Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunomodulation and immunopharmacology in heart failure

Abstract

The immune system is intimately involved in the pathophysiology of heart failure. However, it is currently underused as a therapeutic target in the clinical setting. Moreover, the development of novel immunomodulatory therapies and their investigation for the treatment of patients with heart failure are hampered by the fact that currently used, evidence-based treatments for heart failure exert multiple immunomodulatory effects. In this Review, we discuss current knowledge on how evidence-based treatments for heart failure affect the immune system in addition to their primary mechanism of action, both to inform practising physicians about these pleiotropic actions and to create a framework for the development and application of future immunomodulatory therapies. We also delineate which subpopulations of patients with heart failure might benefit from immunomodulatory treatments. Furthermore, we summarize completed and ongoing clinical trials that assess immunomodulatory treatments in heart failure and present several therapeutic targets that could be investigated in the future. Lastly, we provide future directions to leverage the immunomodulatory potential of existing treatments and to foster the investigation of novel immunomodulatory therapeutics.

Key points

  • Immune activation is intimately involved in the pathophysiology of heart failure.

  • Immunomodulation is an underused therapeutic approach for the treatment of patients with heart failure.

  • All current evidence-based treatments for heart failure can modulate immune activation in diverse ways, which has important clinical and therapeutic implications.

  • The development of novel immunomodulatory interventions for the treatment of heart failure should take the immunomodulatory effects of existing treatments into account.

  • Future developments in immunomodulation for heart failure should investigate both the optimization of immunomodulatory effects of current treatments and the potential benefits that can be derived by novel treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phases of immune activation in heart failure.
Fig. 2: Immunomodulatory properties of current therapies for heart failure.

Similar content being viewed by others

References

  1. Savarese, G. & Lund, L. H. Global public health burden of heart failure. Card. Fail. Rev. 3, 7 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. McDonagh, T. A. et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Eur. Heart J. 42, 3599–3726 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Van Linthout, S. & Tschöpe, C. The quest for antiinflammatory and immunomodulatory strategies in heart failure. Clin. Pharmacol. Ther. 106, 1198–1208 (2019).

    Article  PubMed  Google Scholar 

  6. Furtado, M. B. & Hasham, M. Properties and immune function of cardiac fibroblasts. Adv. Exp. Med. Biol. 1003, 35–70 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Van Linthout, S. & Tschöpe, C. Inflammation – cause or consequence of heart failure or both? Curr. Heart Fail. Rep. 14, 251–265 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Adamo, L., Rocha-Resende, C., Prabhu, S. D. & Mann, D. L. Reappraising the role of inflammation in heart failure. Nat. Rev. Cardiol. 17, 269–285 (2020).

    Article  PubMed  Google Scholar 

  9. Murphy, S. P., Kakkar, R., McCarthy, C. P. & Januzzi, J. L. Inflammation in heart failure: JACC state-of-the-art review. J. Am. Coll. Cardiol. 75, 1324–1340 (2020).

    Article  PubMed  Google Scholar 

  10. Gray, J. I. & Farber, D. L. Tissue-resident immune cells in humans. Annu. Rev. Immunol. 40, 195–220 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Grune, J. et al. Neutrophils incite and macrophages avert electrical storm after myocardial infarction. Nat. Cardiovasc. Res. 1, 649–664 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nicolás-Ávila, J. A. et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183, 94–109.e23 (2020).

    Article  PubMed  Google Scholar 

  13. Li, D. & Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 6, 291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gong, T., Liu, L., Jiang, W. & Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20, 95–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Zheng, D., Liwinski, T. & Elinav, E. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov. 6, 36 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tschöpe, C. et al. NOD2 (nucleotide-binding oligomerization domain 2) is a major pathogenic mediator of coxsackievirus B3-induced myocarditis. Circ. Heart Fail. 10, e003870 (2017).

    Article  PubMed  Google Scholar 

  17. Olsen, M. B. et al. Targeting the inflammasome in cardiovascular disease. JACC Basic. Transl. Sci. 7, 84–98 (2022).

    Article  PubMed  Google Scholar 

  18. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Eiz-Vesper, B. & Schmetzer, H. M. Antigen-presenting cells: potential of proven und new players in immune therapies. Transfus. Med. Hemother. 47, 429–431 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ngwenyama, N. et al. Antigen presentation by cardiac fibroblasts promotes cardiac dysfunction. Nat. Cardiovasc. Res. 1, 761–774 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kumar, B. V., Connors, T. J. & Farber, D. L. Human t cell development, localization, and function throughout life. Immunity 48, 202–213 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Janeway, C. A., Travers, P., Walport, M. & Shlomchik, M. J. (eds) Immunobiology: the Immune System in Health and Disease 5th edn Ch. 7 (Garland, 2001).

  23. Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Varda-Bloom, N. et al. Cytotoxic T lymphocytes are activated following myocardial infarction and can recognize and kill healthy myocytes in vitro. J. Mol. Cell. Cardiol. 32, 2141–2149 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Nevers, T. et al. Left ventricular T-cell recruitment contributes to the pathogenesis of heart failure. Circ. Heart Fail. 8, 776–787 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yndestad, A. et al. Enhanced expression of inflammatory cytokines and activation markers in T-cells from patients with chronic heart failure. Cardiovasc. Res. 60, 141–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Bermea, K., Bhalodia, A., Huff, A., Rousseau, S. & Adamo, L. The role of B cells in cardiomyopathy and heart failure. Curr. Cardiol. Rep. 24, 935–946 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Moran, G. A. G. et al. in Autoimmunity From Bench to Bedside (eds Anaya, J. M., Shoenfeld, Y., Rojas-Villarraga, A., Levy, R. A. & Cervera, R.) 133–168 (El Rosario University Press, 2013).

  29. Dong, C. Cytokine regulation and function in T cells. Annu. Rev. Immunol. 39, 51–76 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Schett, G., McInnes, I. B. & Neurath, M. F. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N. Engl. J. Med. 385, 628–639 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Altan-Bonnet, G. & Mukherjee, R. Cytokine-mediated communication: a quantitative appraisal of immune complexity. Nat. Rev. Immunol. 19, 205–217 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hanna, A. & Frangogiannis, N. G. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc. Drugs Ther. 34, 849–863 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bartekova, M., Radosinska, J., Jelemensky, M. & Dhalla, N. S. Role of cytokines and inflammation in heart function during health and disease. Heart Fail. Rev. 23, 733–758 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Shirazi, L. F., Bissett, J., Romeo, F. & Mehta, J. L. Role of inflammation in heart failure. Curr. Atheroscler. Rep. 19, 27 (2017).

    Article  PubMed  Google Scholar 

  35. Mann, D. L. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ. Res. 116, 1254–1268 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nourshargh, S. & Alon, R. Leukocyte migration into inflamed tissues. Immunity 41, 694–707 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Cappenberg, A., Kardell, M. & Zarbock, A. Selectin‐mediated signaling—shedding light on the regulation of integrin activity in neutrophils. Cells 11, 1310 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ivetic, A., Green, H. L. H. & Hart, S. J. L-selectin: a major regulator of leukocyte adhesion, migration and signaling. Front. Immunol. 10, 451997 (2019).

    Article  Google Scholar 

  39. Sharma, D. & Farrar, J. D. Adrenergic regulation of immune cell function and inflammation. Semin. Immunopathol. 42, 709–717 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Devi, S. et al. Adrenergic regulation of the vasculature impairs leukocyte interstitial migration and suppresses immune responses. Immunity 54, 1219–1230.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Chhatar, S. & Lal, G. Role of adrenergic receptor signalling in neuroimmune communication. Curr. Res. Immunol. 2, 202–217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Floras, J. S. & Ponikowski, P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur. Heart J. 36, 1974–1982 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaye, D. M. et al. Characterization of cardiac sympathetic nervous system and inflammatory activation in HFpEF patients. JACC Basic Transl. Sci. 7, 116–127 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ohtsuka, T. et al. Effect of beta-blockers on circulating levels of inflammatory and anti-inflammatory cytokines in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 37, 412–417 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Mabuchi, N., Tsutamoto, T. & Kinoshita, M. Therapeutic use of dopamine and beta-blockers modulates plasma interleukin-6 levels in patients with congestive heart failure. J. Cardiovasc. Pharmacol. 36 (Suppl. 2), S87–S91 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Mayer, B. et al. Functional improvement in heart failure patients treated with beta-blockers is associated with a decline of cytokine levels. Int. J. Cardiol. 103, 182–186 (2005).

    Article  PubMed  Google Scholar 

  47. von Haehling, S. et al. Leukocyte redistribution: effects of beta blockers in patients with chronic heart failure. PLoS ONE 4, e6411 (2009).

    Article  Google Scholar 

  48. Gage, J. R. et al. Beta blocker and angiotensin-converting enzyme inhibitor therapy is associated with decreased Th1/Th2 cytokine ratios and inflammatory cytokine production in patients with chronic heart failure. Neuroimmunomodulation 11, 173–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Grisanti, L. A. et al. Leukocyte-expressed β2-adrenergic receptors are essential for survival after acute myocardial injury. Circulation 134, 153–167 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tanner, M. A., Maitz, C. A. & Grisanti, L. A. Immune cell b2-adrenergic receptors contribute to the development of heart failure. Am. J. Physiol. Heart Circ. Physiol. 321, H633–H649 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grisanti, L. A. et al. Prior β-blocker treatment decreases leukocyte responsiveness to injury. JCI Insight 5, e99485 (2019).

    Article  PubMed  Google Scholar 

  52. Clemente-Moragón, A. et al. Metoprolol exerts a non-class effect against ischaemia-reperfusion injury by abrogating exacerbated inflammation. Eur. Heart J. 41, 4425–4440 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Poole-Wilson, P. A. et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 362, 7–13 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Baker, J. G. The selectivity of β-adrenoceptor antagonists at the human β1, β2 and β3 adrenoceptors. Br. J. Pharmacol. 144, 317–322 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, S. P. et al. Carvedilol, a new antioxidative β-blocker, blocks in vitro human peripheral blood T cell activation by downregulating NF-κB activity. Cardiovasc. Res. 59, 776–787 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Shaw, S. M. et al. The effect of beta-blockers on the adaptive immune system in chronic heart failure. Cardiovasc. Ther. 27, 181–186 (2009).

    Article  PubMed  Google Scholar 

  57. Wong, W. T. et al. Repositioning of the β-blocker carvedilol as a novel autophagy inducer that inhibits the NLRP3 inflammasome. Front. Immunol. 9, 1920 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bernstein, K. E. et al. Angiotensin-converting enzyme in innate and adaptive immunity. Nat. Rev. Nephrol. 14, 325–336 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Danilov, S. M. et al. Angiotensin-converting enzyme (CD143) is abundantly expressed by dendritic cells and discriminates human monocyte-derived dendritic cells from acute myeloid leukemia-derived dendritic cells. Exp. Hematol. 31, 1301–1309 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Viinikainen, A., Nyman, T., Fyhrquist, F. & Saijonmaa, O. Downregulation of angiotensin converting enzyme by TNF-α in differentiating human macrophages. Cytokine 18, 304–310 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Gullestad, L. et al. Effect of high- versus low-dose angiotensin converting enzyme inhibition on cytokine levels in chronic heart failure. J. Am. Coll. Cardiol. 34, 2061–2067 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Schieffer, B. et al. Comparative effects of AT1-antagonism and angiotensin-converting enzyme inhibition on markers of inflammation and platelet aggregation in patients with coronary artery disease. J. Am. Coll. Cardiol. 44, 362–368 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Krysiak, R. & Okopień, B. Pleiotropic effects of angiotensin-converting enzyme inhibitors in normotensive patients with coronary artery disease. Pharmacol. Rep. 60, 514–523 (2008).

    CAS  PubMed  Google Scholar 

  64. Krysiak, R. & Okopień, B. Lymphocyte-suppressing action of angiotensin-converting enzyme inhibitors in coronary artery disease patients with normal blood pressure. Pharmacol. Rep. 63, 1151–1161 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Largeau, B., Dupont, A. C., Guilloteau, D., Santiago-Ribeiro, M. J. & Arlicot, N. TSPO PET imaging: from microglial activation to peripheral sterile inflammatory diseases? Contrast Media Mol. Imaging 2017, 6592139 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Borchert, T. et al. Angiotensin-converting enzyme inhibitor treatment early after myocardial infarction attenuates acute cardiac and neuroinflammation without effect on chronic neuroinflammation. Eur. J. Nucl. Med. Mol. Imaging 47, 1757–1768 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Leuschner, F. et al. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ. Res. 107, 1364–1373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rudi, W. S. et al. ACE inhibition modulates myeloid hematopoiesis after acute myocardial infarction and reduces cardiac and vascular inflammation in ischemic heart failure. Antioxid 10, 396 (2021).

    Article  CAS  Google Scholar 

  69. Ma, Y. et al. ACE inhibitor suppresses cardiac remodeling after myocardial infarction by regulating dendritic cells and AT2 receptor-mediated mechanism in mice. Biomed. Pharmacother. 114, 108660 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Candido, R. et al. Prevention of accelerated atherosclerosis by angiotensin-converting enzyme inhibition in diabetic apolipoprotein E–deficient mice. Circulation 106, 246–253 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Yang, S. et al. TLR4-mediated anti-atherosclerosis mechanisms of angiotensin-converting enzyme inhibitor – fosinopril. Cell. Immunol. 285, 38–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Abd Alla, J. et al. Angiotensin-converting enzyme inhibition down-regulates the pro-atherogenic chemokine receptor 9 (CCR9)-chemokine ligand 25 (CCL25) axis. J. Biol. Chem. 285, 23496–23505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kranzhöfer, R. et al. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 19, 1623–1629 (1999).

    Article  PubMed  Google Scholar 

  74. Yakubova, A. et al. ACE-inhibition induces a cardioprotective transcriptional response in the metabolic syndrome heart. Sci. Rep. 8, 16169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Garvin, A. M. et al. Transient ACE (Angiotensin-Converting Enzyme) inhibition suppresses future fibrogenic capacity and heterogeneity of cardiac fibroblast subpopulations. Hypertension 77, 904–918 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, Y. et al. Captopril attenuates TAC-induced heart failure via inhibiting Wnt3a/β-catenin and Jak2/Stat3 pathways. Biomed. Pharmacother. 113, 108780 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Chae, W. J. & Bothwell, A. L. M. Canonical and non-canonical wnt signaling in immune cells. Trends Immunol. 39, 830–847 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu, Q. et al. JAK/STAT pathway: extracellular signals, diseases, immunity, and therapeutic regimens. Front. Bioeng. Biotechnol. 11, 262 (2023).

    Article  Google Scholar 

  79. Nataraj, C. et al. Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway. J. Clin. Invest. 104, 1693–1701 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Silva-Filho, J. L. et al. AT1 receptor-mediated angiotensin II activation and chemotaxis of T lymphocytes. Mol. Immunol. 48, 1835–1843 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Schindler, R., Dinarello, C. A. & Koch, K. M. Angiotensin-converting-enzyme inhibitors suppress synthesis of tumour necrosis factor and interleukin 1 by human peripheral blood mononuclear cells. Cytokine 7, 526–533 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Constantinescu, C. S., Goodman, D. B. P. & Ventura, E. S. Captopril and lisinopril suppress production of interleukin-12 by human peripheral blood mononuclear cells. Immunol. Lett. 62, 25–31 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Lapteva, N. et al. Activation and suppression of renin-angiotensin system in human dendritic cells. Biochem. Biophys. Res. Commun. 296, 194–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Dostal, D. E. & Baker, K. M. The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function? Circ. Res. 85, 643–650 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. De Mello, W. C. & Danser, A. H. J. Angiotensin II and the heart. Hypertension 35, 1183–1188 (2000).

    Article  PubMed  Google Scholar 

  86. Kintscher, U. et al. Angiotensin II induces migration and Pyk2/paxillin phosphorylation of human monocytes. Hypertension 37, 587–593 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Jurewicz, M. et al. Human T and natural killer cells possess a functional renin-angiotensin system: further mechanisms of angiotensin II-induced inflammation. J. Am. Soc. Nephrol. 18, 1093–1102 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Hoch, N. E. et al. Regulation of T-cell function by endogenously produced angiotensin II. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R208–R216 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Nahmod, K. A. et al. Control of dendritic cell differentiation by angiotensin II. FASEB J. 17, 491–493 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Tsutamoto, T. et al. Angiotensin II type 1 receptor antagonist decreases plasma levels of tumor necrosis factor α, interleukin-6 and soluble adhesion molecules in patients with chronic heart failure. J. Am. Coll. Cardiol. 35, 714–721 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Fliser, D., Buchholz, K. & Haller, H. Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation 110, 1103–1107 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Dandona, P. et al. Angiotensin II receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes, nuclear factor-κB, in mononuclear cells of normal subjects: evidence of an antiinflammatory action. J. Clin. Endocrinol. Metab. 88, 4496–4501 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Maeda, A. et al. Immunosuppressive effect of angiotensin receptor blocker on stimulation of mice CTLs by angiotensin II. Int. Immunopharmacol. 9, 1183–1188 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Fernandez-Castelo, S. et al. Angiotensin II regulates interferon-γ production. J. Interferon Res. 7, 261–268 (1987).

    Article  CAS  PubMed  Google Scholar 

  95. Shao, J. et al. Imbalance of T-cell subsets in angiotensin II-infused hypertensive rats with kidney injury. Hypertension 42, 31–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Dasu, M. R., Riosvelasco, A. C. & Jialal, I. Candesartan inhibits Toll-like receptor expression and activity both in vitro and in vivo. Atherosclerosis 202, 76–83 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Pang, T. et al. Telmisartan ameliorates lipopolysaccharide-induced innate immune response through peroxisome proliferator-activated receptor-γ activation in human monocytes. J. Hypertens. 30, 87–96 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Espitia-Corredor, J. A. et al. Angiotensin II triggers NLRP3 inflammasome activation by a Ca2+ signaling-dependent pathway in rat cardiac fibroblast Ang-II by a Ca2+-dependent mechanism triggers NLRP3 inflammasome in CF. Inflammation 45, 2498–2512 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Chen, Y. et al. Cathepsin B-mediated NLRP3 inflammasome formation and activation in angiotensin II-induced hypertensive mice: role of macrophage digestion dysfunction. Cell. Physiol. Biochem. 50, 1585–1600 (2018).

    Article  PubMed  Google Scholar 

  100. Nahmod, K. et al. Impaired function of dendritic cells deficient in angiotensin II type 1 receptors. J. Pharmacol. Exp. Ther. 334, 854–862 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Ji, Y., Liu, J., Wang, Z. & Liu, N. Angiotensin II induces inflammatory response partly via Toll-like receptor 4-dependent signaling pathway in vascular smooth muscle cells. Cell. Physiol. Biochem. 23, 265–276 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Meng, K. et al. Valsartan attenuates atherosclerosis via upregulating the Th2 immune response in prolonged angiotensin II-treated ApoE−/− mice. Mol. Med. 21, 143–153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Marshall, T. G., Lee, R. E. & Marshall, F. E. Common angiotensin receptor blockers may directly modulate the immune system via VDR, PPAR and CCR2b. Theor. Biol. Med. Model. 3, 1 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Delerive, P., Fruchart, J. C. & Staels, B. Peroxisome proliferator-activated receptors in inflammation control. J. Endocrinol. 169, 453–459 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Széles, L., Töröcsik, D. & Nagy, L. PPARγ in immunity and inflammation: cell types and diseases. Biochim. Biophys. Acta 1771, 1014–1030 (2007).

    Article  PubMed  Google Scholar 

  106. Villapol, S. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell. Mol. Neurobiol. 38, 121–132 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Schupp, M., Janke, J., Clasen, R., Unger, T. & Kintscher, U. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-γ activity. Circulation 109, 2054–2057 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Marketou, M. E. et al. Differential effect of telmisartan and amlodipine on monocyte chemoattractant protein-1 and peroxisome proliferator-activated receptor-gamma gene expression in peripheral monocytes in patients with essential hypertension. Am. J. Cardiol. 107, 59–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Ayoub, M. A. Angiotensin II type 1 receptor heterodimers in the kidney. Curr. Opin. Endocr. Metab. Res. 16, 96–101 (2021).

    Article  CAS  Google Scholar 

  110. Urushihara, M. et al. Addition of angiotensin II type 1 receptor blocker to CCR2 antagonist markedly attenuates crescentic glomerulonephritis. Hypertension 57, 586–593 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Ayoub, M. A. et al. Functional interaction between angiotensin II receptor type 1 and chemokine (C-C motif) receptor 2 with implications for chronic kidney disease. PLoS ONE 10, e0119803 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Syrbe, U., Moebes, A., Scholze, J., Swidsinski, A. & Dörfel, Y. Effects of the angiotensin II type 1 receptor antagonist telmisartan on monocyte adhesion and activation in patients with essential hypertension. Hypertens. Res. 30, 521–528 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Iwata, A. et al. Do valsartan and losartan have the same effects in the treatment of coronary artery disease? Circ. J. 71, 32–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Connell, J. M. C. & Davies, E. The new biology of aldosterone. J. Endocrinol. 186, 1–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Ferreira, N. S., Tostes, R. C., Paradis, P. & Schiffrin, E. L. Aldosterone, inflammation, immune system, and hypertension. Am. J. Hypertension 34, 15–27 (2021).

    Article  CAS  Google Scholar 

  116. Besedovsky, L., Born, J. & Lange, T. Blockade of mineralocorticoid receptors enhances naïve T-helper cell counts during early sleep in humans. Brain Behav. Immun. 26, 1116–1121 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Besedovsky, L., Linz, B., Born, J. & Lange, T. Mineralocorticoid receptor signaling reduces numbers of circulating human naïve T cells and increases their CD62L, CCR7, and CXCR4 expression. Eur. J. Immunol. 44, 1759–1769 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tschöpe, C. et al. Modulation of the acute defence reaction by eplerenone prevents cardiac disease progression in viral myocarditis. ESC Heart Fail. 7, 2838–2852 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bendtzen, K. et al. Spironolactone inhibits production of proinflammatory cytokines, including tumour necrosis factor-α and interferon-γ and has potential in the treatment of arthritis. Clin. Exp. Immunol. 134, 151–158 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Salling Sønder, S. U., Mikkelsen, M., Rieneck, K., Hedegaard, C. J. & Bendtzen, K. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction. Br. J. Pharmacol. 148, 46–53 (2006).

    Article  Google Scholar 

  121. Hansen, P. R., Rieneck, K. & Bendtzen, K. Spironolactone inhibits production of proinflammatory cytokines by human mononuclear cells. Immunol. Lett. 91, 87–91 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Duan, S. Z. & Mortensen, R. M. A new connection: myeloid mineralocorticoid receptor and cardiovascular disease. Am. Chin. J. Med. Sci. 3, 167 (2010).

    Google Scholar 

  123. Funder, J. W. RALES, EPHESUS and redox. J. Steroid Biochem. Mol. Biol. 93, 121–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Gomez-Sanchez, E. P. Third-generation mineralocorticoid receptor antagonists: why do we need a fourth? J. Cardiovasc. Pharmacol. 67, 26–38 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Usher, M. G. et al. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J. Clin. Invest. 120, 3350–3364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Montes-Cobos, E. et al. Deletion of the mineralocorticoid receptor in myeloid cells attenuates central nervous system autoimmunity. Front. Immunol. 8, 1319 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. De Marco, V. G. et al. Low-dose mineralocorticoid receptor blockade prevents western diet-induced arterial stiffening in female mice. Hypertension 66, 99–107 (2015).

    Article  Google Scholar 

  128. Bostick, B. et al. Mineralocorticoid receptor blockade prevents western diet-induced diastolic dysfunction in female mice. Am. J. Physiol. Heart Circ. Physiol. 308, H1126–H1135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Herrada, A. A. et al. Aldosterone promotes autoimmune damage by enhancing Th17-mediated immunity. J. Immunol. 184, 191–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Amador, C. A. et al. Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertension 63, 797–803 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Sun, X. N. et al. T-cell mineralocorticoid receptor controls blood pressure by regulating interferon-gamma. Circ. Res. 120, 1584–1597 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Barbaro, N. R., Kirabo, A. & Harrison, D. G. A new role of Mister (MR) T in hypertension: mineralocorticoid receptor, immune system, and hypertension. Circ. Res. 120, 1527–1529 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Li, C. et al. Mineralocorticoid receptor deficiency in T cells attenuataces pressure overload-induced cardiac hypertrophy and dysfunction through modulating T-cell activation. Hypertension 70, 137–147 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Fraccarollo, D. et al. Macrophage mineralocorticoid receptor is a pleiotropic modulator of myocardial infarct healing. Hypertension 73, 102–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Lax, A. et al. Mineralocorticoid receptor antagonists modulate galectin-3 and interleukin-33/ST2 signaling in left ventricular systolic dysfunction after acute myocardial infarction. JACC Heart Fail. 3, 50–58 (2015).

    Article  PubMed  Google Scholar 

  136. Grune, J. et al. Steroidal and nonsteroidal mineralocorticoid receptor antagonists cause differential cardiac gene expression in pressure overload-induced cardiac hypertrophy. J. Cardiovasc. Pharmacol. 67, 402–411 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Kuster, G. M. et al. Mineralocorticoid receptor inhibition ameliorates the transition to myocardial failure and decreases oxidative stress and inflammation in mice with chronic pressure overload. Circulation 111, 420–427 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Bender, S. B. et al. Mineralocorticoid receptor antagonism treats obesity-associated cardiac diastolic dysfunction. Hypertension 65, 1082–1088 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Kang, Y. M. et al. Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circ. Res. 99, 758–766 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Francis, J., Weiss, R. M., Johnson, A. K. & Felder, R. B. Central mineralocorticoid receptor blockade decreases plasma TNF-α after coronary artery ligation in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R325–R335 (2003).

    Article  Google Scholar 

  141. Ibsen, D. B., Levitan, E. B., Åkesson, A., Gigante, B. & Wolk, A. The DASH diet is associated with a lower risk of heart failure: a cohort study. Eur. J. Prev. Cardiol. 29, 1114–1123 (2022).

    Article  PubMed  Google Scholar 

  142. Soltani, S., Chitsazi, M. J. & Salehi-Abargouei, A. The effect of dietary approaches to stop hypertension (DASH) on serum inflammatory markers: a systematic review and meta-analysis of randomized trials. Clin. Nutr. 37, 542–550 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Hernandez, A. L. et al. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J. Clin. Invest. 125, 4212–4222 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Jobin, K., Müller, D. N., Jantsch, J. & Kurts, C. Sodium and its manifold impact on our immune system. Trends Immunol. 42, 469–479 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Ezekowitz, J. A. et al. Reduction of dietary sodium to less than 100 mmol in heart failure (SODIUM-HF): an international, open-label, randomised, controlled trial. Lancet 399, 1391–1400 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Alnuwaysir, R. I. S., Hoes, M. F., van Veldhuisen, D. J., van der Meer, P. & Grote Beverborg, N. Iron deficiency in heart failure: mechanisms and pathophysiology. J. Clin. Med. 11, 125 (2022).

    Article  CAS  Google Scholar 

  147. Prats, M. et al. Acute and sub-acute effect of ferric carboxymaltose on inflammation and adhesion molecules in patients with predialysis chronic renal failure. Nefrologia 33, 355–361 (2013).

    PubMed  Google Scholar 

  148. Kassianides, X., Gordon, A., Sturmey, R. & Bhandari, S. The comparative effects of intravenous iron on oxidative stress and inflammation in patients with chronic kidney disease and iron deficiency: a randomized controlled pilot study. Kidney Res. Clin. Pract. 40, 89–98 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kassianides, X., Allgar, V., Macdougall, I. C., Kalra, P. A. & Bhandari, S. Analysis of oxidative stress, inflammation and endothelial function following intravenous iron in chronic kidney disease in the Iron and Heart Trial. Sci. Rep. 12, 6853 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fell, L. H. et al. Impact of individual intravenous iron preparations on the differentiation of monocytes towards macrophages and dendritic cells. Nephrol. Dial. Transplant. 31, 1835–1845 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fell, L. H. et al. Distinct immunologic effects of different intravenous iron preparations on monocytes. Nephrol. Dial. Transplant. 29, 809–822 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Toblli, J. E., Cao, G., Giani, J. F., Dominici, F. P. & Angerosa, M. Markers of oxidative/nitrosative stress and inflammation in lung tissue of rats exposed to different intravenous iron compounds. Drug. Des. Devel. Ther. 11, 2251–2263 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Iwamoto, I., Kimura, A., Ochiai, K., Tomioka, H. & Yoshida, S. Distribution of neutral endopeptidase activity in human blood leukocytes. J. Leukoc. Biol. 49, 116–125 (1991).

    Article  CAS  PubMed  Google Scholar 

  154. Shipp, M. A., Stefano, G. B., Switzer, S. N., Griffin, J. D. & Reinherz, E. L. CD10 (CALLA)/neutral endopeptidase 24.11 modulates inflammatory peptide-induced changes in neutrophil morphology, migration, and adhesion proteins and is itself regulated by neutrophil activation. Blood 78, 1834–1841 (1991).

    Article  CAS  PubMed  Google Scholar 

  155. Saeland, S. et al. Distribution of surface-membrane molecules on bone marrow and cord blood CD34+ hematopoietic cells. Exp. Hematol. 20, 24–33 (1992).

    CAS  PubMed  Google Scholar 

  156. Young, H. E. et al. Human pluripotent and progenitor cells display cell surface cluster differentiation markers CD10, CD13, CD56, and MHC class-I. Exp. Biol. Med. 221, 63–72 (1999).

    CAS  Google Scholar 

  157. Knox, J. J., Cosma, G. L., Betts, M. R. & McLane, L. M. Characterization of T-bet and Eomes in peripheral human immune cells. Front. Immunol. 5, 217 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Cutrona, G. et al. Expression of CD10 by human T cells that undergo apoptosis both in vitro and in vivo. Blood 94, 3067–3076 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Morabito, F. et al. Expression of CD10 by B-chronic lymphocytic leukemia cells undergoing apoptosis in vivo and in vitro. Haematologica 88, 864–873 (2003).

    CAS  PubMed  Google Scholar 

  160. Mishra, D., Singh, S. & Narayan, G. Role of B cell development marker CD10 in cancer progression and prognosis. Mol. Biol. Int. 2016, 4328697 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Maguer-Satta, V., Besançon, R. & Bachelard-Cascales, E. Concise review: neutral endopeptidase (CD10): a multifaceted environment actor in stem cells, physiological mechanisms, and cancer. Stem Cell 29, 389–396 (2011).

    Article  CAS  Google Scholar 

  162. Lu, B. et al. Neutral endopeptidase modulation of septic shock. J. Exp. Med. 181, 2271–2275 (1995).

    Article  CAS  PubMed  Google Scholar 

  163. Stefano, G. B., Paemen, L. R. & Hughes, T. K. Autoimmunoregulation: differential modulation of CD10/neutral endopeptidase 24.11 by tumor necrosis factor and neuropeptides. J. Neuroimmunol. 41, 9–14 (1992).

    Article  CAS  PubMed  Google Scholar 

  164. Pierart, M. E., Najdovski, T., Appelboom, T. E. & Deschodt-Lanckman, M. M. Effect of human endopeptidase 24.11 (‘enkephalinase’) on IL-1-induced thymocyte proliferation activity. J. Immunol. 140, 3808–3811 (1988).

    Article  CAS  PubMed  Google Scholar 

  165. Delikat, S. E., Galvani, D. W. & Zuzel, M. A function of CD10 on bone marrow stroma. Br. J. Haematol. 87, 655–657 (1994).

    Article  CAS  PubMed  Google Scholar 

  166. Shipp, M. A. et al. Downregulation of enkephalin-mediated inflammatory responses by CDl0/neutral endopeptidase 24.11. Nature 347, 394–396 (1990).

    Article  CAS  PubMed  Google Scholar 

  167. Painter, R. G. et al. Function of neutral endopeptidase on the cell membrane of human neutrophils. J. Biol. Chem. 263, 9456–9461 (1988).

    Article  CAS  PubMed  Google Scholar 

  168. McCormack, R. T., Nelson, R. D. & LeBien, T. W. Structure/function studies of the common acute lymphoblastic leukemia antigen (CALLA/CD10) expressed on human neutrophils. J. Immunol. 137, 1075–1082 (1986).

    Article  CAS  PubMed  Google Scholar 

  169. Connelly, J. C., Chambless, R., Holiday, D., Chittenden, K. & Johnson, A. R. Up-regulation of neutral endopeptidase (CALLA) in human neutrophils by granulocyte-macrophage colony-stimulating factor. J. Leukoc. Biol. 53, 685–690 (1993).

    Article  CAS  PubMed  Google Scholar 

  170. Salzer, U. et al. Susceptibility to infections and adaptive immunity in adults with heart failure. Esc. Hear. Fail. 9, 1195–1205 (2022).

    Article  Google Scholar 

  171. Ishii, M. et al. Cardioprotective effects of LCZ696 (sacubitril/valsartan) after experimental acute myocardial infarction. JACC Basic Transl. Sci. 2, 655–668 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Matsumura, T. et al. Neutral endopeptidase 24.11 in neutrophils modulates protective effects of natriuretic peptides against neutrophils-induced endothelial cytotoxity. J. Clin. Invest. 97, 2192–2203 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Pfeffer, M. A. et al. Receptor–neprilysin inhibition in acute myocardial infarction. N. Engl. J. Med. 385, 1845–1855 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Palaniyappan, A., Uwiera, R. R. E., Idikio, H. & Jugdutt, B. I. Comparison of vasopeptidase inhibitor omapatrilat and angiotensin receptor blocker candesartan on extracellular matrix, myeloperoxidase, cytokines, and ventricular remodeling during healing after reperfused myocardial infarction. Mol. Cell. Biochem. 321, 9–22 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Palaniyappan, A. et al. Attenuation of increased secretory leukocyte protease inhibitor, matricellular proteins and angiotensin II and left ventricular remodeling by candesartan and omapatrilat during healing after reperfused myocardial infarction. Mol. Cell. Biochem. 376, 175–188 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Raj, P. et al. Comparative and combinatorial effects of resveratrol and sacubitril/valsartan alongside valsartan on cardiac remodeling and dysfunction in mi-induced rats. Molecules 26, 5006 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Mann, D. L. et al. Effect of treatment with sacubitril/valsartan in patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA Cardiol. 7, 17–25 (2022).

    Article  PubMed  Google Scholar 

  178. Vasquez, N., Carter, S. & Grodin, J. L. Angiotensin receptor–neprilysin inhibitors and the natriuretic peptide axis. Curr. Heart Fail. Rep. 17, 67–76 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Mtairag, E. M. et al. Pharmacological potentiation of natriuretic peptide limits polymorphonuclear neutrophil–vascular cell interactions. Arterioscler. Thromb. Vasc. Biol. 22, 1824–1831 (2002).

    Article  CAS  PubMed  Google Scholar 

  180. Garlichs, C. D., Zhang, H., Schmeißer, A. & Daniel, W. G. Priming of superoxide anion in polymorphonuclear neutrophils by brain natriuretic peptide. Life Sci. 65, 1027–1033 (1999).

    Article  CAS  PubMed  Google Scholar 

  181. Biselli, R., Farrace, S., De Simone, C. & Fattorossi, A. Potentiation of human polymorphonuclear leukocyte activation by atrial natriuretic peptide. Inhibitory effect of carnitine congeners. Inflammation 20, 33–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  182. Wiedermann, C. J., Niedermuhlbichler, M. & Braunsteiner, H. Priming of polymorphonuclear neutrophils by atrial natriuretic peptide in vitro. J. Clin. Invest. 89, 1580–1586 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. De Vito, P. Atrial natriuretic peptide: an old hormone or a new cytokine? Peptides 58, 108–116 (2014).

    Article  PubMed  Google Scholar 

  184. Vollmar, A. M. The role of atrial natriuretic peptide in the immune system. Peptides 26, 1086–1094 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Ogawa, T. & de Bold, A. J. Brain natriuretic peptide production and secretion in inflammation. J. Transplant. 2012, 962347 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Pavo, I. J. et al. Heart failure with reduced ejection fraction is characterized by systemic NEP downregulation. JACC Basic Transl. Sci. 5, 715–726 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Prausmüller, S. et al. Relevance of neutrophil neprilysin in heart failure. Cells 10, 2922 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Marini, O. et al. Mature CD10+ and immature CD10 neutrophils present in G-CSF-treated donors display opposite effects on T cells. Blood 129, 1343–1356 (2017).

    Article  CAS  PubMed  Google Scholar 

  189. Vodovar, N. et al. Elevated plasma B-type natriuretic peptide concentrations directly inhibit circulating neprilysin activity in heart failure. JACC Heart Fail. 3, 629–636 (2015).

    Article  PubMed  Google Scholar 

  190. Vaduganathan, M. et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet 400, 757–767 (2022).

    Article  CAS  PubMed  Google Scholar 

  191. Sano, R., Shinozaki, Y. & Ohta, T. Sodium–glucose cotransporters: functional properties and pharmaceutical potential. J. Diabetes Investig. 11, 770–782 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Maldonado-Cervantes, M. I. et al. Autocrine modulation of glucose transporter SGLT2 by IL-6 and TNF-α in LLC-PK1 cells. J. Physiol. Biochem. 68, 411–420 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Matthews, V. B. et al. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. J. Hypertens. 35, 2059–2068 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Katsurada, K., Nandi, S. S., Sharma, N. M. & Patel, K. P. Enhanced expression and function of renal SGLT2 (sodium-glucose cotransporter 2) in heart failure: role of renal nerves. Circ. Heart Fail. 14, e008365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Byrne, N. J. et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure. Circ. Heart Fail. 13, e006277 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Ye, Y., Bajaj, M., Yang, H. C., Perez-Polo, J. R. & Birnbaum, Y. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor. Cardiovasc. Drugs Ther. 31, 119–132 (2017).

    Article  PubMed  Google Scholar 

  197. Kolijn, D. et al. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc. Res. 117, 495–507 (2021).

    Article  CAS  PubMed  Google Scholar 

  198. Koyani, C. N. et al. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacol. Res. 158, 104870 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Lee, T. M., Chang, N. C. & Lin, S. Z. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic. Biol. Med. 104, 298–310 (2017).

    Article  CAS  PubMed  Google Scholar 

  200. Sundararaman, A., Amirtham, U. & Rangarajan, A. Calcium-oxidant signaling network regulates AMP-activated protein kinase (AMPK) activation upon matrix deprivation. J. Biol. Chem. 291, 14410–14429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Auciello, F. R., Ross, F. A., Ikematsu, N. & Hardie, D. G. Oxidative stress activates AMPK in cultured cells primarily by increasing cellular AMP and/or ADP. FEBS Lett. 588, 3361–3366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Murakami, T. et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl Acad. Sci. USA 109, 11282–11287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Abais, J. M., Xia, M., Zhang, Y., Boini, K. M. & Li, P. L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid. Redox Signal. 22, 1111–1129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Xu, C. et al. Canagliflozin exerts anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy in immune cells. Biochem. Pharmacol. 152, 45–59 (2018).

    Article  CAS  PubMed  Google Scholar 

  205. Lin, F. et al. Canagliflozin alleviates LPS-induced acute lung injury by modulating alveolar macrophage polarization. Int. Immunopharmacol. 88, 106969 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Lee, N. et al. Anti-inflammatory effects of empagliflozin and gemigliptin on LPS-stimulated macrophage via the IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 signalling pathways. J. Immunol. Res. 2021, 9944880 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Zhang, H. & Liu, Z. Effects of dapagliflozin in combination with metoprolol sustained-release tablets on prognosis and cardiac function in patients with acute myocardial infarction after PCI. Comput. Math. Methods Med. 2022, 106969 (2022).

    Google Scholar 

  208. Xu, Y. et al. Bone marrow-derived naïve B lymphocytes improve heart function after myocardial infarction: a novel cardioprotective mechanism for empagliflozin. Basic Res. Cardiol. 117, 47 (2022).

    Article  CAS  PubMed  Google Scholar 

  209. Paolisso, P. et al. Infarct size, inflammatory burden, and admission hyperglycemia in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: a multicenter international registry. Cardiovasc. Diabetol. 21, 77 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kim, S. R. et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun. 11, 2127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Borzouei, S., Moghimi, H., Zamani, A. & Behzad, M. Changes in T helper cell-related factors in patients with type 2 diabetes mellitus after empagliflozin therapy. Hum. Immunol. 82, 422–428 (2021).

    Article  CAS  PubMed  Google Scholar 

  212. Borghi, C., Palazzuoli, A., Landolfo, M. & Cosentino, E. Hyperuricemia: a novel old disorder—relationship and potential mechanisms in heart failure. Heart Fail. Rev. 25, 43–51 (2020).

    Article  CAS  PubMed  Google Scholar 

  213. Doehner, W. et al. Uric acid and sodium-glucose cotransporter-2 inhibition with empagliflozin in heart failure with reduced ejection fraction: the EMPEROR-reduced trial. Eur. Heart J. 43, 3435–3446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ito, H. et al. Hyperuricemia is independently associated with coronary heart disease and renal dysfunction in patients with type 2 diabetes mellitus. PLoS ONE 6, e27817 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Riehle, C. & Abel, E. D. Insulin signaling and heart failure. Circ. Res. 118, 1151–1169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Vaziri, N. D., Pahl, M. V., Crum, A. & Norris, K. Effect of uremia on structure and function of immune system. J. Ren. Nutr. 22, 149–156 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. La Grotta, R. et al. Anti-inflammatory effect of SGLT-2 inhibitors via uric acid and insulin. Cell. Mol. Life Sci. 79, 273 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Cowie, M. R. & Fisher, M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat. Rev. Cardiol. 17, 761–772 (2020).

    Article  CAS  PubMed  Google Scholar 

  219. Hattori, Y. Insulin resistance and heart failure during treatment with sodium glucose cotransporter 2 inhibitors: proposed role of ketone utilization. Heart Fail. Rev. 25, 403–408 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Yaribeygi, H., Sathyapalan, T., Maleki, M., Jamialahmadi, T. & Sahebkar, A. Molecular mechanisms by which SGLT2 inhibitors can induce insulin sensitivity in diabetic milieu: a mechanistic review. Life Sci. 240, 117090 (2020).

    Article  CAS  PubMed  Google Scholar 

  221. Mancini, S. J. et al. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms. Sci. Rep. 8, 5276 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Hu, Z., Cano, I. & D’Amore, P. A. Update on the role of the endothelial glycocalyx in angiogenesis and vascular inflammation. Front. Cell Dev. Biol. 9, 734276 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Campeau, M. A. & Leask, R. L. Empagliflozin mitigates endothelial inflammation and attenuates endoplasmic reticulum stress signaling caused by sustained glycocalyx disruption. Sci. Rep. 12, 12681 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Cooper, S., Teoh, H., Campeau, M. A., Verma, S. & Leask, R. L. Empagliflozin restores the integrity of the endothelial glycocalyx in vitro. Mol. Cell. Biochem. 459, 121–130 (2019).

    Article  CAS  PubMed  Google Scholar 

  225. Sukhanov, S. et al. The SGLT2 inhibitor empagliflozin attenuates interleukin-17A-induced human aortic smooth muscle cell proliferation and migration by targeting TRAF3IP2/ROS/NLRP3/caspase-1-dependent IL-1β and IL-18 secretion. Cell. Signal. 77, 109825 (2021).

    Article  CAS  PubMed  Google Scholar 

  226. Nasiri-Ansari, N. et al. Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice. Cardiovasc. Diabetol. 17, 106 (2018).

    Article  CAS  PubMed  Google Scholar 

  227. Fu, J. et al. Empagliflozin inhibits macrophage inflammation through AMPK signaling pathway and plays an anti-atherosclerosis role. Int. J. Cardiol. 367, 56–62 (2022).

    Article  PubMed  Google Scholar 

  228. Kiuchi, S. et al. Long-term use of ipragliflozin improved cardiac sympathetic nerve activity in a patient with heart failure: a case report. Drug. Discov. Ther. 12, 51–54 (2018).

    Article  PubMed  Google Scholar 

  229. Hamaoka, T. et al. Different responses of muscle sympathetic nerve activity to dapagliflozin between patients with type 2 diabetes with and without heart failure. J. Am. Heart Assoc. 10, 22637 (2021).

    Article  Google Scholar 

  230. Herat, L. Y. et al. SGLT2 inhibitor–induced sympathoinhibition: a novel mechanism for cardiorenal protection. JACC Basic Transl. Sci. 5, 169–179 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Wang, F. Z. et al. The cardioprotective effect of the sodium-glucose cotransporter 2 inhibitor dapagliflozin in rats with isoproterenol-induced cardiomyopathy. Am. J. Transl. Res. 13, 10950–10961 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Lymperopoulos, A., Borges, J. I., Cora, N. & Sizova, A. Sympatholytic mechanisms for the beneficial cardiovascular effects of SGLT2 inhibitors: a research hypothesis for dapagliflozin’s effects in the adrenal gland. Int. J. Mol. Sci. 22, 7684 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Lymperopoulos, A. et al. Downregulates adrenal G protein-coupled receptor-kinase-2 to exert sympatholysis in heart failure. Circulation 146, A11977 (2022).

    Article  Google Scholar 

  234. Chait, A. & den Hartigh, L. J. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front. Cardiovasc. Med. 7, 22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Alzaim, I. et al. Adipose tissue immunomodulation: a novel therapeutic approach in cardiovascular and metabolic diseases. Front. Cardiovasc. Med. 7, 277 (2020).

    Article  Google Scholar 

  236. Díaz-Rodríguez, E. et al. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovasc. Res. 114, 336–346 (2018).

    Article  PubMed  Google Scholar 

  237. Carlos, G. S. et al. Benefits of the Sglt2 inhibitor empagliflozin on epicardial adipose tissue in non-diabetic Hfref. Circulation 146, A15407 (2022).

    Google Scholar 

  238. Rafeh, R., Viveiros, A., Oudit, G. Y. & El-Yazbi, A. F. Targeting perivascular and epicardial adipose tissue inflammation: therapeutic opportunities for cardiovascular disease. Clin. Sci. 134, 827–851 (2020).

    Article  CAS  Google Scholar 

  239. Gislason, G. H. et al. Persistent use of evidence-based pharmacotherapy in heart failure is associated with improved outcomes. Circulation 116, 737–744 (2007).

    Article  PubMed  Google Scholar 

  240. Kolandaivelu, K., Leiden, B. B., O’Gara, P. T. & Bhatt, D. L. Non-adherence to cardiovascular medications. Eur. Heart J. 35, 3267–3276 (2014).

    Article  CAS  PubMed  Google Scholar 

  241. Jarjour, M. et al. Care gaps in adherence to heart failure guidelines: clinical inertia or physiological limitations? JACC Heart Fail. 8, 725–738 (2020).

    Article  PubMed  Google Scholar 

  242. Savarese, G. et al. Heart failure drug titration, discontinuation, mortality and heart failure hospitalization risk: a multinational observational study (US, UK and Sweden). Eur. J. Heart Fail. 23, 1499–1511 (2021).

    Article  CAS  PubMed  Google Scholar 

  243. Jonsson Holmdahl, A. et al. Motives, frequency, predictors and outcomes of MRA discontinuation in a real-world heart failure population. Open Heart 9, e002022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Seferović, P. M. et al. Navigating between Scylla and Charybdis: challenges and strategies for implementing guideline-directed medical therapy in heart failure with reduced ejection fraction. Eur. J. Heart Fail. 23, 1999–2007 (2021).

    Article  PubMed  Google Scholar 

  245. Aboumsallem, J. P. et al. Multi-omics analyses identify molecular signatures with prognostic values in different heart failure aetiologies. J. Mol. Cell. Cardiol. 175, 13–28 (2023).

    Article  CAS  PubMed  Google Scholar 

  246. Ridker, P. M. et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 2060–2069 (2021).

    Article  CAS  PubMed  Google Scholar 

  247. Buckley, L. F. et al. Potential role for interleukin-1 in the cardio-renal syndrome. Eur. J. Heart Fail. 21, 385–386 (2019).

    Article  PubMed  Google Scholar 

  248. Li, K. et al. Interleukin-6 stimulates epithelial sodium channels in mouse cortical collecting duct cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R590–R595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Svensson, E. C. et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 7, 521–528 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Díaz, M. L. et al. The characterization of cardiac explants reveals unique fibrosis patterns and a predominance of CD8+ T cell subpopulations in patients with chronic chagas cardiomyopathy. Pathogens 11, 1402 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Bian, R. T., Wang, Z. T. & Li, W. Y. Immunoadsorption treatment for dilated cardiomyopathy: a PRISMA-compliant systematic review and meta-analysis. Medicine 100, E26475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Tschöpe, C. et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat. Rev. Cardiol. 18, 169–193 (2021).

    Article  PubMed  Google Scholar 

  253. Murray, E. C. et al. Therapeutic targeting of inflammation in hypertension: from novel mechanisms to translational perspective. Cardiovasc. Res. 117, 2589–2609 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Mann, D. L. et al. targeted anticytokine therapy in patients with chronic heart failure: results of the randomized etanercept worldwide evaluation (RENEWAL). Circulation 109, 1594–1602 (2004).

    Article  CAS  PubMed  Google Scholar 

  255. Chung, E. S., Packer, M., Lo, K. H., Fasanmade, A. A. & Willerson, J. T. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trail. Circulation 107, 3133–3140 (2003).

    Article  CAS  PubMed  Google Scholar 

  256. Givertz, M. M. et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: the xanthine oxidase inhibition for hyperuricemic heart failure patients (EXACT-HF) study. Circulation 131, 1763–1771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Hare, J. M. et al. Impact of oxypurinol in patients with symptomatic heart failure. results of the OPT-CHF study. J. Am. Coll. Cardiol. 51, 2301–2309 (2008).

    Article  CAS  PubMed  Google Scholar 

  258. Kjekshus, J. et al. Rosuvastatin in older patients with systolic heart failure. N. Engl. J. Med. 357, 2248–2261 (2007).

    Article  CAS  PubMed  Google Scholar 

  259. GISSI-HF investigators et al. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet 372, 1231–1239 (2008).

    Article  Google Scholar 

  260. Gong, K. et al. The nonspecific anti-inflammatory therapy with methotrexate for patients with chronic heart failure. Am. Heart J. 151, 62–68 (2006).

    Article  CAS  PubMed  Google Scholar 

  261. Gullestad, L. et al. Effect of thalidomide on cardiac remodeling in chronic heart failure: results of a double-blind, placebo-controlled study. Circulation 112, 3408–3414 (2005).

    Article  CAS  PubMed  Google Scholar 

  262. Moreira, D. M., Vieira, J. L. & Mascia Gottschall, C. A. The effects of METhotrexate therapy on the physical capacity of patients with ISchemic Heart failure: a randomized double-blind, placebo-controlled trial (METIS Trial). J. Card. Fail. 15, 828–834 (2009).

    Article  CAS  PubMed  Google Scholar 

  263. Orea-Tejeda, A. et al. Effects of thalidomide treatment in heart failure patients. Cardiology 108, 237–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  264. Torre-Amione, G. et al. Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): a placebo-controlled randomised trial. Lancet 371, 228–236 (2008).

    Article  CAS  PubMed  Google Scholar 

  265. Deftereos, S. et al. Anti-inflammatory treatment with colchicine instable chronic heart failure. A prospective, randomized study. JACC Heart Fail. 2, 131–137 (2014).

    Article  PubMed  Google Scholar 

  266. Tardif, J.-C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  267. Granger, C. B. et al. Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: the COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial. Circulation 108, 1184–1190 (2003).

    Article  CAS  PubMed  Google Scholar 

  268. Mahaffey, K. W. et al. Effect of pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to fibrinolysis in acute myocardial infarction: the COMPlement inhibition in myocardial infarction treated with thromboLYtics (COMPLY) trial. Circulation 108, 1176–1183 (2003).

    Article  CAS  PubMed  Google Scholar 

  269. Armstrong, P. W. et al. Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. JAMA 297, 43–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  270. Piot, C. et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N. Engl. J. Med. 359, 473–481 (2008).

    Article  CAS  PubMed  Google Scholar 

  271. Ghaffari, S., Kazemi, B., Toluey, M. & Sepehrvand, N. The effect of prethrombolytic cyclosporine-a injection on clinical outcome of acute anterior ST-elevation myocardial infarction. Cardiovasc. Ther. 31, e34–e39 (2013).

    Article  CAS  PubMed  Google Scholar 

  272. Cung, T.-T. et al. Cyclosporine before PCI in patients with acute myocardial infarction. N. Engl. J. Med. 373, 1021–1031 (2015).

    Article  CAS  PubMed  Google Scholar 

  273. Ottani, F. et al. Cyclosporine a in reperfused myocardial infarction the multicenter, controlled, open-label CYCLE trial. J. Am. Coll. Cardiol. 67, 365–374 (2016).

    Article  CAS  PubMed  Google Scholar 

  274. Liu, C. & Liu, K. Cardiac outcome prevention effectiveness of glucocorticoids in acute decompensated heart failure: COPE-ADHF study. J. Cardiovasc. Pharmacol. 63, 333–338 (2014).

    Article  CAS  PubMed  Google Scholar 

  275. Liu, C. et al. Potent potentiating diuretic effects of prednisone in congestive heart failure. J. Cardiovasc. Pharmacol. 48, 173–176 (2006).

    Article  CAS  PubMed  Google Scholar 

  276. Liu, C. et al. Prednisone in uric acid lowering in symptomatic heart failure patients with hyperuricemia (PUSH-PATH) study. Can. J. Cardiol. 29, 1048–1054 (2013).

    Article  PubMed  Google Scholar 

  277. Liu, C. & Liu, K. Systemic corticosteroid use in heart failure: let evidence reveal the truth. JACC Heart Fail. 8, 153 (2020).

    Article  PubMed  Google Scholar 

  278. Sliwa, K., Skudicky, D., Candy, G., Wisenbaugh, T. & Sareli, P. Randomised investigation of effects of pentoxifylline on left-ventricular performance in idiopathic dilated cardiomyopathy. Lancet 351, 1091–1093 (1998).

    Article  CAS  PubMed  Google Scholar 

  279. Skudicky, D., Sliwa, K., Bergemann, A., Candy, G. & Sareli, P. Reduction in Fas/APO-1 plasma concentrations correlates with improvement in left ventricular function in patients with idiopathic dilated cardiomyopathy treated with pentoxifylline. Heart 84, 438–439 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Skudicky, D., Bergemann, A., Sliwa, K., Candy, G. & Sareli, P. Beneficial effects of pentoxifylline in patients with idiopathic dilated cardiomyopathy treated with angiotensin-converting enzyme inhibitors and carvedilol: results of a randomized study. Circulation 103, 1083–1088 (2001).

    Article  CAS  PubMed  Google Scholar 

  281. Sliwa, K. et al. Effects of pentoxifylline on cytokine profiles and left ventricular performance in patients with decompensated congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am. J. Cardiol. 90, 1118–1122 (2002).

    Article  CAS  PubMed  Google Scholar 

  282. Sliwa, K. et al. Therapy of ischemic cardiomyopathy with the immunomodulating agent pentoxifylline: results of a randomized study. Circulation 109, 750–755 (2004).

    Article  CAS  PubMed  Google Scholar 

  283. Champion, S. et al. Pentoxifylline in heart failure: a meta-analysis of clinical trials. Cardiovasc. Ther. 32, 159–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  284. Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Patel, B. et al. CCR2+ monocyte-derived infiltrating macrophages are required for adverse cardiac remodeling during pressure overload. JACC Basic Transl. Sci. 3, 230–244 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Fei, L., Ren, X., Yu, H. & Zhan, Y. Targeting the CCL2/CCR2 axis in cancer immunotherapy: one stone, three birds? Front. Immunol. 12, 4657 (2021).

    Article  Google Scholar 

  287. Hiraiwa, H., Okumura, T. & Murohara, T. The cardiosplenic axis: the prognostic role of the spleen in heart failure. Heart Fail. Rev. 27, 2005–2015 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Tynan, A., Brines, M. & Chavan, S. S. Control of inflammation using non-invasive neuromodulation: past, present and promise. Int. Immunol. 34, 119–128 (2022).

    Article  CAS  PubMed  Google Scholar 

  289. Gold, M. R. et al. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J. Am. Coll. Cardiol. 68, 149–158 (2016).

    Article  PubMed  Google Scholar 

  290. Stavrakis, S. et al. Neuromodulation of inflammation to treat heart failure with preserved ejection fraction: a pilot randomized clinical trial. J. Am. Heart Assoc. 11, 23582 (2022).

    Article  Google Scholar 

  291. Zahid, A., Li, B., Kombe, A. J. K., Jin, T. & Tao, J. Pharmacological inhibitors of the NLRP3 inflammasome. Front. Immunol. 10, 2538 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Toldo, S. & Abbate, A. The NLRP3 inflammasome in acute myocardial infarction. Nat. Rev. Cardiol. 15, 203–214 (2018).

    Article  CAS  PubMed  Google Scholar 

  293. Cao, D. & Yi et al. A small molecule inhibitor of caspase-1 inhibits NLRP3 inflammasome activation and pyroptosis to alleviate gouty inflammation. Immunol. Lett. 244, 28–39 (2022).

    Article  CAS  PubMed  Google Scholar 

  294. Van Hout, G. P. J. et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur. Heart J. 38, 828–836 (2017).

    PubMed  Google Scholar 

  295. Gao, R. F. et al. The covalent NLRP3-inflammasome inhibitor Oridonin relieves myocardial infarction induced myocardial fibrosis and cardiac remodeling in mice. Int. Immunopharmacol. 90, 107133 (2021).

    Article  CAS  PubMed  Google Scholar 

  296. Pappritz, K. et al. Colchicine prevents disease progression in viral myocarditis via modulating the NLRP3 inflammasome in the cardiosplenic axis. ESC Heart Fail. 9, 925–941 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  297. Tardif, J. C. et al. Colchicine for community-treated patients with COVID-19 (COLCORONA): a phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial. Lancet Respir. Med. 9, 924–932 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Nidorf, S. M., Eikelboom, J. W., Budgeon, C. A. & Thompson, P. L. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol. 61, 404–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  299. Deftereos, S. G. et al. Colchicine in cardiovascular disease: in-depth review. Circulation 145, 61–78 (2022).

    CAS  PubMed  Google Scholar 

  300. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04705987 (2021).

  301. Chia, Y. C. et al. Interleukin 6 and development of heart failure with preserved ejection fraction in the general population. J. Am. Heart Assoc. 10, e018549 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Markousis-Mavrogenis, G. et al. The clinical significance of interleukin-6 in heart failure: results from the BIOSTAT-CHF study. Eur. J. Heart Fail. 21, 965–973 (2019).

    Article  CAS  PubMed  Google Scholar 

  303. Markousis-Mavrogenis, G. et al. The additive prognostic value of serial plasma interleukin-6 levels over changes in brain natriuretic peptide in patients with acute heart failure. J. Card. Fail. 27, 808–811 (2021).

    Article  PubMed  Google Scholar 

  304. Szekely, Y. & Arbel, Y. A review of interleukin-1 in heart disease: where do we stand today? Cardiol. Ther. 7, 25–44 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Toldo, S. et al. Interleukin-1β blockade improves left ventricular systolic/diastolic function and restores contractility reserve in severe ischemic cardiomyopathy in the mouse. J. Cardiovasc. Pharmacol. 64, 1–6 (2014).

    Article  CAS  PubMed  Google Scholar 

  306. van Tassell, B. W. et al. Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure. PLoS ONE 7, e33438 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Van Tassell, B. W. et al. Interleukin-1 blockade in recently decompensated systolic heart failure: results from REDHART (Recently Decompensated Heart Failure Anakinra Response Trial). Circ. Heart Fail. 10, e004373 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  308. Van Tassell, B. W. et al. IL-1 blockade in patients with heart failure with preserved ejection fraction. Circ. Heart Fail. 11, e005036 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  309. Van Tassell, B. W. et al. Interleukin-1 blockade in acute decompensated heart failure: a randomized, double-blinded, placebo-controlled pilot study. J. Cardiovasc. Pharmacol. 67, 544–551 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  310. Abbate, A. et al. Interleukin-1 blockade with anakinra and heart failure following ST-segment elevation myocardial infarction: results from a pooled analysis of the VCUART clinical trials. Eur. Hear. J. Cardiovasc. Pharmacother. 8, 503–510 (2022).

    Article  Google Scholar 

  311. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  312. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139, 1289–1299 (2019).

    Article  CAS  PubMed  Google Scholar 

  313. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03797001 (2023).

  314. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT05177822 (2023).

  315. Finkel, M. S. et al. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257, 387–389 (1992).

    Article  CAS  PubMed  Google Scholar 

  316. Yu, X. W., Kennedy, R. H. & Liu, S. J. JAK2/STAT3, not ERK1/2, mediates interleukin-6-induced activation of inducible nitric-oxide synthase and decrease in contractility of adult ventricular myocytes. J. Biol. Chem. 278, 16304–16309 (2003).

    Article  CAS  PubMed  Google Scholar 

  317. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT05636176 (2023).

  318. Commins, S., Steinke, J. W. & Borish, L. The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J. Allergy Clin. Immunol. 121, 1108–1111 (2008).

    Article  CAS  PubMed  Google Scholar 

  319. Verma, S. K. et al. Interleukin-10 treatment attenuates pressure overload-induced hypertrophic remodeling and improves heart function via signal transducers and activators of transcription 3-dependent inhibition of nuclear factor-κB. Circulation 126, 418–429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Stafford, N. et al. Signaling via the interleukin-10 receptor attenuates cardiac hypertrophy in mice during pressure overload, but not isoproterenol infusion. Front. Pharmacol. 11, 1742 (2020).

    Article  Google Scholar 

  321. Jung, M. et al. IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Res. Cardiol. 112, 33 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  322. Domínguez Rodríguez, A., Abreu González, P., García González, M. J. & Ferrer Hita, J. Association between serum interleukin 10 level and development of heart failure in acute myocardial infarction patients treated by primary angioplasty. Rev. Esp. Cardiol. 58, 626–630 (2005).

    Article  PubMed  Google Scholar 

  323. Dhingra, S., Sharma, A. K., Arora, R. C., Slezak, J. & Singal, P. K. IL-10 attenuates TNF-α-induced NFκB pathway activation and cardiomyocyte apoptosis. Cardiovasc. Res. 82, 59–66 (2009).

    Article  CAS  PubMed  Google Scholar 

  324. Lancellotti, P. & Oury, C. IL-10 targets myofibroblasts and dampens cardiac fibrosis. J. Public Health Emerg. 1, 83 (2017).

    Article  Google Scholar 

  325. Buscarlet, M. et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood 130, 753–762 (2017).

    Article  CAS  PubMed  Google Scholar 

  326. Sano, S. et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J. Am. Coll. Cardiol. 71, 875–886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Abplanalp, W. T. et al. Clonal hematopoiesis-driver DNMT3A mutations alter immune cells in heart failure. Circ. Res. 128, 216–228 (2021).

    Article  CAS  PubMed  Google Scholar 

  328. Cremer, S. et al. Interaction of inherited genetic variants in the NLRP3 inflammasome/IL-6 pathway with acquired clonal hematopoiesis to modulate mortality risk in patients with HFrEF. Eur. Heart J. 43, ehac544.832 (2022).

    Article  Google Scholar 

  329. Markousis-Mavrogenis, G. et al. Multimarker profiling identifies protective and harmful immune processes in heart failure: findings from BIOSTAT-CHF. Cardiovasc. Res. 118, 1964–1977 (2022).

    Article  CAS  PubMed  Google Scholar 

  330. Kallikourdis, M. et al. T cell costimulation blockade blunts pressure overload-induced heart failure. Nat. Commun. 8, 14680 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  331. Martini, E. et al. T cell costimulation blockade blunts age-related heart failure. Circ. Res. 127, 1115–1117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Rahmati, Z. et al. Association of levels of interleukin 17 and T-helper 17 count with symptom severity and etiology of chronic heart failure: a case-control study. Croat. Med. J. 59, 139–148 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Li, X. F., Pan, D., Zhang, W. L., Zhou, J. & Liang, J. J. Association of NT-proBNP and interleukin-17 levels with heart failure in elderly patients. Genet. Mol. Res. 15, gmr.15028014 (2016).

    Google Scholar 

  334. Zhang, Y. et al. Ablation of interleukin-17 alleviated cardiac interstitial fibrosis and improved cardiac function via inhibiting long non-coding RNA-AK081284 in diabetic mice. J. Mol. Cell. Cardiol. 115, 64–72 (2018).

    Article  PubMed  Google Scholar 

  335. Zhou, S. F. et al. IL-17A promotes ventricular remodeling after myocardial infarction. J. Mol. Med. 92, 1105–1116 (2014).

    Article  CAS  PubMed  Google Scholar 

  336. Xue, G. L. et al. Interleukin-17 upregulation participates in the pathogenesis of heart failure in mice via NF-κB-dependent suppression of SERCA2a and Cav1.2 expression. Acta Pharmacol. Sin. 42, 1780–1789 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Zhu, D. et al. Dorzagliatin in drug-naïve patients with type 2 diabetes: a randomized, double-blind, placebo-controlled phase 3 trial. Nat. Med. 28, 965–973 (2022).

    Article  CAS  PubMed  Google Scholar 

  338. Kishore, M. et al. Regulatory T cell migration is dependent on glucokinase-mediated glycolysis. Immunity 47, 875–889.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Yang, Y. et al. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis. 7, e2234 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Liu, L. et al. Up-regulated TLR4 in cardiomyocytes exacerbates heart failure after long-term myocardial infarction. J. Cell. Mol. Med. 19, 2728–2740 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Boyd, J. H., Mathur, S., Wang, Y., Bateman, R. M. & Walley, K. R. Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-κB dependent inflammatory response. Cardiovasc. Res. 72, 384–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  342. Riad, A. et al. Toll-like receptor-4 deficiency attenuates doxorubicin-induced cardiomyopathy in mice. Eur. J. Heart Fail. 10, 233–243 (2008).

    Article  CAS  PubMed  Google Scholar 

  343. Riad, A. et al. Toll-like receptor-4 modulates survival by induction of left ventricular remodeling after myocardial infarction in mice. J. Immunol. 180, 6954–6961 (2008).

    Article  CAS  PubMed  Google Scholar 

  344. Ehrentraut, H. et al. The Toll-like receptor 4-antagonist eritoran reduces murine cardiac hypertrophy. Eur. J. Heart Fail. 13, 602–610 (2011).

    Article  CAS  PubMed  Google Scholar 

  345. Ling, S. & Xu, J.-W. NETosis as a pathogenic factor for heart failure. Oxid. Med. Cell. Longev. 2021, 6687096 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  346. Martinod, K. et al. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J. Exp. Med. 214, 439–458 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Eiserich, J. P. et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science 296, 2391–2394 (2002).

    Article  CAS  PubMed  Google Scholar 

  348. Vasilyev, N. et al. Myeloperoxidase-generated oxidants modulate left ventricular remodeling but not infarct size after myocardial infarction. Circulation 112, 2812–2820 (2005).

    Article  CAS  PubMed  Google Scholar 

  349. Tang, W. H. W. et al. Prognostic value and echocardiographic determinants of plasma myeloperoxidase levels in chronic heart failure. J. Am. Coll. Cardiol. 49, 2364–2370 (2007).

    Article  CAS  PubMed  Google Scholar 

  350. Chamardani, T. M. & Amiritavassoli, S. Inhibition of NETosis for treatment purposes: friend or foe? Mol. Cell. Biochem. 477, 673–688 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04986202 (2023).

  352. Meier, L. A. & Binstadt, B. A. The contribution of autoantibodies to inflammatory cardiovascular pathology. Front. Immunol. 9, 352216 (2018).

    Article  Google Scholar 

  353. Harding, D. et al. Dilated cardiomyopathy and chronic cardiac inflammation: pathogenesis, diagnosis and therapy. J. Intern. Med. 293, 23–47 (2023).

    Article  CAS  PubMed  Google Scholar 

  354. Felix, S. B. et al. Hemodynamic effects of immunoadsorption and subsequent immunoglobulin substitution in dilated cardiomyopathy: three-month results from a randomized study. J. Am. Coll. Cardiol. 35, 1590–1598 (2000).

    Article  CAS  PubMed  Google Scholar 

  355. Müller, J. et al. Immunoglobulin adsorption in patients with idiopathic dilated cardiomyopathy. Circulation 101, 385–391 (2000).

    Article  PubMed  Google Scholar 

  356. Tschöpe, C. et al. Targeting CD20+ B-lymphocytes in inflammatory dilated cardiomyopathy with rituximab improves clinical course: a case series. Eur. Heart J. Case Rep. 3, ytz131 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  357. Iacobellis, G. Epicardial fat: a new cardiovascular therapeutic target. Curr. Opin. Pharmacol. 27, 13–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  358. D’Marco, L. et al. SGLT2i and GLP-1RA in cardiometabolic and renal diseases: from glycemic control to adipose tissue inflammation and senescence. J. Diabetes Res. 2021, 9032378 (2021).

    PubMed  PubMed Central  Google Scholar 

  359. Bendotti, G. et al. The anti-inflammatory and immunological properties of GLP-1 receptor agonists. Pharmacol. Res. 182, 106320 (2022).

    Article  CAS  PubMed  Google Scholar 

  360. Huixing, L., Di, F. & Daoquan, P. Effect of glucagon-like peptide-1 receptor agonists on prognosis of heart failure and cardiac function: a systematic review and meta-analysis of randomized controlled trials. Clin. Ther. 45, 17–30 (2023).

    Article  PubMed  Google Scholar 

  361. Withaar, C. et al. The effects of liraglutide and dapagliflozin on cardiac function and structure in a multi-hit mouse model of heart failure with preserved ejection fraction. Cardiovasc. Res. 117, 2108–2124 (2021).

    Article  CAS  PubMed  Google Scholar 

  362. Belli, M. et al. Treatment of HFpEF beyond the SGLT2-Is: does the addition of GLP-1 RA improve cardiometabolic risk and outcomes in diabetic patients? Int. J. Mol. Sci. 23, 14598 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Casas, R. et al. Long-term immunomodulatory effects of a mediterranean diet in adults at high risk of cardiovascular disease in the PREvención con DIeta MEDiterránea (PREDIMED) randomized controlled trial. J. Nutr. 146, 1684–1693 (2016).

    Article  CAS  PubMed  Google Scholar 

  364. Casas, R. et al. Anti-inflammatory effects of the mediterranean diet in the early and late stages of atheroma plaque development. Mediators Inflamm. 2017, 3674390 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  365. Marcelino, G. et al. Effects of olive oil and its minor components on cardiovascular diseases, inflammation, and gut microbiota. Nutrients 11, 1826 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Xiao, Y. et al. Effects of nut consumption on selected inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Nutrition 54, 129–143 (2018).

    Article  CAS  PubMed  Google Scholar 

  367. Hosseini, B. et al. Effects of fruit and vegetable consumption on inflammatory biomarkers and immune cell populations: a systematic literature review and meta-analysis. Am. J. Clin. Nutr. 108, 136–155 (2018).

    Article  PubMed  Google Scholar 

  368. Milesi, G., Rangan, A. & Grafenauer, S. Whole grain consumption and inflammatory markers: a systematic literature review of randomized control trials. Nutrients 14, 374 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Xu, Y. et al. Whole grain diet reduces systemic inflammation: a meta-analysis of 9 randomized trials. Medicine 97, e12995 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  370. Iwaniak, A., Minkiewicz, P. & Darewicz, M. Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Compr. Rev. food Sci. food Saf. 13, 114–134 (2014).

    Article  CAS  PubMed  Google Scholar 

  371. Chen, J., Jayachandran, M., Bai, W. & Xu, B. A critical review on the health benefits of fish consumption and its bioactive constituents. Food Chem. 369, 130874 (2022).

    Article  CAS  PubMed  Google Scholar 

  372. Moradi-Marjaneh, R., Paseban, M. & Sahebkar, A. Natural products with SGLT2 inhibitory activity: possibilities of application for the treatment of diabetes. Phytother. Res. 33, 2518–2530 (2019).

    Article  CAS  PubMed  Google Scholar 

  373. Hsieh, M. S., How, C. K., Hsieh, V. C. R. & Chen, P. C. Preadmission antihypertensive drug use and sepsis outcome: impact of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Shock 53, 407–415 (2020).

    Article  CAS  PubMed  Google Scholar 

  374. Wu, M. Z. et al. Risk of sepsis and pneumonia in patients initiated on SGLT2 inhibitors and DPP-4 inhibitors. Diabetes Metab. 48, 101367 (2022).

    Article  CAS  PubMed  Google Scholar 

  375. Eil, R. et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537, 539–543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Wouda, R. D. et al. Sex-specific associations between potassium intake, blood pressure, and cardiovascular outcomes: the EPIC-Norfolk study. Eur. Heart J. 43, 2867–2875 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Neal, B. et al. Effect of salt substitution on cardiovascular events and death. N. Engl. J. Med. 385, 1067–1077 (2021).

    Article  CAS  PubMed  Google Scholar 

  378. Bomer, N. et al. Micronutrient deficiencies in heart failure: mitochondrial dysfunction as a common pathophysiological mechanism? J. Intern. Med. 291, 713–731 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Hoffmann, P. R. & Berry, M. J. The influence of selenium on immune responses. Mol. Nutr. Food Res. 52, 1273–1280 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Hoffmann, F. W. et al. Dietary selenium modulates activation and differentiation of CD4+ T cells in mice through a mechanism involving cellular free thiols. J. Nutr. 140, 1155–1161 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Hu, Y. et al. Effect of selenium on thyroid autoimmunity and regulatory T cells in patients with Hashimoto’s thyroiditis: a prospective randomized-controlled trial. Clin. Transl. Sci. 14, 1390–1402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Gammoh, N. Z. & Rink, L. Zinc in infection and inflammation. Nutrients 9, 624 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  383. Jafari, A., Noormohammadi, Z., Askari, M. & Daneshzad, E. Zinc supplementation and immune factors in adults: a systematic review and meta-analysis of randomized clinical trials. Crit. Rev. Food Sci. Nutr. 62, 3023–3041 (2022).

    Article  CAS  PubMed  Google Scholar 

  384. Nielsen, F. H. Magnesium deficiency and increased inflammation: current perspectives. J. Inflamm. Res. 11, 25–34 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Talebi, S., Miraghajani, M., Hosseini, R. & Mohammadi, H. The effect of oral magnesium supplementation on inflammatory biomarkers in adults: a comprehensive systematic review and dose-response meta-analysis of randomized clinical trials. Biol. Trace Elem. Res. 200, 1538–1550 (2022).

    Article  CAS  PubMed  Google Scholar 

  386. Veronese, N., Pizzol, D., Smith, L., Dominguez, L. J. & Barbagallo, M. Effect of magnesium supplementation on inflammatory parameters: a meta-analysis of randomized controlled trials. Nutrients 14, 679 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Chen, W. et al. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat. Rev. Cardiol. 19, 228–249 (2022).

    Article  PubMed  Google Scholar 

  388. McNamara, D. M. et al. Controlled trial of intravenous immune globulin in recent-onset dilated cardiomyopathy. Circulation 103, 2254–2259 (2001).

    Article  CAS  PubMed  Google Scholar 

  389. Gullestad, L. et al. Immunomodulating therapy with intravenous immunoglobulin in patients with chronic heart failure. Circulation 103, 220–225 (2001).

    Article  CAS  PubMed  Google Scholar 

  390. Latham, R. D., Mulrow, J. P., Virmani, R., Robinowitz, M. & Moody, J. M. Recently diagnosed idiopathic dilated cardiomyopathy: incidence of myocarditis and efficacy of prednisone therapy. Am. Heart J. 117, 876–882 (1989).

    Article  CAS  PubMed  Google Scholar 

  391. Parrillo, J. E. et al. A prospective, randomized, controlled trial of prednisone for dilated cardiomyopathy. N. Engl. J. Med. 321, 1061–1068 (1989).

    Article  CAS  PubMed  Google Scholar 

  392. Wojnicz, R. et al. Randomized, placebo- controlled study for immunosuppressive treatment of inflammatory dilated cardiomyopathy: two-year follow-up results. Circulation 104, 39–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  393. Bahrmann, P., Hengst, U. M., Richartz, B. M. & Figulla, H. R. Pentoxifylline in ischemic, hypertensive and idiopathic-dilated cardiomyopathy: effects on left-ventricular function, inflammatory cytokines and symptoms. Eur. J. Heart Fail. 6, 195–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  394. Deswal, A. et al. Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation 99, 3224–3226 (1999).

    Article  CAS  PubMed  Google Scholar 

  395. Bozkurt, B. et al. Results of targeted anti-tumor necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart failure. Circulation 103, 1044–1047 (2001).

    Article  CAS  PubMed  Google Scholar 

  396. Staudt, A. et al. Immunohistological changes in dilated cardiomyopathy induced by immunoadsorption therapy and subsequent immunoglobulin substitution. Circulation 103, 2681–2686 (2001).

    Article  CAS  PubMed  Google Scholar 

  397. Pokrovsky, S. N. et al. Ig apheresis for the treatment of severe DCM patients. Atheroscler. Suppl. 14, 213–218 (2013).

    Article  CAS  PubMed  Google Scholar 

  398. Yoshikawa, T. et al. Immunoadsorption therapy for dilated cardiomyopathy using tryptophan column—a prospective, multicenter, randomized, within-patient and parallel-group comparative study to evaluate efficacy and safety. J. Clin. Apher. 31, 535–544 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  399. Zannad, F. et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural cardiac therapy for heart failure (NECTAR-HF) randomized controlled trial. Eur. Heart J. 36, 425–433 (2015).

    Article  PubMed  Google Scholar 

  400. Testa, L. et al. Pexelizumab in ischemic heart disease: a systematic review and meta-analysis on 15,196 patients. J. Thorac. Cardiovasc. Surg. 136, 884–893 (2008).

    Article  CAS  PubMed  Google Scholar 

  401. Yingzhong, C., Lin, C. & Chunbin, W. Clinical effects of cyclosporine A on reperfusion injury in myocardial infarction: a meta-analysis of randomized controlled trials. Springerplus 5, 1117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  402. Sant’Anna, L. B. et al. Vagal neuromodulation in chronic heart failure with reduced ejection fraction: a systematic review and meta-analysis. Front. Cardiovasc. Med. 8, 1466 (2021).

    Google Scholar 

  403. Wang, X. et al. SGLT2 inhibitors break the vicious circle between heart failure and insulin resistance: targeting energy metabolism. Heart Fail. Rev. 27, 961–980 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.M.-M. created the concept and organized the outline, structure and content of the manuscript. G.M.-M., L.B. and A.A.A.-M. researched data for the article and wrote the manuscript. G.M.-M. and J.P.A. provided substantial contribution to the discussion of its content. All the authors reviewed and edited the article before submission.

Corresponding author

Correspondence to Peter van der Meer.

Ethics declarations

Competing interests

A.A.V. received consultancy fees and/or research grants from AstraZeneca, Bayer, Boehringer Ingelheim, BMS, Cytokinetics, Merck, Novo Nordisk, Novartis and Roche Diagnostics. P.v.d.M. received consultancy fees and/or grants from Novartis, Corvidia, Singulex, Servier, Vifor Pharma, AstraZeneca, Pfizer and Ionis. The other authors declare no competing interests related to this manuscript.

Peer review

Peer review information

Nature Reviews Cardiology thanks Antonio Abbate, Pilar Alcaide, Douglas Mann and Sophie Van Linthout for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markousis-Mavrogenis, G., Baumhove, L., Al-Mubarak, A.A. et al. Immunomodulation and immunopharmacology in heart failure. Nat Rev Cardiol 21, 119–149 (2024). https://doi.org/10.1038/s41569-023-00919-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00919-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research