Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges

Abstract

Cardiac metabolism is vital for heart function. Given that cardiac contraction requires a continuous supply of ATP in large quantities, the role of fuel metabolism in the heart has been mostly considered from the perspective of energy production. However, the consequence of metabolic remodelling in the failing heart is not limited to a compromised energy supply. The rewired metabolic network generates metabolites that can directly regulate signalling cascades, protein function, gene transcription and epigenetic modifications, thereby affecting the overall stress response of the heart. In addition, metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to the development of cardiac pathologies. In this Review, we first summarize how energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies, followed by a discussion of emerging concepts in cardiac metabolic remodelling, that is, the non-energy-generating function of metabolism. We highlight challenges and open questions in these areas and finish with a brief perspective on how mechanistic research can be translated into therapies for heart failure.

Key points

  • Substrate preference in the heart changes in response to environmental stress and occurs in physiological and pathological hypertrophy.

  • Metabolic remodelling coupled with mitochondrial dysfunction leads to energy starvation in the failing heart.

  • Rewiring of substrate metabolism contributes to the cardiac stress response via epigenomic and signalling mechanisms.

  • Metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to pathological remodelling of the heart.

  • The new paradigm for studying metabolic remodelling in heart failure faces challenges but also offers opportunities to develop novel therapies to treat heart failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Remodelling of substrate metabolism in physiological and pathological hypertrophy.
Fig. 2: Cardiac metabolic remodelling in pathological and physiological conditions.
Fig. 3: Metabolic control of protein function and gene expression in heart failure.
Fig. 4: Metabolism in non-cardiomyocytes in heart failure.

Similar content being viewed by others

References

  1. Barth, E., Stämmler, G., Speiser, B. & Schaper, J. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J. Mol. Cell Cardiol. 24, 669–681 (1992).

    CAS  PubMed  Google Scholar 

  2. Lopaschuk, G. D., Ussher, J. R., Folmes, C. D., Jaswal, J. S. & Stanley, W. C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 90, 207–258 (2010).

    CAS  PubMed  Google Scholar 

  3. Ritterhoff, J. & Tian, R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc. Res. 113, 411–421 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R. & Abel, E. D. Cardiac energy metabolism in heart failure. Circ. Res. 128, 1487–1513 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Keating, S. T. & El-Osta, A. Epigenetics and metabolism. Circ. Res. 116, 715–736 (2015).

    CAS  PubMed  Google Scholar 

  6. Zhou, B. & Tian, R. Mitochondrial dysfunction in pathophysiology of heart failure. J. Clin. Invest. 128, 3716–3726 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. Spinelli, J. B. & Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745–754 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kolwicz, S. C. Jr, Purohit, S. & Tian, R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res. 113, 603–616 (2013).

    CAS  PubMed  Google Scholar 

  9. Shao, D. & Tian, R. Glucose transporters in cardiac metabolism and hypertrophy. Compr. Physiol. 6, 331–351 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Gibb, A. A. & Hill, B. G. Metabolic coordination of physiological and pathological cardiac remodeling. Circ. Res. 123, 107–128 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cotter, D. G., Schugar, R. C. & Crawford, P. A. Ketone body metabolism and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 304, H1060–H1076 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ho, K. L. et al. Ketones can become the major fuel source for the heart but do not increase cardiac efficiency. Cardiovasc. Res. 117, 1178–1187 (2021).

    CAS  PubMed  Google Scholar 

  13. Murashige, D. et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370, 364–368 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mizuno, Y. et al. The diabetic heart utilizes ketone bodies as an energy source. Metabolism 77, 65–72 (2017).

    CAS  PubMed  Google Scholar 

  15. Puchalska, P. & Crawford, P. A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25, 262–284 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Canto, C., Menzies, K. J. & Auwerx, J. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22, 31–53 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stanley, W. C., Recchia, F. A. & Lopaschuk, G. D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85, 1093–1129 (2005).

    CAS  PubMed  Google Scholar 

  18. Neubauer, S. The failing heart — an engine out of fuel. N. Engl. J. Med. 356, 1140–1151 (2007).

    PubMed  Google Scholar 

  19. Ingwall, J. S. ATP and the Heart (Kluwer AcademicPublishers, 2002).

  20. Qiu, Y., Pan, X., Chen, Y. & Xiao, J. Hallmarks of exercised heart. J. Mol. Cell Cardiol. 164, 126–135 (2022).

    CAS  PubMed  Google Scholar 

  21. Abel, E. D. & Doenst, T. Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy. Cardiovasc. Res. 90, 234–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schannwell, C. M. et al. Left ventricular hypertrophy and diastolic dysfunction in healthy pregnant women. Cardiology 97, 73–78 (2002).

    PubMed  Google Scholar 

  23. Fulghum, K. L. et al. Metabolic signatures of pregnancy-induced cardiac growth. Am. J. Physiol. Heart Circ. Physiol. 323, H146–H164 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Menendez-Montes, I. et al. Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation. Dev. Cell 39, 724–739 (2016).

    CAS  PubMed  Google Scholar 

  25. Holness, M. J., Changani, K. K. & Sugden, M. C. Progressive suppression of muscle glucose utilization during pregnancy. Biochem. J. 280, 549–552 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sugden, M. C. & Holness, M. J. Control of muscle pyruvate oxidation during late pregnancy. FEBS Lett. 321, 121–126 (1993).

    CAS  PubMed  Google Scholar 

  27. Sugden, M. C., Changani, K. K., Bentley, J. & Holness, M. J. Cardiac glucose metabolism during pregnancy. Biochem. Soc. Trans. 20, 195S (1992).

    CAS  PubMed  Google Scholar 

  28. Liu, L. X. et al. PDK4 inhibits cardiac pyruvate oxidation in late pregnancy. Circ. Res. 121, 1370–1378 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pinto, J. et al. Following healthy pregnancy by NMR metabolomics of plasma and correlation to urine. J. Proteome Res. 14, 1263–1274 (2015).

    CAS  PubMed  Google Scholar 

  30. Gibb, A. A. et al. Exercise-induced changes in glucose metabolism promote physiological cardiac growth. Circulation 136, 2144–2157 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, F. H. et al. Cardiac basal autophagic activity and increased exercise capacity. J. Physiol. Sci. 68, 729–742 (2018).

    PubMed  Google Scholar 

  32. White, F. C. et al. Adaptation of the left ventricle to exercise-induced hypertrophy. J. Appl. Physiol. 62, 1097–1110 (1987).

    CAS  PubMed  Google Scholar 

  33. Riehle, C. et al. Insulin receptor substrates are essential for the bioenergetic and hypertrophic response of the heart to exercise training. Mol. Cell Biol. 34, 3450–3460 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Burelle, Y. et al. Regular exercise is associated with a protective metabolic phenotype in the rat heart. Am. J. Physiol. Heart Circ. Physiol. 287, H1055–H1063 (2004).

    CAS  PubMed  Google Scholar 

  35. Lai, L. et al. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ. Heart Fail. 7, 1022–1031 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Regitz-Zagrosek, V. & Kararigas, G. Mechanistic pathways of sex differences in cardiovascular disease. Physiol. Rev. 97, 1–37 (2017).

    PubMed  Google Scholar 

  37. Dunlay, S. M., Roger, V. L. & Redfield, M. M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 14, 591–602 (2017).

    PubMed  Google Scholar 

  38. Walker, C. J., Schroeder, M. E., Aguado, B. A., Anseth, K. S. & Leinwand, L. A. Matters of the heart: cellular sex differences. J. Mol. Cell Cardiol. 160, 42–55 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ritterhoff, J. et al. Increasing fatty acid oxidation elicits a sex-dependent response in failing mouse hearts. J. Mol. Cell Cardiol. 158, 1–10 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kararigas, G. et al. Comparative proteomic analysis reveals sex and estrogen receptor beta effects in the pressure overloaded heart. J. Proteome Res. 13, 5829–5836 (2014).

    CAS  PubMed  Google Scholar 

  41. Fliegner, D. et al. Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1597–R1606 (2010).

    CAS  PubMed  Google Scholar 

  42. Naumenko, N. et al. PGC-1alpha deficiency reveals sex-specific links between cardiac energy metabolism and EC-coupling during development of heart failure in mice. Cardiovasc. Res. 118, 1520–1534 (2022).

    CAS  PubMed  Google Scholar 

  43. Cao, Y. et al. Sex differences in heart mitochondria regulate diastolic dysfunction. Nat. Commun. 13, 3850 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bloom, M. W. et al. Heart failure with reduced ejection fraction. Nat. Rev. Dis. Prim. 3, 17058 (2017).

    PubMed  Google Scholar 

  45. Nagueh, S. F. et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 29, 277–314 (2016).

    PubMed  Google Scholar 

  46. Mishra, S. & Kass, D. A. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 18, 400–423 (2021).

    PubMed  PubMed Central  Google Scholar 

  47. Kitzman, D. W. & Shah, S. J. The HFpEF obesity phenotype: the elephant in the room. J. Am. Coll. Cardiol. 68, 200–203 (2016).

    PubMed  Google Scholar 

  48. Gibb, A. A. et al. Molecular signature of HFpEF: systems biology in a cardiac-centric large animal model. JACC Basic Transl. Sci. 6, 650–672 (2021).

    PubMed  PubMed Central  Google Scholar 

  49. Deng, Y. et al. Targeting mitochondria-inflammation circuit by beta-hydroxybutyrate mitigates HFpEF. Circ. Res. 128, 232–245 (2021).

    CAS  PubMed  Google Scholar 

  50. Tong, D. et al. NAD+ repletion reverses heart failure with preserved ejection fraction. Circ. Res. 128, 1629–1641 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yoshii, A. & Tian, R. Remodeling of cardiac metabolism in heart failure with preserved ejection fraction. Curr. Opin. Physiol. 27, 100559 (2022).

    CAS  Google Scholar 

  52. Neglia, D. et al. Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 293, H3270–H3278 (2007).

    CAS  PubMed  Google Scholar 

  53. Rosenblatt-Velin, N., Montessuit, C., Papageorgiou, I., Terrand, J. & Lerch, R. Postinfarction heart failure in rats is associated with upregulation of GLUT-1 and downregulation of genes of fatty acid metabolism. Cardiovasc. Res. 52, 407–416 (2001).

    CAS  PubMed  Google Scholar 

  54. Sack, M. N. et al. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94, 2837–2842 (1996).

    CAS  PubMed  Google Scholar 

  55. Osorio, J. C. et al. Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106, 606–612 (2002).

    CAS  PubMed  Google Scholar 

  56. Grover-McKay, M. et al. Regional myocardial blood flow and metabolism at rest in mildly symptomatic patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 13, 317–324 (1989).

    CAS  PubMed  Google Scholar 

  57. Kato, T. et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ. Heart Fail. 3, 420–430 (2010).

    PubMed  Google Scholar 

  58. Taylor, M. et al. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure. J. Nucl. Med. 42, 55–62 (2001).

    CAS  PubMed  Google Scholar 

  59. Funada, J. et al. Substrate utilization by the failing human heart by direct quantification using arterio-venous blood sampling. PLoS ONE 4, e7533 (2009).

    PubMed  PubMed Central  Google Scholar 

  60. Voros, G. et al. Increased cardiac uptake of ketone bodies and free fatty acids in human heart failure and hypertrophic left ventricular remodeling. Circ. Heart Fail. 11, e004953 (2018).

    CAS  PubMed  Google Scholar 

  61. Davila-Roman, V. G. et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 40, 271–277 (2002).

    CAS  PubMed  Google Scholar 

  62. Tuunanen, H. et al. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 114, 2130–2137 (2006).

    CAS  PubMed  Google Scholar 

  63. O’Donnell, J. M., Fields, A. D., Sorokina, N. & Lewandowski, E. D. The absence of endogenous lipid oxidation in early stage heart failure exposes limits in lipid storage and turnover. J. Mol. Cell Cardiol. 44, 315–322 (2008).

    PubMed  Google Scholar 

  64. Lahey, R., Wang, X., Carley, A. N. & Lewandowski, E. D. Dietary fat supply to failing hearts determines dynamic lipid signaling for nuclear receptor activation and oxidation of stored triglyceride. Circulation 130, 1790–1799 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Flam, E. et al. Integrated landscape of cardiac metabolism in end-stage human nonischemic dilated cardiomyopathy. Nat. Cardiovasc. Res. 1, 817–829 (2022).

    PubMed  PubMed Central  Google Scholar 

  66. Allard, M. F., Schonekess, B. O., Henning, S. L., English, D. R. & Lopaschuk, G. D. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am. J. Physiol. 267, H742–H750 (1994).

    CAS  PubMed  Google Scholar 

  67. Ritterhoff, J. et al. Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis. Circ. Res. 126, 182–196 (2020).

    CAS  PubMed  Google Scholar 

  68. Shao, D. et al. Glucose promotes cell growth by suppressing branched-chain amino acid degradation. Nat. Commun. 9, 2935 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Zhou, B. et al. Upregulation of mitochondrial ATPase inhibitory factor 1 (ATPIF1) mediates increased glycolysis in mouse hearts. J. Clin. Invest. 132, e155333 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Recchia, F. A. et al. Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ. Res. 83, 969–979 (1998).

    CAS  PubMed  Google Scholar 

  71. Zhang, L. et al. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Circ. Heart Fail. 6, 1039–1048 (2013).

    CAS  PubMed  Google Scholar 

  72. Mori, J. et al. ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Am. J. Physiol. Heart Circ. Physiol. 304, H1103–H1113 (2013).

    CAS  PubMed  Google Scholar 

  73. Zhabyeyev, P. et al. Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc. Res. 97, 676–685 (2013).

    CAS  PubMed  Google Scholar 

  74. Schroeder, M. A. et al. Hyperpolarized 13C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart. Eur. J. Heart Fail. 15, 130–140 (2013).

    CAS  PubMed  Google Scholar 

  75. Sorokina, N. et al. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation 115, 2033–2041 (2007).

    CAS  PubMed  Google Scholar 

  76. Pound, K. M. et al. Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content: attenuating upregulated anaplerosis in hypertrophy. Circ. Res. 104, 805–812 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lahey, R. et al. Enhanced redox state and efficiency of glucose oxidation with miR based suppression of maladaptive NADPH-dependent malic enzyme 1 expression in hypertrophied hearts. Circ. Res. 122, 836–845 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ruiz-Canela, M. et al. Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial. Clin. Chem. 62, 582–592 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Magnusson, M. et al. A diabetes-predictive amino acid score and future cardiovascular disease. Eur. Heart J. 34, 1982–1989 (2013).

    CAS  PubMed  Google Scholar 

  80. Bhattacharya, S. et al. Validation of the association between a branched chain amino acid metabolite profile and extremes of coronary artery disease in patients referred for cardiac catheterization. Atherosclerosis 232, 191–196 (2014).

    CAS  PubMed  Google Scholar 

  81. Venturini, A. et al. The importance of myocardial amino acids during ischemia and reperfusion in dilated left ventricle of patients with degenerative mitral valve disease. Mol. Cell Biochem. 330, 63–70 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Murashige, D. et al. Extra-cardiac BCAA catabolism lowers blood pressure and protects from heart failure. Cell Metab. 34, 1749–1764.e1747 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sun, H. et al. Catabolic defect of branched-chain amino acids promotes heart failure. Circulation 133, 2038–2049 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Aubert, G. et al. The failing heart relies on ketone bodies as a fuel. Circulation 133, 698–705 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bedi, K. C. Jr et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation 133, 706–716 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Herrero, P. et al. Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J. Am. Coll. Cardiol. 47, 598–604 (2006).

    CAS  PubMed  Google Scholar 

  87. Lopaschuk, G. D., Folmes, C. D. & Stanley, W. C. Cardiac energy metabolism in obesity. Circ. Res. 101, 335–347 (2007).

    CAS  PubMed  Google Scholar 

  88. McGavock, J. M. et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 116, 1170–1175 (2007).

    PubMed  Google Scholar 

  89. Shao, D. et al. Increasing fatty acid oxidation prevents high-fat diet-induced cardiomyopathy through regulating parkin-mediated mitophagy. Circulation 142, 983–997 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kolwicz, S. C. Jr. et al. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ. Res. 111, 728–738 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Qian, N. & Wang, Y. Ketone body metabolism in diabetic and non-diabetic heart failure. Heart Fail. Rev. 25, 817–822 (2020).

    CAS  PubMed  Google Scholar 

  92. Abdurrachim, D. et al. Empagliflozin reduces myocardial ketone utilization while preserving glucose utilization in diabetic hypertensive heart disease: a hyperpolarized 13C magnetic resonance spectroscopy study. Diabetes Obes. Metab. 21, 357–365 (2019).

    CAS  PubMed  Google Scholar 

  93. Verma, S. et al. Empagliflozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors. JACC Basic Transl. Sci. 3, 575–587 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. Fillmore, N. et al. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol. Med. 24, 3 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. Phan, T. T. et al. Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J. Am. Coll. Cardiol. 54, 402–409 (2009).

    PubMed  Google Scholar 

  96. Mahmod, M. et al. The interplay between metabolic alterations, diastolic strain rate and exercise capacity in mild heart failure with preserved ejection fraction: a cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 20, 88 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. Burrage, M. K. et al. Energetic basis for exercise-induced pulmonary congestion in heart failure with preserved ejection fraction. Circulation 144, 1664–1678 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Doenst, T., Nguyen, T. D. & Abel, E. D. Cardiac metabolism in heart failure: implications beyond ATP production. Circ. Res. 113, 709–724 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ingwall, J. S. & Weiss, R. G. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ. Res. 95, 135–145 (2004).

    CAS  PubMed  Google Scholar 

  100. Tian, R., Nascimben, L., Ingwall, J. S. & Lorell, B. H. Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts. Circulation 96, 1313–1319 (1997).

    CAS  PubMed  Google Scholar 

  101. Weiss, R. G., Gerstenblith, G. & Bottomley, P. A. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc. Natl Acad. Sci. USA 102, 808–813 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Smith, C. S., Bottomley, P. A., Schulman, S. P., Gerstenblith, G. & Weiss, R. G. Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophied human myocardium. Circulation 114, 1151–1158 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. DeBerardinis, R. J. & Keshari, K. R. Metabolic analysis as a driver for discovery, diagnosis, and therapy. Cell 185, 2678–2689 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yoshii, A. & Tian, R. Deciphering metabolic remodeling of the failing hearts. Nat. Cardiovasc. Res. 1, 800–801 (2022).

    Google Scholar 

  105. Diakos, N. A. et al. Evidence of glycolysis up-regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: implications for cardiac reloading and conditioning. JACC Basic Transl. Sci. 1, 432–444 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. Lei, B. et al. Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J. Mol. Cell Cardiol. 36, 567–576 (2004).

    CAS  PubMed  Google Scholar 

  107. Fernandez-Caggiano, M. et al. Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy. Nat. Metab. 2, 1223–1231 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. McCommis, K. S. et al. Nutritional modulation of heart failure in mitochondrial pyruvate carrier-deficient mice. Nat. Metab. 2, 1232–1247 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Cluntun, A. A. et al. The pyruvate–lactate axis modulates cardiac hypertrophy and heart failure. Cell Metab. 33, 629–648 e610 (2021).

    CAS  PubMed  Google Scholar 

  110. Scarpulla, R. C., Vega, R. B. & Kelly, D. P. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab. 23, 459–466 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Previs, M. J. et al. Defects in the proteome and metabolome in human hypertrophic cardiomyopathy. Circ. Heart Fail. 15, e009521 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Djousse, L. et al. Plasma free fatty acids and risk of heart failure: the cardiovascular health study. Circ. Heart Fail. 6, 964–969 (2013).

    CAS  PubMed  Google Scholar 

  113. Sharma, S. et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 18, 1692–1700 (2004).

    CAS  PubMed  Google Scholar 

  114. Chokshi, A. et al. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation 125, 2844–2853 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Haemmerle, G. et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat. Med. 17, 1076–1085 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hahn, V. S. et al. Myocardial gene expression signatures in human heart failure with preserved ejection fraction. Circulation 143, 120–134 (2021).

    CAS  PubMed  Google Scholar 

  117. Redondo-Angulo, I. et al. Fgf21 is required for cardiac remodeling in pregnancy. Cardiovasc. Res. 113, 1574–1584 (2017).

    CAS  PubMed  Google Scholar 

  118. Cuevas-Ramos, D. et al. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS ONE 7, e38022 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Obokata, M., Reddy, Y. N. V., Pislaru, S. V., Melenovsky, V. & Borlaug, B. A. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 136, 6–19 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Jin, L. et al. FGF21–sirtuin 3 axis confers the protective effects of exercise against diabetic cardiomyopathy by governing mitochondrial integrity. Circulation 146, 1537–1557 (2022).

    CAS  PubMed  Google Scholar 

  121. Kolwicz, S. C. Jr., Airhart, S. & Tian, R. Ketones step to the plate: a game changer for metabolic remodeling in heart failure. Circulation 133, 689–691 (2016).

    PubMed  PubMed Central  Google Scholar 

  122. Paterson, P., Sheath, J., Taft, P. & Wood, C. Maternal and foetal ketone concentrations in plasma and urine. Lancet 1, 862–865 (1967).

    CAS  PubMed  Google Scholar 

  123. Li, X. et al. Circulating metabolite homeostasis achieved through mass action. Nat. Metab. 4, 141–152 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Cook, G. A., Lavrentyev, E. N., Pham, K. & Park, E. A. Streptozotocin diabetes increases mRNA expression of ketogenic enzymes in the rat heart. Biochim. Biophys. Acta Gen. Subj. 1861, 307–312 (2017).

    CAS  PubMed  Google Scholar 

  125. Caudal, A. et al. Mitochondrial interactome quantitation reveals structural changes in metabolic machinery in the failing murine heart. Nat. Cardiovasc. Res. 1, 855–866 (2022).

    PubMed  PubMed Central  Google Scholar 

  126. Horton, J. L. et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight 4, e12479 (2019).

    Google Scholar 

  127. Schugar, R. C. et al. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol. Metab. 3, 754–769 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Sun, H., Lu, G., Ren, S., Chen, J. & Wang, Y. Catabolism of branched-chain amino acids in heart failure: insights from genetic models. Pediatr. Cardiol. 32, 305–310 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Backs, J. & Olson, E. N. Control of cardiac growth by histone acetylation/deacetylation. Circ. Res. 98, 15–24 (2006).

    CAS  PubMed  Google Scholar 

  130. Keating, S. T. & El-Osta, A. Metaboloepigenetics in cancer, immunity and cardiovascular disease. Cardiovasc. Res. 119, 357–370 (2023).

    CAS  PubMed  Google Scholar 

  131. McKinsey, T. A. Therapeutic potential for HDAC inhibitors in the heart. Annu. Rev. Pharmacol. Toxicol. 52, 303–319 (2012).

    CAS  PubMed  Google Scholar 

  132. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Abdul Kadir, A., Clarke, K. & Evans, R. D. Cardiac ketone body metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165739 (2020).

    CAS  PubMed  Google Scholar 

  134. Deb, D. K., Chen, Y., Sun, J., Wang, Y. & Li, Y. C. ATP-citrate lyase is essential for high glucose-induced histone hyperacetylation and fibrogenic gene upregulation in mesangial cells. Am. J. Physiol. Ren. Physiol. 313, F423–F429 (2017).

    CAS  Google Scholar 

  135. Kronlage, M. et al. O-GlcNAcylation of histone deacetylase 4 protects the diabetic heart from failure. Circulation 140, 580–594 (2019).

    CAS  PubMed  Google Scholar 

  136. Martinez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lombardi, A. A. et al. Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation. Nat. Commun. 10, 4509 (2019).

    PubMed  PubMed Central  Google Scholar 

  138. Gibb, A. A. et al. Glutamine uptake and catabolism is required for myofibroblast formation and persistence. J. Mol. Cell Cardiol. 172, 78–89 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Khoury, G. A., Baliban, R. C. & Floudas, C. A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci. Rep. 1, 90 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821 (2015).

    CAS  PubMed  Google Scholar 

  141. Campbell, S. L. & Wellen, K. E. Metabolic signaling to the nucleus in cancer. Mol. Cell 71, 398–408 (2018).

    CAS  PubMed  Google Scholar 

  142. Karamanlidis, G. et al. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab. 18, 239–250 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Lee, C. F. et al. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation 134, 883–894 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Walker, M. A. et al. Acetylation of muscle creatine kinase negatively impacts high-energy phosphotransfer in heart failure. JCI Insight 6, e144301 (2021).

    PubMed  PubMed Central  Google Scholar 

  145. Liu, X. et al. Mitochondrial protein hyperacetylation underpins heart failure with preserved ejection fraction in mice. J. Mol. Cell Cardiol. 165, 76–85 (2022).

    CAS  PubMed  Google Scholar 

  146. Horton, J. L. et al. Mitochondrial protein hyperacetylation in the failing heart. JCI Insight 2, e84897 (2016).

    PubMed  Google Scholar 

  147. Zhang, X. et al. MicroRNA-195 regulates metabolism in failing myocardium via alterations in sirtuin 3 expression and mitochondrial protein acetylation. Circulation 137, 2052–2067 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Wallner, M. et al. HDAC inhibition improves cardiopulmonary function in a feline model of diastolic dysfunction. Sci. Transl. Med. 12, eaay7205 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Davidson, M. T. et al. Extreme acetylation of the cardiac mitochondrial proteome does not promote heart failure. Circ. Res. 127, 1094–1108 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Yang, L. et al. The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching. J. Proteome Res. 10, 4134–4149 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Ketema, E. B. & Lopaschuk, G. D. Post-translational acetylation control of cardiac energy metabolism. Front. Cardiovasc. Med. 8, 723996 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Thapa, D. et al. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart. Am. J. Physiol. Heart Circ. Physiol. 313, H265–H274 (2017).

    PubMed  PubMed Central  Google Scholar 

  153. Alrob, O. A. et al. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling. Cardiovasc. Res. 103, 485–497 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Keceli, G. et al. Mitochondrial creatine kinase attenuates pathologic remodeling in heart failure. Circ. Res. 130, 741–759 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Hu, Y. et al. Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ. Res. 96, 1006–1013 (2005).

    CAS  PubMed  Google Scholar 

  156. Mailleux, F., Gelinas, R., Beauloye, C., Horman, S. & Bertrand, L. O-GlcNAcylation, enemy or ally during cardiac hypertrophy development? Biochim. Biophys. Acta 1862, 2232–2243 (2016).

    CAS  PubMed  Google Scholar 

  157. Collins, H. E. & Chatham, J. C. Regulation of cardiac O-GlcNAcylation: more than just nutrient availability. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165712 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Lunde, I. G. et al. Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol. Genomics 44, 162–172 (2012).

    CAS  PubMed  Google Scholar 

  159. Watson, L. J. et al. O-linked beta-N-acetylglucosamine transferase is indispensable in the failing heart. Proc. Natl Acad. Sci. USA 107, 17797–17802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Umapathi, P. et al. Excessive O-GlcNAcylation causes heart failure and sudden death. Circulation 143, 1687–1703 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Jensen, R. V., Andreadou, I., Hausenloy, D. J. & Bøtker, H. E. The role of O-GlcNAcylation for protection against ischemia-reperfusion injury. Int. J. Mol. Sci. 2, 404 (2019).

    Google Scholar 

  162. Hirschey, M. D. & Zhao, Y. Metabolic regulation by lysine malonylation, succinylation, and glutarylation. Mol. Cell Proteom. 14, 2308–2315 (2015).

    CAS  Google Scholar 

  163. Xin, Q. et al. Lactylation: a passing fad or the future of posttranslational modification. Inflammation 45, 1419–1429 (2022).

    CAS  PubMed  Google Scholar 

  164. Ali, H. R. et al. Defining decreased protein succinylation of failing human cardiac myofibrils in ischemic cardiomyopathy. J. Mol. Cell Cardiol. 138, 304–317 (2020).

    CAS  PubMed  Google Scholar 

  165. Wu, L. F. et al. Global profiling of protein lysine malonylation in mouse cardiac hypertrophy. J. Proteom. 266, 104667 (2022).

    CAS  Google Scholar 

  166. Kim, M. & Tian, R. Targeting AMPK for cardiac protection: opportunities and challenges. J. Mol. Cell Cardiol. 51, 548–553 (2011).

    CAS  PubMed  Google Scholar 

  167. Li, J. et al. Activation of AMPK alpha- and gamma-isoform complexes in the intact ischemic rat heart. Am. J. Physiol. Heart Circ. Physiol. 291, H1927–H1934 (2006).

    CAS  PubMed  Google Scholar 

  168. Musi, N. et al. Functional role of AMP-activated protein kinase in the heart during exercise. FEBS Lett. 579, 2045–2050 (2005).

    CAS  PubMed  Google Scholar 

  169. Tian, R., Musi, N., D’Agostino, J., Hirshman, M. F. & Goodyear, L. J. Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy. Circulation 104, 1664–1669 (2001).

    CAS  PubMed  Google Scholar 

  170. Cieslik, K. A. et al. AICAR-dependent AMPK activation improves scar formation in the aged heart in a murine model of reperfused myocardial infarction. J. Mol. Cell Cardiol. 63, 26–36 (2013).

    CAS  PubMed  Google Scholar 

  171. Li, Y. et al. AMPK blunts chronic heart failure by inhibiting autophagy. Biosci. Rep. 38, BSR20170982 (2018).

    PubMed  PubMed Central  Google Scholar 

  172. Sen, S. et al. Glucose regulation of load-induced mTOR signaling and ER stress in mammalian heart. J. Am. Heart Assoc. 2, e004796 (2013).

    PubMed  PubMed Central  Google Scholar 

  173. Roberts, D. J., Tan-Sah, V. P., Ding, E. Y., Smith, J. M. & Miyamoto, S. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol. Cell 53, 521–533 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Neishabouri, S. H., Hutson, S. M. & Davoodi, J. Chronic activation of mTOR complex 1 by branched chain amino acids and organ hypertrophy. Amino Acids 47, 1167–1182 (2015).

    CAS  PubMed  Google Scholar 

  175. Foryst-Ludwig, A. et al. Adipose tissue lipolysis promotes exercise-induced cardiac hypertrophy involving the lipokine C16:1n7-palmitoleate. J. Biol. Chem. 290, 23603–23615 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Husted, A. S., Trauelsen, M., Rudenko, O., Hjorth, S. A. & Schwartz, T. W. GPCR-mediated signaling of metabolites. Cell Metab. 25, 777–796 (2017).

    CAS  PubMed  Google Scholar 

  177. Hu, Q. et al. Genetically encoded biosensors for evaluating NAD+/NADH ratio in cytosolic and mitochondrial compartments. Cell Rep. Methods 1, 100116 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).

    CAS  PubMed  Google Scholar 

  179. Litvinukova, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhou, P. & Pu, W. T. Recounting cardiac cellular composition. Circ. Res. 118, 368–370 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Gibb, A. A., Lazaropoulos, M. P. & Elrod, J. W. Myofibroblasts and fibrosis: mitochondrial and metabolic control of cellular differentiation. Circ. Res. 127, 427–447 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Travers, J. G., Kamal, F. A., Robbins, J., Yutzey, K. E. & Blaxall, B. C. Cardiac fibrosis: the fibroblast awakens. Circ. Res. 118, 1021–1040 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Negmadjanov, U. et al. TGF-beta1-mediated differentiation of fibroblasts is associated with increased mitochondrial content and cellular respiration. PLoS ONE 10, e0123046 (2015).

    PubMed  PubMed Central  Google Scholar 

  184. Jain, M. et al. Mitochondrial reactive oxygen species regulate transforming growth factor-beta signaling. J. Biol. Chem. 288, 770–777 (2013).

    CAS  PubMed  Google Scholar 

  185. Chen, Z. T. et al. Glycolysis inhibition alleviates cardiac fibrosis after myocardial infarction by suppressing cardiac fibroblast activation. Front. Cardiovasc. Med. 8, 701745 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Ding, H. et al. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am. J. Physiol. Ren. Physiol. 313, F561–F575 (2017).

    CAS  Google Scholar 

  187. Gibb, A. A. et al. Glutaminolysis is essential for myofibroblast persistence and in vivo targeting reverses fibrosis and cardiac dysfunction in heart failure. Circulation 145, 1625–1628 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Mathis, D. & Shoelson, S. E. Immunometabolism: an emerging frontier. Nat. Rev. Immunol. 11, 81 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018).

    CAS  PubMed  Google Scholar 

  190. Kelly, B. & O’Neill, L. A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25, 771–784 (2015).

    PubMed  PubMed Central  Google Scholar 

  191. Zhao, M., Wang, D. D., Liu, X. & Tian, R. Metabolic modulation of macrophage function post myocardial infarction. Front. Physiol. 11, 674 (2020).

    PubMed  PubMed Central  Google Scholar 

  192. Mouton, A. J. et al. Mapping macrophage polarization over the myocardial infarction time continuum. Basic Res. Cardiol. 113, 26 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. Rodriguez-Prados, J. C. et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 185, 605–614 (2010).

    CAS  PubMed  Google Scholar 

  194. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    CAS  PubMed  Google Scholar 

  195. Ryan, D. G. & O’Neill, L. A. J. Krebs cycle reborn in macrophage immunometabolism. Annu. Rev. Immunol. 38, 289–313 (2020).

    CAS  PubMed  Google Scholar 

  196. Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhang, S. et al. Immunometabolism of phagocytes and relationships to cardiac repair. Front. Cardiovasc. Med. 6, 42 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Liu, P. S. et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).

    CAS  PubMed  Google Scholar 

  199. Serhan, C. N. & Savill, J. Resolution of inflammation: the beginning programs the end. Nat. Immunol. 6, 1191–1197 (2005).

    CAS  PubMed  Google Scholar 

  200. Park, D. et al. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein. Nature 477, 220–224 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Cai, S. et al. Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction. J. Clin. Invest. 133, e159498 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhang, S. et al. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 29, 443–456.e445 (2019).

    CAS  PubMed  Google Scholar 

  203. Weinberg, S. E. et al. Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature 565, 495–499 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Wu, J. et al. Metabolic reprogramming orchestrates CD4+ T-cell immunological status and restores cardiac dysfunction in autoimmune induced-dilated cardiomyopathy mice. J. Mol. Cell Cardiol. 135, 134–148 (2019).

    CAS  PubMed  Google Scholar 

  205. Li, X., Sun, X. & Carmeliet, P. Hallmarks of endothelial cell metabolism in health and disease. Cell Metab. 30, 414–433 (2019).

    CAS  PubMed  Google Scholar 

  206. Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011).

    CAS  PubMed  Google Scholar 

  207. Mouton, A. J. et al. Fibroblast polarization over the myocardial infarction time continuum shifts roles from inflammation to angiogenesis. Basic Res. Cardiol. 114, 6 (2019).

    PubMed  PubMed Central  Google Scholar 

  208. Gogiraju, R., Bochenek, M. L. & Schafer, K. Angiogenic endothelial cell signaling in cardiac hypertrophy and heart failure. Front. Cardiovasc. Med. 6, 20 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. De Bock, K. et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663 (2013).

    PubMed  Google Scholar 

  210. Kim, B., Li, J., Jang, C. & Arany, Z. Glutamine fuels proliferation but not migration of endothelial cells. EMBO J. 36, 2321–2333 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Weis, E. M. et al. Ketone body oxidation increases cardiac endothelial cell proliferation. EMBO Mol. Med. 14, e14753 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Schoors, S. et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520, 192–197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Trenson, S. et al. Cardiac microvascular endothelial cells in pressure overload–induced heart disease. Circ. Heart Fail. 14, e006979 (2021).

    CAS  PubMed  Google Scholar 

  214. Lau, A. N. & Heiden, M. G. V. Metabolism in the tumor microenvironment. Annu. Rev. Cancer Biol. 4, 17–40 (2020).

    Google Scholar 

  215. Matejuk, A. & Ransohoff, R. M. Crosstalk between astrocytes and microglia: an overview. Front. Immunol. 11, 1416 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Bisbach, C. M. et al. Succinate can shuttle reducing power from the hypoxic retina to the O2-rich pigment epithelium. Cell Rep. 31, 107606 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Mehrotra, D., Wu, J., Papangeli, I. & Chun, H. J. Endothelium as a gatekeeper of fatty acid transport. Trends Endocrinol. Metab. 25, 99–106 (2014).

    CAS  PubMed  Google Scholar 

  218. Coppiello, G. et al. Meox2/Tcf15 heterodimers program the heart capillary endothelium for cardiac fatty acid uptake. Circulation 131, 815–826 (2015).

    CAS  PubMed  Google Scholar 

  219. Son, N. H. et al. Endothelial cell CD36 optimizes tissue fatty acid uptake. J. Clin. Invest. 128, 4329–4342 (2018).

    PubMed  PubMed Central  Google Scholar 

  220. Jang, C. et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat. Med. 22, 421–426 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Cohen, D. M., Guthrie, P. H., Gao, X., Sakai, R. & Taegtmeyer, H. Glutamine cycling in isolated working rat heart. Am. J. Physiol. Endocrinol. Metab. 285, E1312–E1316 (2003).

    CAS  PubMed  Google Scholar 

  222. Lauzier, B. et al. Metabolic effects of glutamine on the heart: anaplerosis versus the hexosamine biosynthetic pathway. J. Mol. Cell. Cardiol. 55, 92–100 (2013).

    CAS  PubMed  Google Scholar 

  223. Yoo, H. C., Yu, Y. C., Sung, Y. & Han, J. M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 52, 1496–1516 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature 608, 766–777 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Pinckard, K. M. et al. A novel endocrine role for the BAT-released lipokine 12,13-diHOME to mediate cardiac function. Circulation 143, 145–159 (2021).

    CAS  PubMed  Google Scholar 

  226. Lydell, C. P. et al. Pyruvate dehydrogenase and the regulation of glucose oxidation in hypertrophied rat hearts. Cardiovasc. Res. 53, 841–851 (2002).

    CAS  PubMed  Google Scholar 

  227. Bogh, N. et al. Increasing carbohydrate oxidation improves contractile reserves and prevents hypertrophy in porcine right heart failure. Sci. Rep. 10, 8158 (2020).

    PubMed  PubMed Central  Google Scholar 

  228. Wargovich, T. J. et al. Myocardial metabolic and hemodynamic effects of dichloroacetate in coronary artery disease. Am. J. Cardiol. 61, 65–70 (1988).

    CAS  PubMed  Google Scholar 

  229. Lewis, J. F., DaCosta, M., Wargowich, T. & Stacpoole, P. Effects of dichloroacetate in patients with congestive heart failure. Clin. Cardiol. 21, 888–892 (1998).

    CAS  PubMed  Google Scholar 

  230. Bersin, R. M. et al. Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J. Am. Coll. Cardiol. 23, 1617–1624 (1994).

    CAS  PubMed  Google Scholar 

  231. Abdelmalak, M. et al. Long-term safety of dichloroacetate in congenital lactic acidosis. Mol. Genet. Metab. 109, 139–143 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Tataranni, T. & Piccoli, C. Dichloroacetate (DCA) and cancer: an overview towards clinical applications. Oxid. Med. Cell Longev. 2019, 8201079 (2019).

    PubMed  PubMed Central  Google Scholar 

  233. Hayashida, W., van Eyll, C., Rousseau, M. F. & Pouleur, H. Effects of ranolazine on left ventricular regional diastolic function in patients with ischemic heart disease. Cardiovasc. Drugs Ther. 8, 741–747 (1994).

    CAS  PubMed  Google Scholar 

  234. Fragasso, G. et al. A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J. Am. Coll. Cardiol. 48, 992–998 (2006).

    CAS  PubMed  Google Scholar 

  235. Fragasso, G. et al. Effect of partial fatty acid oxidation inhibition with trimetazidine on mortality and morbidity in heart failure: results from an international multicentre retrospective cohort study. Int. J. Cardiol. 163, 320–325 (2013).

    PubMed  Google Scholar 

  236. Di Napoli, P., Di Giovanni, P., Gaeta, M. A., D’Apolito, G. & Barsotti, A. Beneficial effects of trimetazidine treatment on exercise tolerance and B-type natriuretic peptide and troponin T plasma levels in patients with stable ischemic cardiomyopathy. Am. Heart J. 154, 602 e601–602 e605 (2007).

    Google Scholar 

  237. Tuunanen, H. et al. Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation 118, 1250–1258 (2008).

    CAS  PubMed  Google Scholar 

  238. Milinkovic, I., Rosano, G., Lopatin, Y. & Seferovic, P. M. The role of ivabradine and trimetazidine in the new ESC HF Guidelines. Card. Fail. Rev. 2, 123–129 (2016).

    PubMed  PubMed Central  Google Scholar 

  239. Lee, L. et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation 112, 3280–3288 (2005).

    CAS  PubMed  Google Scholar 

  240. Gao, D., Ning, N., Niu, X., Hao, G. & Meng, Z. Trimetazidine: a meta-analysis of randomised controlled trials in heart failure. Heart 97, 278–286 (2011).

    CAS  PubMed  Google Scholar 

  241. Schmidt-Schweda, S. & Holubarsch, C. First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin. Sci. 99, 27–35 (2000).

    CAS  Google Scholar 

  242. Holubarsch, C. J. et al. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin. Sci. 113, 205–212 (2007).

    CAS  Google Scholar 

  243. Peng, S. et al. The efficacy of trimetazidine on stable angina pectoris: a meta-analysis of randomized clinical trials. Int. J. Cardiol. 177, 780–785 (2014).

    PubMed  Google Scholar 

  244. Coats, C. J. et al. Effect of trimetazidine dihydrochloride therapy on exercise capacity in patients with nonobstructive hypertrophic cardiomyopathy: a randomized clinical trial. JAMA Cardiol. 4, 230–235 (2019).

    PubMed  PubMed Central  Google Scholar 

  245. Killalea, S. M. & Krum, H. Systematic review of the efficacy and safety of perhexiline in the treatment of ischemic heart disease. Am. J. Cardiovasc. Drugs 1, 193–204 (2001).

    CAS  PubMed  Google Scholar 

  246. Choi, Y. S. et al. Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion. J. Mol. Cell Cardiol. 100, 64–71 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Yurista, S. R. et al. Ketone ester treatment improves cardiac function and reduces pathologic remodeling in preclinical models of heart failure. Circ. Heart Fail. 14, e007684 (2021).

    CAS  PubMed  Google Scholar 

  248. Takahara, S. et al. Chronic exogenous ketone supplementation blunts the decline of cardiac function in the failing heart. Esc. Heart Fail. 8, 5606–5612 (2021).

    PubMed  PubMed Central  Google Scholar 

  249. Gershuni, V. M., Yan, S. L. & Medici, V. Nutritional ketosis for weight management and reversal of metabolic syndrome. Curr. Nutr. Rep. 7, 97–106 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Monzo, L. et al. Myocardial ketone body utilization in patients with heart failure: the impact of oral ketone ester. Metabolism 115, 154452 (2021).

    CAS  PubMed  Google Scholar 

  251. Nielsen, R. et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation 139, 2129–2141 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Saucedo-Orozco, H., Voorrips, S. N., Yurista, S. R., de Boer, R. A. & Westenbrink, B. D. SGLT2 Inhibitors and ketone metabolism in heart failure. J. Lipid Atheroscler. 11, 1–19 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. van der Pol, A., van Gilst, W. H., Voors, A. A. & van der Meer, P. Treating oxidative stress in heart failure: past, present and future. Eur. J. Heart Fail. 21, 425–435 (2019).

    PubMed  Google Scholar 

  254. Dey, S., DeMazumder, D., Sidor, A., Foster, D. B. & O’Rourke, B. Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ. Res. 123, 356–371 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Graham, D. et al. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 54, 322–328 (2009).

    CAS  PubMed  Google Scholar 

  256. Manskikh, V. N. et al. Age-associated murine cardiac lesions are attenuated by the mitochondria-targeted antioxidant SkQ1. Histol. Histopathol. 30, 353–360 (2015).

    CAS  PubMed  Google Scholar 

  257. US National Library of Medicine. ClinicalTrials.gov, https://www.clinicaltrials.gov/ct2/show/NCT03960073 (2022).

  258. US National Library of Medicine. ClinicalTrials.gov, https://www.clinicaltrials.gov/ct2/show/NCT05410873 (2022).

  259. Chiao, Y. A. et al. Late-life restoration of mitochondrial function reverses cardiac dysfunction in old mice. eLife 9, e55513 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Szeto, H. H. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br. J. Pharmacol. 171, 2029–2050 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Butler, J. et al. Effects of elamipretide on left ventricular function in patients with heart failure with reduced ejection fraction: the PROGRESS-HF phase 2 trial. J. Card. Fail. 26, 429–437 (2020).

    PubMed  Google Scholar 

  262. Diguet, N. et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation 137, 2256–2273 (2018).

    CAS  PubMed  Google Scholar 

  263. Airhart, S. E. et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS ONE 12, e0186459 (2017).

    PubMed  PubMed Central  Google Scholar 

  264. Martens, C. R. et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat. Commun. 9, 1286 (2018).

    PubMed  PubMed Central  Google Scholar 

  265. Yoshino, M. et al. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science 372, 1224–1229 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Zhou, B. et al. Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure. J. Clin. Invest. 130, 6054–6063 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Wang, D. D. et al. Safety and tolerability of nicotinamide riboside in heart failure with reduced ejection fraction. JACC Basic Transl. Sci. 7, 1183–1196 (2022).

    PubMed  PubMed Central  Google Scholar 

  268. Uddin, G. M. et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc. Diabetol. 18, 86 (2019).

    PubMed  PubMed Central  Google Scholar 

  269. Wang, W. et al. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 311, H1160–H1169 (2016).

    PubMed  Google Scholar 

  270. Chellappa, K. et al. NAD precursors cycle between host tissues and the gut microbiome. Cell Metab. 34, 1947–1959 e1945 (2022).

    CAS  PubMed  Google Scholar 

  271. Zhang, L., Liu, C., Jiang, Q. & Yin, Y. Butyrate in energy metabolism: there is still more to learn. Trends Endocrinol. Metab. 32, 159–169 (2021).

    CAS  PubMed  Google Scholar 

  272. Carley, A. N. et al. Short-chain fatty acids outpace ketone oxidation in the failing heart. Circulation 143, 1797–1808 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Herrmann, G. & Decherd, G. M. The chemical nature of heart failure. Ann. Intern. Med. 12, 1233–1244 (1939).

    CAS  Google Scholar 

  274. James, M. O. et al. Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1. Pharmacol. Ther. 170, 166–180 (2017).

    CAS  PubMed  Google Scholar 

  275. Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).

    CAS  PubMed  Google Scholar 

  276. Bhatt, D. L. et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N. Engl. J. Med. 384, 117–128 (2021).

    CAS  PubMed  Google Scholar 

  277. Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).

    CAS  PubMed  Google Scholar 

  278. Anker, S. D., Usman, M. S. & Butler, J. SGLT2 inhibitors: from antihyperglycemic agents to all-around heart failure therapy. Circulation 146, 299–302 (2022).

    CAS  PubMed  Google Scholar 

  279. McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    CAS  PubMed  Google Scholar 

  280. Zannad, F. et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 396, 819–829 (2020).

    PubMed  Google Scholar 

  281. Yu, Z. et al. Oral supplementation with butyrate improves myocardial ischemia/reperfusion injury via a gut–brain neural circuit. Front. Cardiovasc. Med. 8, 718674 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Liao, R., Nascimben, L., Friedrich, J., Gwathmey, J. K. & Ingwall, J. S. Decreased energy reserve in an animal model of dilated cardiomyopathy. Relationship to contractile performance. Circ. Res. 78, 893–902 (1996).

    CAS  PubMed  Google Scholar 

  283. Neubauer, S. et al. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96, 2190–2196 (1997).

    CAS  PubMed  Google Scholar 

  284. Starling, R. C., Hammer, D. F. & Altschuld, R. A. Human myocardial ATP content and in vivo contractile function. Mol. Cell Biochem. 180, 171–177 (1998).

    CAS  PubMed  Google Scholar 

  285. Taegtmeyer, H., Sen, S. & Vela, D. Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann. N. Y. Acad. Sci. 1188, 191–198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Rajabi, M., Kassiotis, C., Razeghi, P. & Taegtmeyer, H. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail. Rev. 12, 331–343 (2007).

    CAS  PubMed  Google Scholar 

  287. Karbowska, J., Kochan, Z. & Smoleński, R. T. Peroxisome proliferator-activated receptor alpha is downregulated in the failing human heart. Cell Mol. Biol. Lett. 8, 49–53 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported in part by the US NIH (grants HL142628, HL149695, HL144778, HL110349 and HL144937) to R.T.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Julia Ritterhoff or Rong Tian.

Ethics declarations

Competing interests

R.T. is listed as a co-inventor on a patent application submitted by the University of Washington, USA, regarding the targeting of NAD+ metabolism to treat inflammation in heart failure, and is a member of the Scientific Advisory Board of Cytokinetics, USA. J.R. declares no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks John Elrod, who co-reviewed with Andrew Gibb; Gary Lopaschuk; Yibin Wang; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anaplerosis

Metabolic pathway that replenishes intermediates of the tricarboxylic acid cycle.

Catabolism

Metabolic pathways that break down molecules into smaller units, which can be oxidized to generate energy.

Efferocytosis

The process by which apoptotic cells are removed by phagocytic cells, primarily macrophages.

Insulin resistance

Impairment of proper insulin and glucose absorption by cells, which results in excessive glucose levels in the blood.

Lipotoxicity

Deleterious effects of lipid accumulation in non-adipose tissues that can lead to cellular dysfunction or cell death.

Oxidative phosphorylation

The production of ATP by the mitochondrial respiratory chain.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritterhoff, J., Tian, R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 20, 812–829 (2023). https://doi.org/10.1038/s41569-023-00887-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00887-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing