg, D., Witztum, J. L. & Dennis, E. A. Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids. Importance of Schiff base formation and aldol condensation. J. Biol. Chem. 277, 7010–7020 (2002).

    CAS  PubMed  Google Scholar 

  20. van Dijk, R. A. et al. Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions. J. Lipid Res. 53, 2773–2790 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. Boonmark, N. W. & Lawn, R. M. The lysine-binding function of Lp(a). Clin. Genet. 52, 355–360 (1997).

    CAS  PubMed  Google Scholar 

  22. Cushing, G. L. et al. Quantitation and localization of apolipoproteins [a] and B in coronary artery bypass vein grafts resected at re-operation. Arteriosclerosis 9, 593–603 (1989).

    CAS  PubMed  Google Scholar 

  23. Skalen, K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417, 750–754 (2002).

    CAS  PubMed  ADS  Google Scholar 

  24. Ravandi, A. et al. Release and capture of bioactive oxidized phospholipids and oxidized cholesteryl esters during percutaneous coronary and peripheral arterial interventions in humans. J. Am. Coll. Cardiol. 63, 1961–1971 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Upchurch, C. M. et al. Targeting oxidized phospholipids by AAV-based gene therapy in mice with established hepatic steatosis prevents progression to fibrosis. Sci. Adv. 8, eabn0050 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, M. Q. et al. Interferon regulatory factor 1-Rab27a regulated extracellular vesicles promote liver ischemia/reperfusion injury. Hepatology 67, 1056–1070 (2018).

    CAS  PubMed  Google Scholar 

  27. Yeang, C. et al. Reduction of myocardial ischaemia-reperfusion injury by inactivating oxidized phospholipids. Cardiovasc. Res. 115, 179–189 (2019).

    CAS  PubMed  Google Scholar 

  28. Oehler, B. et al. Inflammatory pain control by blocking oxidized phospholipid-mediated TRP channel activation. Sci. Rep. 7, 5447 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  29. Mohammadi, M. et al. Antinociception by the anti-oxidized phospholipid antibody E06. Br. J. Pharmacol. 175, 2940–2955 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ambrogini, E. et al. Oxidation-specific epitopes restrain bone formation. Nat. Commun. 9, 2193 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  31. Palmieri, M. et al. A neutralizing antibody targeting oxidized phospholipids promotes bone anabolism in chow-fed young adult mice. J. Bone Miner. Res. 36, 170–185 (2021).

    CAS  PubMed  Google Scholar 

  32. Palmieri, M. et al. Neutralization of oxidized phospholipids attenuates age-associated bone loss in mice. Aging Cell 20, e13442 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Taleb, A. et al. High immunoglobulin-M levels to oxidation-specific epitopes are associated with lower risk of acute myocardial infarction. J. Lipid Res. 64, 100391 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bergmark, C. et al. A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. J. Lipid Res. 49, 2230–2239 (2008).

    CAS  PubMed  Google Scholar 

  35. Leibundgut, G. et al. Determinants of binding of oxidin apolipoprotein (a) and lipoprotein (a). J. Lipid Res. 54, 2815–2830 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsimikas, S., Tsironis, L. D. & Tselepis, A. D. New insights into the role of lipoprotein(a)-associated lipoprotein-associated phospholipase A2 in atherosclerosis and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 27, 2094–2099 (2007).

    CAS  PubMed  Google Scholar 

  37. Rao, F. et al. Heritability of biomarkers of oxidized lipoproteins: twin pair study. Arterioscler. Thromb. Vasc. Biol. 35, 1704–1711 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. McLean, J. W. et al. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 330, 132–137 (1987).

    CAS  PubMed  ADS  Google Scholar 

  39. Laplaud, P. M., Beaubatie, L., Rall, S. C. Jr., Luc, G. & Saboureau, M. Lipoprotein[a] is the major apoB-containing lipoprotein in the plasma of a hibernator, the hedgehog (Erinaceus europaeus). J. Lipid Res. 29, 1157–1170 (1988).

    CAS  PubMed  Google Scholar 

  40. Scanu, A. M. et al. Rhesus monkey lipoprotein(a) binds to lysine Sepharose and U937 monocytoid cells less efficiently than human lipoprotein(a). Evidence for the dominant role of kringle 4(37). J. Clin. Invest. 91, 283–291 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Belczewski, A. R. et al. Baboon lipoprotein(a) binds very weakly to lysine-agarose and fibrin despite the presence of a strong lysine-binding site in apolipoprotein(a) kringl IV type 10. Biochemistry 44, 555–564 (2005).

    CAS  PubMed  Google Scholar 

  42. Chenivesse, X., Huby, T., Wickins, J., Chapman, J. & Thillet, J. Molecular cloning of the cDNA encoding the carboxy-terminal domain of chimpanzee apolipoprotein(a): an Asp57 → Asn mutation in kringle IV-10 is associated with poor fibrin binding. Biochemistry 37, 7213–7223 (1998).

    CAS  PubMed  Google Scholar 

  43. Lim, E. T. et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 10, e1004494 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Emdin, C. A. et al. Phenotypic characterization of genetically lowered human lipoprotein(a) levels. J. Am. Coll. Cardiol. 68, 2761–2772 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mora, S. et al. Lipoprotein(a) and risk of type 2 diabetes. Clin. Chem. 56, 1252–1260 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kamstrup, P. R. & Nordestgaard, B. G. Lipoprotein(a) concentrations, isoform size, and risk of type 2 diabetes: a Mendelian randomisation study. Lancet Diabetes Endocrinol. 1, 220–227 (2013).

    CAS  PubMed  Google Scholar 

  47. Ye, Z. et al. The association between circulating lipoprotein(a) and type 2 diabetes: is it causal? Diabetes 63, 332–342 (2014).

    CAS  PubMed  Google Scholar 

  48. Paige, E. et al. Lipoprotein(a) and incident type-2 diabetes: results from the prospective Bruneck study and a meta-analysis of published literature. Cardiovasc. Diabetol. 16, 38 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Tsimikas, S. In search of a physiological function of lipoprotein(a): causality of elevated Lp(a) levels and reduced incidence of type 2 diabetes. J. Lipid Res. 59, 741–744 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Manten, G. T. et al. Changes of plasma lipoprotein(a) during and after normal pregnancy in Caucasians. J. Matern. Fetal Neonatal Med. 14, 91–95 (2003).

    CAS  PubMed  Google Scholar 

  51. Doucet, C., Huby, T., Chapman, J. & Thillet, J. Lipoprotein[a] in the chimpanezee: relationship of apo[a] phenotype to elevated plasma Lp[a] levels. J. Lipid Res. 35, 263–270 (1994).

    CAS  PubMed  Google Scholar 

  52. Loudon, I. Deaths in childbed from the eighteenth century to 1935. Med. Hist. 30, 1–41 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Berbée, J. F., Havekes, L. M. & Rensen, P. C. Apolipoproteins modulate the inflammatory response to lipopolysaccharide. J. Endotoxin Res. 11, 97–103 (2005).

    PubMed  Google Scholar 

  54. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Brown, M. S. & Goldstein, J. L. Plasma lipoproteins: teaching old dogmas new tricks. Nature 330, 113–114 (1987).

    CAS  PubMed  ADS  Google Scholar 

  56. Ruder, S. et al. Lp(a), oxidized phospholipids and oxidation-specific epitopes are increased in subjects with keloid formation. Lipids Health Dis. 21, 113 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schneider, M. et al. High-level lipoprotein [a] expression in transgenic mice: evidence for oxidized phospholipids in lipoprotein [a] but not in low density lipoproteins. J. Lipid Res. 46, 769–778 (2005).

    CAS  PubMed  Google Scholar 

  58. Torzewski, M. et al. Lipoprotein(a) associated molecules are prominent components in plasma and valve leaflets in calcific aortic valve stenosis. JACC Basic. Transl. Sci. 2, 229–240 (2017).

    PubMed  PubMed Central  Google Scholar 

  59. Chen, Y. et al. Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J. Immunol. 183, 1346–1359 (2009).

    CAS  PubMed  Google Scholar 

  60. Chang, M. K., Binder, C. J., Torzewski, M. & Witztum, J. L. C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: phosphorylcholine of oxidized phospholipids. PNAS 99, 13043–13048 (2002).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Dei, R. et al. Lipid peroxidation and advanced glycation end products in the brain in normal aging and in Alzheimer’s disease. Acta Neuropathol. 104, 113–122 (2002).

    CAS  PubMed  Google Scholar 

  62. Haider, L. et al. Oxidative damage in multiple sclerosis lesions. Brain 134, 1914–1924 (2011).

    PubMed  PubMed Central  Google Scholar 

  63. Dou, H. et al. Oxidized phospholipids promote NETosis and arterial thrombosis in LNK(SH2B3) deficiency. Circulation 144, 1940–1954 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ikura, Y. et al. Localization of oxidized phosphatidylcholine in nonalcoholic fatty liver disease: impact on disease progression. Hepatology 43, 506–514 (2006).

    CAS  PubMed  Google Scholar 

  65. Svenungsson, E. et al. Risk factors for cardiovascular disease in systemic lupus erythematosus. Circulation 104, 1887–1893 (2001).

    CAS  PubMed  Google Scholar 

  66. Muller, N. et al. IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) exotein (a) synthesis in humans. J. Lipid Res. 56, 1034–1042 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. McMahon, M. et al. High plasma leptin levels confer increased risk of atherosclerosis in women with systemic lupus erythematosus, and are associated with inflammatory oxidised lipids. Ann. Rheum. Dis. 70, 1619–1624 (2011).

    CAS  PubMed  Google Scholar 

  68. Leibundgut, G. et al. Oxidized phospholipids are present on plasminogen, affect fibrinolysis, and increase following acute myocardial infarction. J. Am. Coll. Cardiol. 59, 1426–1437 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. DeFilippis, A. P. et al. Circulating levels of plasminogen and oxidized phospholipids bound to plasminogen distinguish between atherothrombotic and non-atherothrombotic myocardial infarction. J. Thromb. Thrombolysis 42, 61–76 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. DeFilippis, A. P. et al. Atherothrombotic factors and atherosclerotic cardiovascular events: the multi-ethnic study of atherosclerosis. Eur. Heart J. 43, 971–981 (2022).

    CAS  PubMed  Google Scholar 

  71. Clarke, R. et al. Oxidized phospholipids on apolipoprotein B-100 versus plasminogen and risk of coronary heart disease in the PROCARDIS study. Atherosclerosis 354, 15–22 (2022).

    CAS  PubMed  Google Scholar 

  72. Schnitzler, J. G. et al. Atherogenic lipoprotein(a) increases vascular glycolysis, thereby facilitating inflammation and leukocyte extravasation. Circ. Res. 126, 1346–1359 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tsimikas, S. et al. Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J. Am. Coll. Cardiol. 41, 360–370 (2003).

    CAS  PubMed  Google Scholar 

  74. Tsimikas, S. et al. Oxidized phospholipids predict the presence and progression of carotid and femoral atherosclerosis and symptomatic cardiovascular disease: five-year prospective results from the Bruneck study. J. Am. Coll. Cardiol. 47, 2219–2228 (2006).

    CAS  PubMed  Google Scholar 

  75. Faghihnia, N., Tsimikas, S., Miller, E. R., Witztum, J. L. & Krauss, R. M. Changes in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat high-carbohydrate diet. J. Lipid Res. 51, 3324–3330 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bertoia, M. L. et al. Oxidation-specific biomarkers and risk of peripheral artery disease. J. Am. Coll. Cardiol. 61, 2169–2179 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Tsimikas, S. et al. Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet 386, 1472–1483 (2015).

    CAS  PubMed  Google Scholar 

  78. Viney, N. J. et al. Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet 388, 2239–2253 (2016).

    CAS  PubMed  Google Scholar 

  79. Tsimikas, S. et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N. Engl. J. Med. 382, 244–255 (2020).

    CAS  PubMed  Google Scholar 

  80. Young, S. G., Witztum, J. L., Casal, D. C., Curtiss, L. K. & Bernstein, S. Conservation of the low density lipoprotein receptor-binding domain of apoprotein B. Demonstration by a new monoclonal antibody, MB47. Arteriosclerosis 6, 178–188 (1986).

    CAS  PubMed  Google Scholar 

  81. Byun, Y. S. et al. Relationship of oxidized phospholipids on apolipoprotein B-100 to cardiovascular outcomes in patients treated with intensive versus moderate atorvastatin therapy: the TNT trial. J. Am. Coll. Cardiol. 65, 1286–1295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Byun, Y. S. et al. Oxidized phospholipids on apolipoprotein B-100 and recurrent ischemic events following stroke or transient ischemic attack. J. Am. Coll. Cardiol. 69, 147–158 (2017).

    CAS  PubMed  Google Scholar 

  83. Young, S. G. et al. Definition of a nonlinear conformational epitope for the apolipoprotein B-100-specific monoclonal antibody, MB47. J. Lipid Res. 35, 399–407 (1994).

    CAS  PubMed  Google Scholar 

  84. Van Berkel, T. J., De Rijke, Y. B. & Kruijt, J. K. Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. Recognition by various scavenger receptors on Kupffer and endothelial liver cells. J. Biol. Chem. 266, 2282–2289 (1991).

    PubMed  Google Scholar 

  85. Holvoet, P. et al. Correlation between oxidized low density lipoproteins and von Willebrand factor in chronic renal failure. Thromb. Haemost. 76, 663–669 (1996).

    CAS  PubMed  Google Scholar 

  86. Tsouli, S. G. et al. Autoantibody titers against OxLDL are correlated with Achilles tendon thickness in patients with familial hypercholesterolemia. J. Lipid Res. 47, 2208–2214 (2006).

    CAS  PubMed  Google Scholar 

  87. Wu, T. et al. Is plasma oxidized low-density lipoprotein, measured with the widely used antibody 4E6, an independent predictor of coronary heart disease among U.S. men and women? J. Am. Coll. Cardiol. 48, 973–979 (2006).

    CAS  PubMed  Google Scholar 

  88. Tsimikas, S. et al. Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a): short-term and long-term immunologic responses to oxidized low-density lipoprotein. Circulation 109, 3164–3170 (2004).

    CAS  PubMed  Google Scholar 

  89. Tsimikas, S. et al. High-dose atorvastatin reduces total plasma levels of oxidized phospholipids and immune complexes present on apolipoprotein B-100 in patients with acute coronary syndromes in the MIRACL trial. Circulation 110, 1406–1412 (2004).

    CAS  PubMed  Google Scholar 

  90. Tsimikas, S. et al. Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N. Engl. J. Med. 353, 46–57 (2005).

    CAS  PubMed  Google Scholar 

  91. Tsimikas, S. et al. Relationship of oxidized phospholipids on apolipoprotein B-100 particles to race/ethnicity, apolipoprotein(a) isoform size, and cardiovascular risk factors: results from the Dallas Heart Study. Circulation 119, 1711–1719 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tsimikas, S. et al. Oxidation-specific biomarkers, lipoprotein(a), and risk of fatal and nonfatal coronary events. J. Am. Coll. Cardiol. 56, 946–955 (2010).

    CAS  PubMed  Google Scholar 

  93. Tsimikas, S. et al. Oxidation-specific biomarkers, prospective 15-year cardiovascular and stroke outcomes, and net reclassification of cardiovascular events. J. Am. Coll. Cardiol. 60, 2218–2229 (2012).

    CAS  PubMed  Google Scholar 

  94. Tsimikas, S. et al. Pro-inflammatory interleukin-1 genotypes potentiate the risk of coronary artery disease and cardiovascular events mediated by oxidized phospholipids and lipoprotein(a). J. Am. Coll. Cardiol. 63, 1724–1734 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Capoulade, R. et al. Oxidized phospholipids, lipoprotein(a), and progression of calcific aortic valve stenosis. J. Am. Coll. Cardiol. 66, 1236–1246 (2015).

    CAS  PubMed  Google Scholar 

  96. Nsaibia, M. J. et al. Autotaxin interacts with lipoprotein(a) and oxidized phospholipids in predicting the risk of calcific aortic valve stenosis in patients with coronary artery disease. J. Intern. Med. 280, 509–517 (2016).

    CAS  PubMed  Google Scholar 

  97. Kamstrup, P. R., Hung, M. Y., Witztum, J. L., Tsimikas, S. & Nordestgaard, B. G. Oxidized phospholipids and risk of calcific aortic valve disease: the Copenhagen General Population Study. Arterioscler. Thromb. Vasc. Biol. 37, 1570–1578 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Capoulade, R., Yeang, C., Chan, K. L., Pibarot, P. & Tsimikas, S. Association of mild to moderate aortic valve stenosis progression with higher lipoprotein(a) and oxidized phospholipid levels: secondary analysis of a randomized clinical trial. JAMA Cardiol. 3, 1212–1217 (2018).

    PubMed  PubMed Central  Google Scholar 

  99. Despres, A. A. et al. Lipoprotein(a), oxidized phospholipids, and aortic valve microcalcification assessed by 18F-sodium fluoride positron emission tomography and computed tomography. CJC Open. 1, 131–140 (2019).

    PubMed  PubMed Central  Google Scholar 

  100. Zheng, K. H. et al. Lipoprotein(a) and oxidized phospholipids promote valve calcification in patients with aortic stenosis. J. Am. Coll. Cardiol. 73, 2150–2162 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Capoulade, R. et al. ApoCIII-Lp(a) complexes in conjunction with Lp(a)-OxPL predict rapid progression of aortic stenosis. Heart 106, 738–745 (2020).

    CAS  PubMed  Google Scholar 

  102. Girard, A. et al. Impact of C-reactive protein levels on lipoprotein(a)-associated aortic stenosis incidence and progression. Eur. Heart J. Open. 3, oead032 (2023).

    PubMed  PubMed Central  Google Scholar 

  103. Hoekstra, M. et al. Genome-wide association study highlights APOH as a novel locus for lipoprotein(a) levels – brief report. Arterioscler. Thromb. Vasc. Biol. 41, 458–464 (2021).

    CAS  PubMed  Google Scholar 

  104. Wade, D. P. et al. 5′ control regions of the apolipoprotein(a) gene and members of the related plasminogen gene family. PNAS 90, 1369–1373 (1993).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  105. Boffelli, D., Zajchowski, D. A., Yang, Z. & Lawn, R. M. Estrogen modulation of apolipoprotein(a) expression. Identification of a regulatory element. J. Biol. Chem. 274, 15569–15574 (1999).

    CAS  PubMed  Google Scholar 

  106. Shlipak, M. G. et al. Estrogen and progestin, lipoprotein(a), and the risk of recurrent coronary heart disease events after menopause. JAMA 283, 1845–1852 (2000).

    CAS  PubMed  Google Scholar 

  107. Mooser, V. & Hobbs, H. H. Lipoprotein(a) and growth hormone: is the puzzle solved? Eur. J. Endocrinol. 137, 450–452 (1997).

    CAS  PubMed  Google Scholar 

  108. Enkhmaa, B. & Berglund, L. Non-genetic influences on lipoprotein(a) concentrations. Atherosclerosis 349, 53–62 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Fefer, P. et al. The role of oxidized phospholipids, lipoprotein (a) and biomarkers of oxidized lipoproteins in chronically occluded coronary arteries in sudden cardiac death and following successful percutaneous revascularization. Cardiovasc. Revasc. Med. 13, 11–19 (2012).

    PubMed  Google Scholar 

  110. Gilliland, T. C. et al. Lipoprotein(a), oxidized phospholipids, and coronary artery disease severity and outcomes. J. Am. Coll. Cardiol. 81, 1780–1792 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Penny, W. F. et al. Improvement of coronary artery endothelial dysfunction with lipid-lowering therapy: heterogeneity of segmental response and correlation with plasma-oxidized low density lipoprotein. J. Am. Coll. Cardiol. 37, 766–774 (2001).

    CAS  PubMed  Google Scholar 

  112. Wu, M. D. et al. Lipoprotein apheresis acutely reverses coronary microvascular dysfunction in patients with severe hypercholesterolemia. JACC Cardiovasc. Imaging 12, 1430–1440 (2019).

    PubMed  Google Scholar 

  113. Ahmadi, N. et al. Relation of oxidative biomarkers, vascular dysfunction, and progression of coronary artery calcium. Am. J. Cardiol. 105, 459–466 (2010).

    CAS  PubMed  Google Scholar 

  114. Rader, D. J. & Bajaj, A. Lipoprotein(a) and oxidized phospholipids: partners in crime or individual perpetrators in cardiovascular disease? J. Am. Coll. Cardiol. 81, 1793–1796 (2023).

    CAS  PubMed  Google Scholar 

  115. Lee, S. R. et al. LPA gene, ethnicity, and cardiovascular events. Circulation 135, 251–263 (2017).

    CAS  PubMed  Google Scholar 

  116. Arai, K. et al. The I4399M variant of apolipoprotein(a) is associated with increased oxidized phospholipids on apolipoprotein B-100 particles. Atherosclerosis 209, 498–503 (2010).

    CAS  PubMed  Google Scholar 

  117. Saleheen, D. et al. Apolipoprotein(a) isoform size, lipoprotein(a) concentration, and coronary artery disease: a mendelian randomisation analysis. Lancet Diabetes Endocrinol. 5, 524–533 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Fraley, A. E. et al. Relationship of oxidized phospholipids and biomarkers of oxidized low-density lipoprotein with cardiovascular risk factors, inflammatory biomarkers, and effect of statin therapy in patients with acute coronary syndromes: results from the MIRACL (Myocardial Ischemia Reduction With Aggressive Cholesterol Lowering) trial. J. Am. Coll. Cardiol. 53, 2186–2196 (2009).

    CAS  PubMed  Google Scholar 

  119. Kiechl, S. et al. Oxidized phospholipids, lipoprotein(a), lipoprotein-associated phospholipase A2 activity, and 10-year cardiovascular outcomes: prospective results from the Bruneck study. Arterioscler. Thromb. Vasc. Biol. 27, 1788–1795 (2007).

    CAS  PubMed  Google Scholar 

  120. Arai, K. et al. Acute impact of apheresis on oxidized phospholipids in patients with familial hypercholesterolemia. J. Lipid Res. 53, 1670–1678 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ho, J. H. et al. Effect of bariatric surgery on plasma levels of oxidised phospholipids, biomarkers of oxidised LDL and lipoprotein(a). J. Clin. Lipidol. 15, 320–331 (2021).

    PubMed  Google Scholar 

  122. Yeang, C. et al. Effect of therapeutic interventions on oxidized phospholipids on apolipoprotein B100 and lipoprotein(a). J. Clin. Lipidol. 10, 594–603 (2016).

    PubMed  Google Scholar 

  123. Roeseler, E. et al. Lipoprotein apheresis for lipoprotein(a)-associated cardiovascular disease: prospective 5 years of follow-up and apolipoprotein(a) characterization. Arterioscler. Thromb. Vasc. Biol. 36, 2019–2027 (2016).

    CAS  PubMed  Google Scholar 

  124. Khan, T. Z. et al. Apheresis as novel treatment for refractory angina with raised lipoprotein(a): a randomized controlled cross-over trial. Eur. Heart J. 38, 1561–1569 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Konishi, K. et al. Advanced fibrosis of non-alcoholic steatohepatitis affects the significance of lipoprotein(a) as a cardiovascular risk factor. Atherosclerosis 299, 32–37 (2020).

    CAS  PubMed  Google Scholar 

  126. Tsimikas, S., Gordts, P., Nora, C., Yeang, C. & Witztum, J. L. Statin therapy increases lipoprotein(a) levels. Eur. Heart J. 41, 2275–2284 (2020).

    CAS  PubMed  Google Scholar 

  127. Choi, S. H. et al. Relationship between biomarkers of oxidized low-density lipoprotein, statin therapy, quantitative coronary angiography, and atheroma volume – Observations Reversal study. J. Am. Coll. Cardiol. 52, 24–32 (2008).

    CAS  PubMed  Google Scholar 

  128. Ky, B. et al. The influence of pravastatin and atorvastatin on markers of oxidative stress in hypercholesterolemic humans. J. Am. Coll. Cardiol. 51, 1653–1662 (2008).

    CAS  PubMed  Google Scholar 

  129. Rodenburg, J. et al. Oxidized low-density lipoprotein in children with familial hypercholesterolemia and unaffected siblings: effect of pravastatin. J. Am. Coll. Cardiol. 47, 1803–1810 (2006).

    CAS  PubMed  Google Scholar 

  130. Yoshida, H. et al. Effects of pitavastatin and atorvastatin on lipoprotein oxidation biomarkers in patients with dyslipidemia. Atherosclerosis 226, 161–164 (2013).

    CAS  PubMed  Google Scholar 

  131. Watts, G. F. et al. PCSK9 inhibition with alirocumab increases the catabolism of lipoprotein(a) particles in statin-treated patients with elevated lipoprotein(a). Metabolism 107, 154221 (2020).

    CAS  PubMed  Google Scholar 

  132. Berg, K. et al. Lp(a) lipoprotein level predicts survival and major coronary events in the Scandinavian Simvastatin Survival Study. Clin. Genet. 52, 254–261 (1997).

    CAS  PubMed  Google Scholar 

  133. Zhu, L. et al. Effect of an increase in Lp(a) following statin therapy on cardiovascular prognosis in secondary prevention population of coronary artery disease. BMC Cardiovasc. Disord. 22, 474 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Bhatia, H. S. et al. PCSK9 inhibition and oxidized phospholipids. J. Am. Coll. Cardiol. 78, 1288–1289 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. O’Donoghue, M. L. et al. Small interfering RNA to reduce lipoprotein(a) in cardiovascular disease. N. Engl. J. Med. 387, 1855–1864 (2022).

    PubMed  Google Scholar 

  136. Tsimikas, S. et al. Increased plasma oxidized phospholipid:apolipoprotein B-100 ratio with concomitant depletion of oxidized phospholipids from atherosclerotic lesions after dietary lipid-lowering: a potential biomarker of early atherosclerosis regression. Arterioscler. Thromb. Vasc. Biol. 27, 175–181 (2007).

    CAS  PubMed  Google Scholar 

  137. Cannon, C. P. et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N. Engl. J. Med. 350, 1495–1504 (2004).

    CAS  PubMed  Google Scholar 

  138. Erlinge, D. et al. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound (PROSPECT II): a prospective natural history study. Lancet 397, 985–995 (2021).

    CAS  PubMed  Google Scholar 

  139. Wu, R., de Faire, U., Lemne, C., Witztum, J. L. & Frostegard, J. Autoantibodies to OxLDL are decreased in individuals with borderline hypertension. Hypertension 33, 53–59 (1999).

    CAS  PubMed  Google Scholar 

  140. Segev, A., Strauss, B. H., Witztum, J. L., Lau, H. K. & Tsimikas, S. Relationship of a comprehensive panel of plasma oxidized low-density lipoprotein markers to angiographic restenosis in patients undergoing percutaneous coronary intervention for stable angina. Am. Heart J. 150, 1007–1014 (2005).

    CAS  PubMed  Google Scholar 

  141. Silaste, M. L. et al. Changes in dietary fat intake alter plasma levels of oxidized low-density lipoprotein and lipoprotein(a). Arterioscler. Thromb. Vasc. Biol. 24, 498–503 (2004).

    CAS  PubMed  Google Scholar 

  142. Pechlaner, R. et al. Heme oxygenase-1 gene promoter microsatellite polymorphism is associated with progressive atherosclerosis and incident cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 35, 229–236 (2015).

    CAS  PubMed  Google Scholar 

  143. Bossola, M. et al. Oxidized low-density lipoprotein biomarkers in patients with end-stage renal failure: acute effects of hemodialysis. Blood Purif. 25, 457–465 (2007).

    CAS  PubMed  Google Scholar 

  144. Bossola, M., Tazza, L., Luciani, G., Tortorelli, A. & Tsimikas, S. OxPL/apoB, lipoprotein(a) and OxLDL biomarkers and cardiovascular disease in chronic hemodialysis patients. J. Nephrol. 24, 581–588 (2011).

    CAS  PubMed  Google Scholar 

  145. Budoff, M. J. et al. Aged garlic extract supplemented with B vitamins, folic acid and l-arginine retards the progression of subclinical atherosclerosis: a randomized clinical trial. Prev. Med. 49, 101–107 (2009).

    CAS  PubMed  Google Scholar 

  146. Holleboom, A. G. et al. Lipid oxidation in carriers of lecithin:cholesterol acyltransferase gene mutations. Arterioscler. Thromb. Vasc. Biol. 32, 3066–3075 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Wiesner, P. et al. MCP-1 binds to oxidized LDL and is carried by lipoprotein(a) in human plasma. J. Lipid Res. 54, 1877–1883 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Hartikainen, J. et al. Adenoviral intramyocardial VEGF-DΔNΔC gene transfer increases myocardial perfusion reserve in refractory angina patients: a phase I/IIa study with 1-year follow-up. Eur. Heart J. 38, 2547–2555 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Naka, K. K. et al. Interleukin-1 genotypes modulate the long-term effect of lipoprotein(a) on cardiovascular events: the Ioannina Study. J. Clin. Lipidol. 12, 338–347 (2018).

    PubMed  Google Scholar 

  150. Kothari, H. et al. Association of D-dimer with plaque characteristics and plasma biomarkers of oxidation-specific epitopes in stable subjects with coronary artery disease. J. Cardiovasc. Transl. Res. 11, 221–229 (2018).

    PubMed  Google Scholar 

  151. Mefford, M. T. et al. PCSK9 loss-of-function variants and Lp(a) phenotypes among black US adults. J. Lipid Res. 60, 1946–1952 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank X. Yang (UCSD, USA) and E. Miller (UCSD, USA) for expert technical assistance in the SCOR UCSD biomarker laboratory. The many members of the SCOR/PPG laboratory for the past 30 years and the hundreds of worldwide collaborators are greatly acknowledged for their contributions to the work discussed in this Review. The authors are supported by NIH R01 HL159156 and HL170224 (S.T.) and PO HL147835 (J.L.W.).

Author information

Authors and Affiliations

Authors

Contributions

S.T. wrote the manuscript. Both authors researched data for the article, provided substantial contributions to discussion of the content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Sotirios Tsimikas.

Ethics declarations

Competing interests

S.T. and J.L.W. are co-inventors and receive royalties from patents owned by UCSD on oxidation-specific antibodies and on biomarkers related to oxidized lipoproteins, and are co-founders and have an equity interest in Kleanthi Diagnostics and Oxitope. The terms of this arrangement have been reviewed and approved by the UCSD in accordance with its conflict-of-interest policies. S.T. has a dual appointment at UCSD and Ionis Pharmaceuticals. J.L.W. is a consultant to Ionis Pharmaceuticals.

Peer review

Peer review information

Nature Reviews Cardiology thanks Jeffrey Kroon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsimikas, S., Witztum, J.L. Oxidized phospholipids in cardiovascular disease. Nat Rev Cardiol 21, 170–191 (2024). https://doi.org/10.1038/s41569-023-00937-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00937-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing