Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel and future lipid-modulating therapies for the prevention of cardiovascular disease

Abstract

Lowering the levels of LDL cholesterol in the plasma has been shown to reduce the risk of atherosclerotic cardiovascular disease (ASCVD). Several other lipoproteins, such as triglyceride-rich lipoproteins, HDL and lipoprotein(a) are associated with atherosclerosis and ASCVD, with strong evidence supporting causality for some. In this Review, we discuss novel and upcoming therapeutic strategies targeting different pathways in lipid metabolism to potentially attenuate the risk of cardiovascular events. Key proteins involved in lipoprotein metabolism, such as PCSK9, angiopoietin-related protein 3, cholesteryl ester transfer protein and apolipoprotein(a), have been identified as viable targets for therapeutic intervention through observational and genetic studies. These proteins can be targeted using a variety of approaches, such as protein inhibition or interference, inhibition of translation at the mRNA level (with the use of antisense oligonucleotides or small interfering RNA), and the introduction of loss-of-function mutations through base editing. These novel and upcoming strategies are complementary to and could work synergistically with existing therapies, or in some cases could potentially replace therapies, offering unprecedented opportunities to prevent ASCVD. Moreover, a major challenge in the prevention and treatment of non-communicable diseases is how to achieve safe, long-lasting reductions in causal exposures. This challenge might be overcome with approaches such as small interfering RNAs or genome editing, which shows how far the field has advanced from when the burden of achieving this goal was placed upon patients through rigorous adherence to daily small-molecule drug regimens.

Key points

  • LDL cholesterol is a causal and cumulative factor in the development of atherosclerosis; therefore, reducing plasma LDL cholesterol levels, irrespective of the approach used, decreases the risk of cardiovascular disease.

  • Data from observational and genetic studies have revealed novel treatment targets beyond LDL cholesterol lowering.

  • Novel treatment targets can be classified into those that increase the number of LDL receptors (LDLRs) in hepatocytes and those that interfere with the modification and composition of atherogenic lipoproteins.

  • Besides statins and ezetimibe, treatments that enhance LDLR function (LDLR-dependent treatments) include bempedoic acid, which targets ATP citrate lyase, and PCSK9-targeting therapies, such as monoclonal antibodies or the small interfering RNA inclisiran.

  • Emerging treatments that modify lipoprotein composition target apolipoprotein C-III, ANGPTL3, cholesteryl ester transfer protein and lecithin–cholesterol acyltransferase; therapies that modify lipoprotein number target apolipoprotein(a); and those that enhance lipoprotein function target apolipoprotein A-I.

  • Novel approaches with sustained effects and infrequent dosing regimens might overcome the issues with treatment adherence that are common to therapies requiring more frequent dosing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Novel and emerging LDL-lowering therapies targeting PCSK9.
Fig. 2: Novel and emerging lipid-lowering therapies targeting apoC-III.
Fig. 3: Novel and emerging lipid-lowering therapies targeting ANGPTL3.
Fig. 4: Emerging lipid-lowering therapies targeting Lp(a).

Similar content being viewed by others

References

  1. World Health Organization. Cardiovascular diseases (CVDs) WHO https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (2021).

  2. Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 38, 2459–2472 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Trialists, C. T. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380, 581–590 (2012).

    Article  Google Scholar 

  4. Duran, E. K. & Pradhan, A. D. Triglyceride-rich lipoprotein remnants and cardiovascular disease. Clin. Chem. 67, 183–196 (2021).

    Article  PubMed  Google Scholar 

  5. Ginsberg, H. N. et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies – a consensus statement from the European Atherosclerosis Society. Eur. Heart J. 42, 4791–4806 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Chait, A. et al. Remnants of the triglyceride-rich lipoproteins, diabetes, and cardiovascular disease. Diabetes 69, 508–516 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Nordestgaard, B. G. et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur. Heart J. 31, 2844–2853 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Clarke, R. et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 361, 2518–2528 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Burgess, S. et al. Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies: a Mendelian randomization analysis. JAMA Cardiol. 3, 619–627 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  10. Mach, F. et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 41, 111–188 (2019).

    Article  Google Scholar 

  11. Grundy, S. M. et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol. J. Am. Coll. Cardiol. 73, e285–e350 (2019).

    Article  PubMed  Google Scholar 

  12. National Institute for Health and Care Excellence. Cardiovascular disease: risk assessment and reduction, including lipid modification. Clinical guideline CG181. NICE https://www.nice.org.uk/guidance/cg181 (2016).

  13. Lloyd-Jones, D. M. et al. 2022 ACC expert consensus decision pathway on the role of nonstatin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk. J. Am. Coll. Cardiol. 80, 1366–1418 (2022).

    Article  PubMed  Google Scholar 

  14. Ouchi, Y. et al. Ezetimibe lipid-lowering trial on prevention of atherosclerotic cardiovascular disease in 75 or older (EWTOPIA 75). Circulation 140, 992–1003 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Cannon, C. P. et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. 372, 2387–2397 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, B.-K. et al. Long-term efficacy and safety of moderate-intensity statin with ezetimibe combination therapy versus high-intensity statin monotherapy in patients with atherosclerotic cardiovascular disease (RACING): a randomised, open-label, non-inferiority trial. Lancet 400, 380–390 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Ray, K. K. et al. EU-wide cross-sectional observational study of lipid-modifying therapy use in secondary and primary care: the DA VINCI study. Eur. J. Prev. Cardiol. 28, 1279–1289 (2020).

    Article  Google Scholar 

  18. Vallejo-Vaz, A. J. et al. Global perspective of familial hypercholesterolaemia: a cross-sectional study from the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Lancet 398, 1713–1725 (2021).

    Article  CAS  Google Scholar 

  19. Kotseva, K. et al. Primary prevention efforts are poorly developed in people at high cardiovascular risk: a report from the European Society of Cardiology EURObservational Research Programme EUROASPIRE V survey in 16 European countries. Eur. J. Prev. Cardiol. 28, 370–379 (2021).

    Article  PubMed  Google Scholar 

  20. De Backer, G. et al. Management of dyslipidaemia in patients with coronary heart disease: results from the ESC-EORP EUROASPIRE V survey in 27 countries. Atherosclerosis 285, 135–146 (2019).

    Article  PubMed  Google Scholar 

  21. Anderson, K. M., Wilson, P. W., Garrison, R. J. & Castelli, W. P. Longitudinal and secular trends in lipoprotein cholesterol measurements in a general population sample. The Framingham Offspring Study. Atherosclerosis 68, 59–66 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Gómez Gerique, J. A. et al. Improvement of serum lipids concentration in a general population historical cohort. Why?. Clín. Investig. Arterioscler. 29, 239–247 (2017).

    Article  PubMed  Google Scholar 

  23. Allahyari, A. et al. Application of the 2019 ESC/EAS dyslipidaemia guidelines to nationwide data of patients with a recent myocardial infarction: a simulation study. Eur. Heart J. 41, 3900–3909 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Cuchel, M. et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. a position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 35, 2146–2157 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Pirillo, A., Catapano, A. L. & Norata, G. D. Monoclonal antibodies in the management of familial hypercholesterolemia: focus on PCSK9 and ANGPTL3 inhibitors. Curr. Atheroscler. Rep. 23, 79 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Fogacci, F. et al. Efficacy and safety of mipomersen: a systematic review and meta-analysis of randomized clinical trials. Drugs 79, 751–766 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Raal, F. J. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375, 998–1006 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Cuchel, M. et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet 381, 40–46 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Raal, F. J. et al. Evinacumab for homozygous familial hypercholesterolemia. N. Engl. J. Med. 383, 711–720 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Rosenson, R. S. et al. Evinacumab in patients with refractory hypercholesterolemia. N. Engl. J. Med. 383, 2307–2319 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Ahmad, Z. Statin intolerance. Am. J. Cardiol. 113, 1765–1771 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Finegold, J. A., Manisty, C. H., Goldacre, B., Barron, A. J. & Francis, D. P. What proportion of symptomatic side effects in patients taking statins are genuinely caused by the drug? Systematic review of randomized placebo-controlled trials to aid individual patient choice. Eur. J. Prev. Cardiol. 21, 464–474 (2020).

    Article  Google Scholar 

  33. Gupta, A. et al. Adverse events associated with unblinded, but not with blinded, statin therapy in the Anglo-Scandinavian Cardiac Outcomes Trial – Lipid-Lowering Arm (ASCOT-LLA): a randomised double-blind placebo-controlled trial and its non-randomised non-blind extension phase. Lancet 389, 2473–2481 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Reith, C. et al. Effect of statin therapy on muscle symptoms: an individual participant data meta-analysis of large-scale, randomised, double-blind trials. Lancet 400, 832–845 (2022).

    Article  Google Scholar 

  35. Howard, J. P. et al. Side effect patterns in a crossover trial of statin, placebo, and no treatment. J. Am. Coll. Cardiol. 78, 1210–1222 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ray, K. K. et al. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N. Engl. J. Med. 380, 1022–1032 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Laufs, U. et al. Efficacy and safety of bempedoic acid in patients with hypercholesterolemia and statin intolerance. J. Am. Heart Assoc. 8, e011662 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ballantyne, C. M. et al. Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: a randomized, placebo-controlled study. Atherosclerosis 277, 195–203 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Banach, M. et al. Association of bempedoic acid administration with atherogenic lipid levels in phase 3 randomized clinical trials of patients with hypercholesterolemia. JAMA Cardiol. 5, 1124–1135 (2020).

    Article  PubMed  Google Scholar 

  40. Nissen, S. E. et al. Bempedoic acid and cardiovascular outcomes in statin-intolerant patients. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2215024 (2023).

    Article  PubMed  Google Scholar 

  41. Debacker, A. J., Voutila, J., Catley, M., Blakey, D. & Habib, N. Delivery of oligonucleotides to the liver with GalNAc: from research to registered therapeutic drug. Mol. Ther. 28, 1759–1771 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lansberg, P., Lee, A., Lee, Z.-V., Subramaniam, K. & Setia, S. Nonadherence to statins: individualized intervention strategies outside the pill box. Vasc. Health Risk Manag. 14, 91 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Laufs, U., Karmann, B. & Pittrow, D. Atorvastatin treatment and LDL cholesterol target attainment in patients at very high cardiovascular risk. Clin. Res. Cardiol. 105, 783–790 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Guglielmi, V. et al. Effectiveness of adherence to lipid lowering therapy on LDL-cholesterol in patients with very high cardiovascular risk: a real-world evidence study in primary care. Atherosclerosis 263, 36–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Wei, L. et al. Adherence to statin treatment and readmission of patients after myocardial infarction: a six year follow up study. Heart 88, 229–233 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Farnier, M. et al. Long-term treatment adherence to the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab in 6 ODYSSEY phase III clinical studies with treatment duration of 1 to 2 years. J. Clin. Lipidol. 11, 986–997 (2017).

    Article  PubMed  Google Scholar 

  47. Zafrir, B., Egbaria, A., Stein, N., Elis, A. & Saliba, W. PCSK9 inhibition in clinical practice: treatment patterns and attainment of lipid goals in a large health maintenance organization. J. Clin. Lipidol. 15, 202–211.e2 (2021).

    Article  PubMed  Google Scholar 

  48. Ray, K. K. et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med. 382, 1507–1519 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Choudhry, N. K. et al. The implications of therapeutic complexity on adherence to cardiovascular medications. Arch. Intern. Med. 171, 814–822 (2011).

    PubMed  Google Scholar 

  50. Ray, K. K. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 376, 1430–1440 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Ray, K. K. et al. Effect of 1 or 2 doses of inclisiran on low-density lipoprotein cholesterol levels: one-year follow-up of the ORION-1 randomized clinical trial. JAMA Cardiol. 4, 1067–1075 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  52. Bangalore, S., Breazna, A., DeMicco, D. A., Wun, C.-C. & Messerli, F. H. Visit-to-visit low-density lipoprotein cholesterol variability and risk of cardiovascular outcomes. J. Am. Coll. Cardiol. 65, 1539–1548 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Brandts, J. & Ray, K. K. Low density lipoprotein cholesterol-lowering strategies and population health: time to move to a cumulative exposure model. Circulation 141, 873–876 (2020).

    Article  PubMed  Google Scholar 

  54. Stoekenbroek, R. M., Kallend, D., Wijngaard, P. L. & Kastelein, J. J. Inclisiran for the treatment of cardiovascular disease: the ORION clinical development program. Future Cardiol. 14, 433–442 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Yokoyama, M. et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 369, 1090–1098 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Bhatt, D. L. et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 380, 11–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Budoff, M. J. et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial. Eur. Heart J. 41, 3925–3932 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. The ASCEND Study Collaborative Group. Effects of n-3 fatty acid supplements in diabetes mellitus. N. Engl. J. Med. 379, 1540–1550 (2018).

    Article  Google Scholar 

  59. Manson, J. E. et al. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N. Engl. J. Med. 380, 23–32 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  60. Nicholls, S. J. et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA 324, 2268–2280 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Mason, R. P. & Eckel, R. H. Mechanistic insights from REDUCE-IT STRENGTHen the case against triglyceride lowering as a strategy for cardiovascular disease risk reduction. Am. J. Med. 134, 1085–1090 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Nissen, S. E. et al. Association between achieved ω-3 fatty acid levels and major adverse cardiovascular outcomes in patients with high cardiovascular risk: a secondary analysis of the STRENGTH trial. JAMA Cardiol. 6, 910–917 (2021).

    Article  Google Scholar 

  63. US Food and Drug Administration. FDA Briefing Document: Endocrinologic and Metabolic Drugs Advisory Committee Meeting (FDA, 2019).

  64. Oscarsson, J. & Hurt-Camejo, E. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: a review. Lipids Health Dis. 16, 149 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  65. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Chan, J. C. Y. et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl Acad. Sci. USA 106, 9820–9825 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Frank-Kamenetsky, M. et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl Acad. Sci. USA 105, 11915–11920 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Zhang, D.-W. et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem. 282, 18602–18612 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Lebeau, P. F., Platko, K., Byun, J. H., Makda, Y. & Austin, R. C. The emerging roles of intracellular PCSK9 and their implications in endoplasmic reticulum stress and metabolic diseases. Metabolites 12, 215 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Lebeau, P. F. et al. Diet-induced hepatic steatosis abrogates cell-surface LDLR by inducing de novo PCSK9 expression in mice. J. Biol. Chem. 294, 9037–9047 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Demers, A. et al. PCSK9 induces CD36 degradation and affects long-chain fatty acid uptake and triglyceride metabolism in adipocytes and in mouse liver. Arterioscler. Thromb. Vasc. Biol. 35, 2517–2525 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Emma, M. R. et al. Hepatic and circulating levels of PCSK9 in morbidly obese patients: relation with severity of liver steatosis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158792 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Ruscica, M. et al. Liver fat accumulation is associated with circulating PCSK9. Ann. Med. 48, 384–391 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Gibbs, J. P. et al. Impact of target-mediated elimination on the dose and regimen of evolocumab, a human monoclonal antibody against proprotein convertase subtilisin/kexin type 9 (PCSK9). J. Clin. Pharmacol. 57, 616–626 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Dicembrini, I., Giannini, S., Ragghianti, B., Mannucci, E. & Monami, M. Effects of PCSK9 inhibitors on LDL cholesterol, cardiovascular morbidity and all-cause mortality: a systematic review and meta-analysis of randomized controlled trials. J. Endocrinol. Investig. 42, 1029–1039 (2019).

    Article  CAS  Google Scholar 

  76. Rosenson, R. S. et al. Efficacy and safety of evolocumab in individuals with type 2 diabetes mellitus: primary results of the randomised controlled BANTING study. Diabetologia 62, 948–958 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Ray, K. K. et al. Effect of an siRNA therapeutic targeting PCSK9 on atherogenic lipoproteins. Circulation 138, 1304–1316 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Chan, D. C. et al. Comparative effects of PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibition and statins on postprandial triglyceride-rich lipoprotein metabolism. Arterioscler. Thromb. Vasc. Biol. 38, 1644–1655 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Walker, R. G. & Thompson, T. B. Fibronectin-based scaffold domain proteins that bind myostatin: a patent evaluation of WO2014043344. Expert. Opin. Ther. Pat. 25, 619–624 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Stein, E. A. et al. LDL cholesterol reduction with BMS-962476, an adnectin inhibitor of PCSK9: results of a single ascending dose study [abstract]. J. Am. Coll. Cardiol. 63 (Suppl. 12), A1372 (2014).

    Article  Google Scholar 

  81. Stein, E. et al. Safety, tolerability and LDL-C reduction with a novel anti-Pcsk9 recombinant fusion protein (Lib003): results of a randomized, double-blind, placebo-controlled, phase 2 study [abstract]. Atherosclerosis 287, e7 (2019).

    Article  Google Scholar 

  82. Stein, E. A. et al. Safety, tolerability and LDL-C reduction with LIB003 a novel anti-PCSK9 recombinant fusion protein: results of open-label extension phase 2B study [abstract]. Circulation 140 (Suppl. 1), A17222 (2019).

    Google Scholar 

  83. Gennemark, P. et al. An oral antisense oligonucleotide for PCSK9 inhibition. Sci. Transl. Med. 13, eabe9117 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Koren, M. J. et al. Etesian: a phase 2B study of the efficacy, safety and tolerability of AZD8233, a PCSK9-targeted antisense oligonucleotide, in patients with dyslipidemia [abstract]. J. Am. Coll. Cardiol. 79 (Suppl. 9), 1475 (2022).

    Article  Google Scholar 

  85. Zlatev, I. et al. Reversal of siRNA-mediated gene silencing in vivo. Nat. Biotechnol. 36, 509–511 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Hutvágner, G., Simard, M. J., Mello, C. C. & Zamore, P. D. Sequence-specific inhibition of small RNA function. PLoS Biol. 2, e98 (2004).

    Article  PubMed Central  PubMed  Google Scholar 

  87. Alleyne, C. et al. Series of novel and highly potent cyclic peptide PCSK9 inhibitors derived from an mRNA display screen and optimized via structure-based design. J. Med. Chem. 63, 13796–13824 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Ballantyne, C. M. et al. Efficacy and safety of the oral PCSK9 inhibitor MK-0616: a phase 2b randomized controlled trial. J. Am. Coll. Cardiol. https://doi.org/10.1016/j.jacc.2023.02.018 (2023).

    Article  PubMed  Google Scholar 

  89. Crossey, E. et al. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine 33, 5747–5755 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Pan, Y. et al. A therapeutic peptide vaccine against PCSK9. Sci. Rep. 7, 12534 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  91. Momtazi-Borojeni, A. A., Jaafari, M. R., Badiee, A., Banach, M. & Sahebkar, A. Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis. BMC Med. 17, 223 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Zeitlinger, M. et al. A phase I study assessing the safety, tolerability, immunogenicity, and low-density lipoprotein cholesterol-lowering activity of immunotherapeutics targeting PCSK9. Eur. J. Clin. Pharmacol. 77, 1473–1484 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Rosenson, R. S., Shaik, A. & Song, W. New therapies for lowering triglyceride-rich lipoproteins. J. Am. Coll. Cardiol. 78, 1817–1830 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  96. Jong, M. C., Hofker, M. H. & Havekes, L. M. Role of ApoCs in lipoprotein metabolism. Arterioscler. Thromb. Vasc. Biol. 19, 472–484 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Christopoulou, E., Tsimihodimos, V., Filippatos, T. & Elisaf, M. Apolipoprotein CIII and diabetes. is there a link? Diabetes Metab. Res. Rev. 35, e3118 (2019).

    Article  PubMed  Google Scholar 

  98. Giammanco, A., Spina, R., Cefalù, A. B. & Averna, M. APOC-III: a gatekeeper in controlling triglyceride metabolism. Curr. Atheroscler. Rep. 25, 67–76 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Taskinen, M.-R. & Borén, J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis 239, 483–495 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Yao, Z. Human apolipoprotein C-III – a new intrahepatic protein factor promoting assembly and secretion of very low density lipoproteins. Cardiovasc. Haematol. Disord. Drug Targets 12, 133–140 (2012).

    Article  CAS  Google Scholar 

  101. Taskinen, M.-R. et al. Postprandial metabolism of apolipoproteins B48, B100, C-III, and E in humans with APOC3 loss-of-function mutations. JCI Insight 7, e160607 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  102. Reyes-Soffer, G. et al. Effects of APOC3 heterozygous deficiency on plasma lipid and lipoprotein metabolism. Arterioscler. Thromb. Vasc. Biol. 39, 63–72 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Gaudet, D. et al. Targeting APOC3 in the familial chylomicronemia syndrome. N. Engl. J. Med. 371, 2200–2206 (2014).

    Article  PubMed  Google Scholar 

  104. TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N. Engl. J. Med. 371, 22–31 (2014).

    Article  Google Scholar 

  105. Wulff, A. B., Nordestgaard, B. G. & Tybjærg-Hansen, A. APOC3 loss-of-function mutations, remnant cholesterol, low-density lipoprotein cholesterol, and cardiovascular risk: mediation- and meta-analyses of 137 895 individuals. Arterioscler. Thromb. Vasc. Biol. 38, 660–668 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Taskinen, M.-R., Packard, C. J. & Borén, J. Emerging evidence that ApoC-III inhibitors provide novel options to reduce the residual CVD. Curr. Atheroscler. Rep. 21, 27 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  107. Witztum, J. L. et al. Volanesorsen and triglyceride levels in familial chylomicronemia syndrome. N. Engl. J. Med. 381, 531–542 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Gouni-Berthold, I. et al. Efficacy and safety of volanesorsen in patients with multifactorial chylomicronaemia (COMPASS): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 9, 264–275 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Oral, E. A. et al. Assessment of efficacy and safety of volanesorsen for treatment of metabolic complications in patients with familial partial lipodystrophy: results of the BROADEN study. J. Clin. Lipidol. 16, 833–849 (2022).

    Article  PubMed  Google Scholar 

  110. Tardif, J.-C. et al. Apolipoprotein C-III reduction in subjects with moderate hypertriglyceridaemia and at high cardiovascular risk. Eur. Heart J. 43, 1401–1412 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Baass, A., Paquette, M., Bernard, S. & Hegele, R. A. Familial chylomicronemia syndrome: an under-recognized cause of severe hypertriglyceridaemia. J. Intern. Med. 287, 340–348 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Khetarpal, S. A., Wang, M. & Khera, A. V. Volanesorsen, familial chylomicronemia syndrome, and thrombocytopenia. N. Engl. J. Med. 381, 2582–2584 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  113. Stitziel, N. O. et al. ANGPTL3 deficiency and protection against coronary artery disease. J. Am. Coll. Cardiol. 69, 2054–2063 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Dewey, F. E. et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N. Engl. J. Med. 377, 211–221 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Fujimoto, K., Koishi, R., Shimizugawa, T. & Ando, Y. Angptl3-null mice show low plasma lipid concentrations by enhanced lipoprotein lipase activity. Exp. Anim. 55, 27–34 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Shimamura, M. et al. Angiopoietin-like protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase. Arterioscler. Thromb. Vasc. Biol. 27, 366–372 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Ruhanen, H., Haridas, P. A. N., Jauhiainen, M. & Olkkonen, V. M. Angiopoietin-like protein 3, an emerging cardiometabolic therapy target with systemic and cell-autonomous functions. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158791 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Shimamura, M. et al. Angiopoietin-like protein 3, a hepatic secretory factor, activates lipolysis in adipocytes. Biochem. Biophys. Res. Commun. 301, 604–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Graham, M. J. et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N. Engl. J. Med. 377, 222–232 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Ge, H. et al. Differential regulation and properties of angiopoietin-like proteins 3 and 4. J. Lipid Res. 46, 1484–1490 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Wang, Y. et al. Hepatic ANGPTL3 regulates adipose tissue energy homeostasis. Proc. Natl Acad. Sci. USA 112, 11630–11635 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Chi, X. et al. ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase. Mol. Metab. 6, 1137–1149 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Sylvers-Davie, K. L. & Davies, B. S. J. Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am. J. Physiol. Endocrinol. Metab. 321, E493–E508 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Chen, Y. Q. et al. Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids. J. Lipid Res. 61, 1203–1220 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Gaudet, D. et al. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia. Eur. Heart J. 41, 3936–3945 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Bergmark, B. A. et al. Effect of vupanorsen on non-high-density lipoprotein cholesterol levels in statin-treated patients with elevated cholesterol: TRANSLATE-TIMI 70. Circulation 145, 1377–1386 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Minicocci, I. et al. Mutations in the ANGPTL3 gene and familial combined hypolipidemia: a clinical and biochemical characterization. J. Clin. Endocrinol. Metab. 97, E1266–E1275 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Watts, G. et al. RNA interference targeting hepatic angiopoietin-like protein 3 results in prolonged reductions in serum triglyceride and non-HDL-cholesterol concentrations: first human results with ARO-ANG3. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-2097342/v1 (2022).

  129. Arrowhead Pharmaceuticals. Arrowhead reports interim clinical data on cardiometabolic candidates ARO-APOC3 and ARO-ANG3. Arrowhead Pharmaceuticals https://ir.arrowheadpharma.com/node/15246/pdf (2020).

  130. Watts, G. F. et al. Pharmacodynamic effect of ARO-ANG3, an investigational RNA interference targeting hepatic angiopoietin-like protein 3, in patients with hypercholesterolemia [abstract]. Circulation 142 (Suppl. 3), A15751 (2020).

    Google Scholar 

  131. Watts, G. F. et al. RNAi inhibition of angiopoietin-like protein 3 (ANGPTL3) with ARO-ANG3 mimics the lipid and lipoprotein profile of familial combined hypolipidemia. Eur. Heart J. https://doi.org/10.1093/ehjci/ehaa946.3331 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  132. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04644809 (2022).

  133. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04832971 (2022).

  134. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05256654 (2023).

  135. Chadwick, A. C., Evitt, N. H., Lv, W. & Musunuru, K. Reduced blood lipid levels with in vivo CRISPR-Cas9 base editing of ANGPTL3. Circulation 137, 975–977 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  136. Verve Therapeutics. Verve Therapeutics reports preclinical data demonstrating potent editing of ANGPTL3 gene using proprietary GalNAc-LNP delivery technology in non-human primates. Verve Therapeutics https://www.globenewswire.com/news-release/2021/11/09/2330092/0/en/Verve-Therapeutics-Reports-Preclinical-Data-Demonstrating-Potent-Editing-of-ANGPTL3-Gene-Using-Proprietary-GalNAc-LNP-Delivery-Technology-in-Non-Human-Primates.html (2021).

  137. Bellinger, A. Verve Therapeutics: In vivo CRISPR base editing to treat ASCVD. Verve Therapeutics https://ir.vervetx.com/static-files/e1932552-a384-408a-9d4c-2b5424c9cf74 (2022).

  138. Banerjee, S. & De, A. Pathophysiology and inhibition of cholesteryl ester transfer protein for prevention of cardiovascular diseases: an update. Drug Discov. Today 26, 1759–1764 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Inazu, A. et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N. Engl. J. Med. 323, 1234–1238 (1990).

    Article  CAS  PubMed  Google Scholar 

  140. Niu, W. & Qi, Y. Circulating cholesteryl ester transfer protein and coronary heart disease. Circ. Cardiovasc. Genet. 8, 114–121 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Nomura, A. et al. Protein-truncating variants at the cholesteryl ester transfer protein gene and risk for coronary heart disease. Circ. Res. 121, 81–88 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Ference, B. A. et al. Association of genetic variants related to CETP inhibitors and statins with lipoprotein levels and cardiovascular risk. JAMA 318, 947–956 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Hovingh, G. K. et al. Cholesterol ester transfer protein inhibition by TA-8995 in patients with mild dyslipidaemia (TULIP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 386, 452–460 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Nicholls, S. J. et al. Lipid lowering effects of the CETP inhibitor obicetrapib in combination with high-intensity statins: a randomized phase 2 trial. Nat. Med. 28, 1672–1678 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04770389 (2021).

  146. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05202509 (2023).

  147. Schmidt, A. F. et al. Cholesteryl ester transfer protein (CETP) as a drug target for cardiovascular disease. Nat. Commun. 12, 5640 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Johns, D. G., Duffy, J., Fisher, T., Hubbard, B. K. & Forrest, M. J. On- and off-target pharmacology of torcetrapib. Drugs 72, 491–507 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Tardif, J.-C. et al. Pharmacogenomic determinants of the cardiovascular effects of dalcetrapib. Circ. Cardiovasc. Genet. 8, 372–382 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Tardif, J. C. et al. Pharmacogenetics-guided dalcetrapib therapy after an acute coronary syndrome: the dal-GenE trial. Eur. Heart J. 43, 3947–3956 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Lincoff, A. M. et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N. Engl. J. Med. 376, 1933–1942 (2017).

    Article  PubMed  Google Scholar 

  154. The HPS3/TIMI55–Reveal Collaborative Group Effects of anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med. 377, 1217–1227 (2017).

    Article  Google Scholar 

  155. Gotto, A. M. et al. Evaluation of lipids, drug concentration, and safety parameters following cessation of treatment with the cholesteryl ester transfer protein inhibitor anacetrapib in patients with or at high risk for coronary heart disease. Am. J. Cardiol. 113, 76–83 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Nicholls, S. J. & Bubb, K. The mystery of evacetrapib – why are CETP inhibitors failing? Expert. Rev. Cardiovasc. Ther. 18, 127–130 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Berglund, L. & Ramakrishnan, R. Lipoprotein(a). Arterioscler. Thromb. Vasc. Biol. 24, 2219–2226 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Kronenberg, F. & Utermann, G. Lipoprotein(a): resurrected by genetics. J. Intern. Med. 273, 6–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Wright, R. S. et al. Pooled patient-level analysis of inclisiran trials in patients with familial hypercholesterolemia or atherosclerosis. J. Am. Coll. Cardiol. 77, 1182–1193 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Raal, F. J. et al. Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): a pooled analysis of more than 1,300 patients in 4 phase II trials. J. Am. Coll. Cardiol. 63, 1278–1288 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Gaudet, D. et al. Effect of alirocumab on lipoprotein(a) over ≥1.5 years (from the phase 3 ODYSSEY program). Am. J. Cardiol. 119, 40–46 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Ray, K. K. et al. Lipoprotein(a) reductions from PCSK9 inhibition and major adverse cardiovascular events: pooled analysis of alirocumab phase 3 trials. Atherosclerosis 288, 194–202 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. O’Donoghue, M. L. et al. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk: insights from the FOURIER trial. Circulation 139, 1483–1492 (2019).

    Article  PubMed  Google Scholar 

  164. Szarek, M. et al. Lipoprotein(a) lowering by alirocumab reduces the total burden of cardiovascular events independent of low-density lipoprotein cholesterol lowering: ODYSSEY OUTCOMES trial. Eur. Heart J. 41, 4245–4255 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Tsimikas, S. et al. Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet 386, 1472–1483 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Viney, N. J. et al. Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet 388, 2239–2253 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Tsimikas, S. et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N. Engl. J. Med. 382, 244–255 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Catapano, A. L. et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur. Heart J. 37, 2999–3058 (2016).

    Article  PubMed  Google Scholar 

  169. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04023552 (2022).

  170. Koren, M. J. et al. Safety, tolerability and efficacy of single-dose AMG 890, a novel siRNA targeting Lp(a), in healthy subjects and subjects with elevated Lp(a) [abstract]. Circulation 142 (Suppl. 3), A13951 (2020).

    Google Scholar 

  171. O’Donoghue, M. L. et al. Small interfering RNA to reduce lipoprotein(a) in cardiovascular disease. N. Engl. J. Med. 387, 1855–1864 (2022).

    Article  PubMed  Google Scholar 

  172. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04914546 (2022).

  173. Nissen, S. E. et al. Single ascending dose study of a short interfering RNA targeting lipoprotein(a) production in individuals with elevated plasma lipoprotein(a) levels. JAMA 327, 1679–1687 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  174. Prospective Studies Collaboration Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55 000 vascular deaths. Lancet 370, 1829–1839 (2007).

    Article  Google Scholar 

  175. Assmann, G., Cullen, P. & Schulte, H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 105, 310–315 (2002).

    Article  PubMed  Google Scholar 

  176. Di Angelantonio, E. et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302, 1993–2000 (2009).

    Article  PubMed  Google Scholar 

  177. Kannel, W. B., Dawber, T. R., Friedman, G. D., Glennon, W. E. & Mcnamara, P. M. Risk factors in coronary heart disease: the Framingham study. Ann. Intern. Med. 61, 888–899 (1964).

    Article  CAS  PubMed  Google Scholar 

  178. Jun, M. et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet 375, 1875–1884 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Holmes, M. V. et al. Mendelian randomization of blood lipids for coronary heart disease. Eur. Heart J. 36, 539–550 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Frikke-Schmidt, R. et al. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA 299, 2524–2532 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet 380, 572–580 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  182. Ko, D. T. et al. High-density lipoprotein cholesterol and cause-specific mortality in individuals without previous cardiovascular conditions: the CANHEART study. J. Am. Coll. Cardiol. 68, 2073–2083 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. Hirata, A. et al. The relationship between very high levels of serum high-density lipoprotein cholesterol and cause-specific mortality in a 20-year follow-up study of Japanese general population. J. Atheroscler. Thromb. 23, 800–809 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  184. Madsen, C. M., Varbo, A. & Nordestgaard, B. G. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: two prospective cohort studies. Eur. Heart J. 38, 2478–2486 (2017).

    Article  CAS  PubMed  Google Scholar 

  185. Rohatgi, A., Westerterp, M., Von Eckardstein, A., Remaley, A. & Rye, K.-A. HDL in the 21st century: a multifunctional roadmap for future HDL research. Circulation 143, 2293–2309 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  186. Gibson, C. M. et al. Safety and tolerability of CSL112, a reconstituted, infusible, plasma-derived apolipoprotein A-I, after acute myocardial infarction. Circulation 134, 1918–1930 (2016).

    Article  Google Scholar 

  187. Kingwell, B. A. et al. Antiatherosclerotic effects of CSL112 mediated by enhanced cholesterol efflux capacity. J. Am. Heart Assoc. 11, e024754 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  188. Nicholls, S. J. et al. Effect of infusion of high-density lipoprotein mimetic containing recombinant apolipoprotein AI Milano on coronary disease in patients with an acute coronary syndrome in the MILANO-PILOT trial: a randomized clinical trial. JAMA Cardiol. 3, 806–814 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  189. Nicholls, S. J. et al. Effect of serial infusions of CER-001, a pre-β high-density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER-001 Atherosclerosis Regression Acute Coronary Syndrome Trial: a randomized clinical trial. JAMA Cardiol. 3, 815–822 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  190. Diditchenko, S. et al. Novel formulation of a reconstituted high-density lipoprotein (CSL112) dramatically enhances ABCA1-dependent cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 33, 2202–2211 (2013).

    Article  CAS  PubMed  Google Scholar 

  191. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03473223 (2023).

  192. Czarnecka, H. & Yokoyama, S. Regulation of cellular cholesterol efflux by lecithin: cholesterol acyltransferase reaction through nonspecific lipid exchange. J. Biol. Chem. 271, 2023–2028 (1996).

    Article  CAS  PubMed  Google Scholar 

  193. Shamburek, R. D. et al. Safety and tolerability of ACP-501, a recombinant human lecithin:cholesterol acyltransferase, in a phase 1 single-dose escalation study. Circ. Res. 118, 73–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Gutierrez, M. J. et al. Efficacy and safety of ETC-1002, a novel investigational low-density lipoprotein-cholesterol-lowering therapy for the treatment of patients with hypercholesterolemia and type 2 diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 34, 676–683 (2014).

    Article  CAS  PubMed  Google Scholar 

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03705234 (2022).

  196. Watts, G. et al. Reduced expression of angiopoietin-like protein 3 via RNA interference with ARO-ANG3 produces prolonged reductions in LDL-C and triglycerides in dyslipidemic patients. J. Clin. Lipidol. 14, 599 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

K.K.R. acknowledges support from the NIHR Imperial Biomedical Research Centre and the NIHR ARC for Northwest London.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Kausik K. Ray.

Ethics declarations

Competing interests

J.B. received research grant support from AstraZeneca and speaker honoraria from Amgen. K.K.R. received grants from Amgen, grants and personal fees from Amgen, Daiichi Sankyo, MSD, Pfizer and Sanofi/Regeneron, and personal fees from Aegerion Cerenis, Abbvie, Akcea, Algorithm, Astra Zeneca, Bayer, Boehringer Ingelheim, Cipla, Dr Reddy’s Laboratories, Esperion, Kowa, Lilly, the Medicines Company, Novartis, Silence Therapeutics, Takeda and Zuelling Pharma.

Peer review

Peer review information

Nature Reviews Cardiology thanks Michael D. Shapiro, who co-reviewed with Aziz Hammoud; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandts, J., Ray, K.K. Novel and future lipid-modulating therapies for the prevention of cardiovascular disease. Nat Rev Cardiol 20, 600–616 (2023). https://doi.org/10.1038/s41569-023-00860-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00860-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research