Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The ongoing quest for the first total artificial heart as destination therapy

Abstract

Many patients with end-stage heart disease die because of the scarcity of donor hearts. A total artificial heart (TAH), an implantable machine that replaces the heart, has so far been successfully used in over 1,700 patients as a temporary life-saving technology for bridging to heart transplantation. However, after more than six decades of research on TAHs, a TAH that is suitable for destination therapy is not yet available. High complication rates, bulky devices, poor durability, poor biocompatibility and low patient quality of life are some of the major drawbacks of current TAH devices that must be addressed before TAHs can be used as a destination therapy. Quickly emerging innovations in battery technology, wireless energy transmission, biocompatible materials and soft robotics are providing a promising opportunity for TAH development and might help to solve the drawbacks of current TAHs. In this Review, we describe the milestones in the history of TAH research and reflect on lessons learned during TAH development. We summarize the differences in the working mechanisms of these devices, discuss the next generation of TAHs and highlight emerging technologies that will promote TAH development in the coming decade. Finally, we present current challenges and future perspectives for the field.

Key points

  • After decades of research on total artificial hearts, only two devices are clinically available as a bridge to transplantation therapy; a total artificial heart suitable for destination therapy has not yet been developed.

  • Currently available total artificial hearts have major drawbacks, including bulkiness, limited durability, poor biocompatibility, high complication rates and low quality of life for the recipients.

  • We are on the verge of an era in total artificial heart development in which rapidly evolving technologies from different fields will lead to new approaches in total artificial heart design and development.

  • More powerful and more compact batteries and transcutaneous energy transfer systems will omit the need for percutaneous cables and will improve the quality of life of the recipients of a total artificial heart.

  • With the rise of soft robotic technologies and smart biomaterials, completely soft total artificial hearts might soon be developed and are likely to have fewer biocompatibility issues than current devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of the milestones in the development of total artificial hearts.
Fig. 2: Working mechanisms for different types of total artificial hearts.
Fig. 3: Efficiency of total artificial hearts.

Similar content being viewed by others

References

  1. Metra, M. & Teerlink, J. R. Heart failure. Lancet 390, 1981–1995 (2017).

    Article  PubMed  Google Scholar 

  2. Heidenreich, P. A. et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ. Heart Fail. 6, 606–619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Colvin, M. et al. OPTN/SRTR 2018 annual data report: heart. Am. J. Transpl. 20, 340–426 (2020).

    Article  Google Scholar 

  4. Molina, E. J. et al. The Society of Thoracic Surgeons Intermacs 2020 annual report. Ann. Thorac. Surg. 111, 778–792 (2021).

    Article  PubMed  Google Scholar 

  5. Han, J. J., Acker, M. A. & Atluri, P. Left ventricular assist devices. Circulation 138, 2841–2851 (2018).

    Article  PubMed  Google Scholar 

  6. Gurvits, G. E. & Fradkov, E. Bleeding with the artificial heart: gastrointestinal hemorrhage in CF-LVAD patients. World J. Gastroenterol. 23, 3945–3953 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Galand, V. et al. Predictors and clinical impact of late ventricular arrhythmias in patients with continuous-flow left ventricular assist devices. JACC Clin. Electrophysiol. 4, 1166–1175 (2018).

    Article  PubMed  Google Scholar 

  8. Ross, D. W. et al. Left ventricular assist devices and the kidney. Clin. J. Am. Soc. Nephrol. 13, 348–355 (2018).

    Article  PubMed  Google Scholar 

  9. Aissaoui, N. et al. Understanding left ventricular assist devices. Blood Purif. 46, 292–300 (2018).

    Article  PubMed  Google Scholar 

  10. National Heart Lung and Blood Institute. What Is Total Artificial Heart? Total Artificial Heart https://www.nhlbi.nih.gov/health-topics/total-artificial-heart (NIH, 2020).

  11. Cooley, D. A. et al. Orthotopic cardiac prosthesis for two-staged cardiac replacement. Am. J. Cardiol. 24, 723–730 (1969).

    Article  CAS  PubMed  Google Scholar 

  12. US National Library of Medicine. SynCardia 70cc TAH-t for Destination Therapy (DT) (RA-540). ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02232659 (2021).

  13. Akutsu, T. & Kolff, W. J. Permanent substitutes for valves and hearts. ASAIO J. 4, 230–234 (1958).

    Google Scholar 

  14. Houston, C. S., Akutsu, T. & Kolff, W. J. Pendulum type of artificial heart within the chest: preliminiary report. Am. Heart J. 59, 723–730 (1960).

    Article  CAS  PubMed  Google Scholar 

  15. Seidel, W., Akutsu, T., Mirkovitch, V., Brown, F. & Kolff, W. J. Air-driven artificial hearts inside the chest. Trans. Am. Soc. Artif. Intern. Organs 7, 378–387 (1961).

    CAS  PubMed  Google Scholar 

  16. Liotta, D. et al. Artificial heart in the chest: preliminary report. Trans. Am. Soc. Artif. Intern. Organs 7, 318–322 (1961).

    CAS  PubMed  Google Scholar 

  17. Atsumi, K. et al. Artificial heart incorporated in the chest. Trans. Am. Soc. Artif. Intern. Organs 9, 292–298 (1963).

    CAS  PubMed  Google Scholar 

  18. Pierce, W. S. et al. Total heart replacement by a single intrathoracic blood pump. J. Surg. Res. 5, 387–394 (1965).

    Article  CAS  PubMed  Google Scholar 

  19. Nosé, Y., Tretbar, L. L., SenGupta, A., Topaz, S. R. & Kolff, W. J. An artificial heart inside the chest. J. Thorac. Cardiovasc. Surg. 50, 792–799 (1965).

    Article  PubMed  Google Scholar 

  20. Cohn, W. E., Timms, D. L. & Frazier, O. H. Total artificial hearts: past, present, and future. Nat. Rev. Cardiol. 12, 609–617 (2015).

    Article  PubMed  Google Scholar 

  21. Curran, W. J. Law-medicine notes. The first mechanical heart transplant: informed consent and experimentation. N. Engl. J. Med. 291, 1015–1016 (1974).

    Article  CAS  PubMed  Google Scholar 

  22. Morris, D. T. & Couves, C. M. Experiences with a sac-type artificial heart. Can. Med. Assoc. J. 105, 483–487 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kwan-Gett, C. S., Van Kampen, K. R., Kawai, J., Eastwood, N. & Kolff, W. J. Results of total artificial heart implantation in calves. J. Thorac. Cardiovasc. Surg. 62, 880–889 (1971).

    Article  CAS  PubMed  Google Scholar 

  24. Kawai, J. et al. Implantation of a total artificial heart in calves under hypothermia with 10 day survival. J. Thorac. Cardiovasc. Surg. 64, 45–60 (1972).

    Article  CAS  PubMed  Google Scholar 

  25. Hastings, W. L. et al. A retrospective study of nine calves surviving five months on the pneumatic total artificial heart. Trans. Am. Soc. Artif. Intern. Organs 27, 71–76 (1981).

    CAS  PubMed  Google Scholar 

  26. Fukumasu, H., Iwaya, F., Olsen, D. B., Lawson, J. H. & Kolff, W. J. Surgical implantation of the Jarvik-5 total artificial heart in a calf. Trans. Am. Soc. Artif. Intern. Organs 25, 232–238 (1979).

    Article  CAS  PubMed  Google Scholar 

  27. Akutsu, T., Takagi, H. & Takano, H. Total artificial hearts with built-in valves. Trans. Am. Soc. Artif. Intern. Organs 16, 392–397 (1970).

    CAS  PubMed  Google Scholar 

  28. Honda, T. et al. One 25 day survivor with total artificial heart. J. Thorac. Cardiovasc. Surg. 69, 92–101 (1975).

    Article  CAS  PubMed  Google Scholar 

  29. Nakazono, M. et al. A case report of 17 days survival with an implanted artificial heart in a calf. Jpn Heart J. 15, 485–497 (1974).

    Article  CAS  PubMed  Google Scholar 

  30. Kasai, S. et al. Survival for 145 days with a total artificial heart. J. Thorac. Cardiovasc. Surg. 73, 637–646 (1977).

    Article  CAS  PubMed  Google Scholar 

  31. Kennedy, J. H. et al. Development of an orthotopic cardiac prosthesis. J. Thorac. Cardiovasc. Surg. 65, 673–683 (1973).

    Article  CAS  PubMed  Google Scholar 

  32. Backman, D. K., Donovan, F. M., Sandquist, G., Kessler, T. & Kolff, W. J. The design and evaluation of ventricles for the aec artificial heart nuclear power source. ASAIO J. 19, 542–552 (1973).

    Article  CAS  Google Scholar 

  33. Smith, L. et al. Development on the implantation of a total nuclear-powered artificial heart system. ASAIO J. 20, 732–735 (1974).

    Google Scholar 

  34. Urzua, J., Sudilovsky, O., Panke, T., Kiraly, R. J. & Nosé, Y. Preliminary report: anatomic constraints for the implantation of an artificial heart. J. Surg. Res. 17, 262–268 (1974).

    Article  CAS  PubMed  Google Scholar 

  35. Cooley, D. A., Akutsu, T., Norman, J. C., Serrato, M. A. & Frazier, O. H. Total artificial heart in two-staged cardiac transplantation. Cardiovasc. Dis. 8, 305–319 (1981).

    PubMed  PubMed Central  Google Scholar 

  36. DeVries, W. C. et al. Clinical use of the total artificial heart. N. Engl. J. Med. 310, 273–278 (1984).

    Article  CAS  PubMed  Google Scholar 

  37. Vasků, J. & Urbánek, P. Constructional and functional characteristics of recent total artificial heart models TNS Brno VII, VIII, and IX. Artif. Organs 19, 535–543 (1995).

    Article  PubMed  Google Scholar 

  38. Davis, P. K., Pae, W. E. Jr & Pierce, W. S. Toward an implantable artificial heart. Experimental and clinical experience at The Pennsylvania State University. Invest. Radiol. 24, 81–87 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Hsu, C. H. Fuzzy logic automatic control of the Phoenix-7 total artificial heart. J. Artif. Organs 7, 69–76 (2004).

    Article  PubMed  Google Scholar 

  40. Hsu, C. H. In vivo and clinical study of Phoenix-7 total artificial heart. Biomed. Eng. Appl. Basis Commun. 13, 133–139 (2001).

    Article  Google Scholar 

  41. Shumakov, V. I. et al. Use of an ellipsoid artificial heart. Artif. Organs 11, 16–19 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. Shumakov, V. I. et al. New design of an orthotopic fluorosiloxane rubber heart prosthesis. Biomed. Eng. 10, 223–224 (1976).

    Article  Google Scholar 

  43. Nawrat, Z. & Malota, Z. The analysis of driving mode influence on energy dissipation in pneumatic artificial heart chambers. Artif. Organs 22, 898–904 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Rokitansky, A. et al. The new small Viennese total artificial heart: experimental and first clinical experiences. Artif. Organs 15, 129–135 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Homma, A. et al. Development of an electrohydraulic total artificial heart system: improvement of pump unit. Electron. Commun. Jpn. 93, 34–46 (2010).

    Article  Google Scholar 

  46. Ford, B. J. A new generation of cardiology: the AbioCor implantable replacement heart. Air Med. J. 22, 26–30 (2003).

    Article  PubMed  Google Scholar 

  47. Dowling, R. D. et al. The AbioCor implantable replacement heart. Ann. Thorac. Surg. 75, S93–S99 (2003).

    Article  PubMed  Google Scholar 

  48. Smith, P. A., Cohn, W. E. & Frazier, O. H. in Mechanical Circulatory and Respiratory Support (eds Gregory, S. D., Stevens, M. C. & Fraser, J. F.) Ch. 7, 221–244 (Academic, 2018).

  49. Spiliopoulos, S., Dimitriou, A. M., Guersoy, D., Koerfer, R. & Tenderich, G. Expanding applicability of total artificial heart therapy: the 50-cc SynCardia total artificial heart. Ann. Thorac. Surg. 100, e55–e57 (2015).

    Article  PubMed  Google Scholar 

  50. Cohrs, N. H. et al. A soft total artificial heart-first concept evaluation on a hybrid mock circulation. Artif. Organs 41, 948–958 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Stepanenko, A. & Kaufmann, F. A novel total artificial heart: search for haemocompatibility. Lancet 386, 1517–1519 (2015).

    Article  PubMed  Google Scholar 

  52. CARMAT. Artificial hearts: devices from France’s Carmat to go on sale in Europe. YouTube https://www.youtube.com/watch?v=j9T2HnSfVME (2021).

  53. US Food and Drug Administration. SynCardia Temporary Cardio West Total Artificial Heart (TAH-T). AccessData https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?ID=P030011 (2004).

  54. EC Design-Examination Certificate. SynCardia temporary Total Artificial Heart (TAH-t) and external drivers. SynCardia http://syncardia.com/wp-content/uploads/2018/02/CE-665479-Design-Examination-26-May-2017.pdf (2017).

  55. SynCardia. SynCardia 70cc total artificial heart. SynCardia https://syncardia.com/clinicians/our-products/see-all-our-products/ (2021).

  56. US National Library of Medicine. Carmat TAH early feasibility study. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04117295 (2022).

  57. Guex, L. G. et al. Increased longevity and pumping performance of an injection molded soft total artificial heart. Soft Robot. 23, 23 (2020).

    Google Scholar 

  58. Mihaylov, D., Verkerke, G. J. & Rakhorst, G. Mechanical circulatory support systems — a review. Technol. Health Care 8, 251–266 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Min, B. G. et al. A moving-actuator type electromechanical total artificial heart — Part II: circular type and animal experiment. IEEE Trans. Biomed. Eng. 37, 1195–1200 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Min, B. G. et al. A moving-actuator type electromechanical total artificial heart — Part I: linear type and mock circulation experiments. IEEE Trans. Biomed. Eng. 37, 1186–1194 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Ahn, J. M., Kang, D. W., Kim, H. C. & Min, B. G. In vivo performance evaluation of a transcutaneous energy and information transmission system for the total artificial heart. ASAIO J. 39, M208–M212 (1993).

    CAS  PubMed  Google Scholar 

  62. Ohashi, Y., de Andrade, A. & Nosé, Y. Hemolysis in an electromechanical driven pulsatile total artificial heart. Artif. Organs 27, 1089–1093 (2003).

    Article  PubMed  Google Scholar 

  63. Takatani, S. et al. One piece ultracompact totally implantable electromechanical total artificial heart for permanent use. ASAIO J. 48, 538–545 (2002).

    Article  PubMed  Google Scholar 

  64. Irié, H. et al. Initial in vivo tests of an electrohydraulic actuated total artificial heart. ASAIO J. 38, M497–M500 (1992).

    Article  PubMed  Google Scholar 

  65. Fukamachi, K. et al. Anatomic fitting studies of a total artificial heart in heart transplant recipients. Critical dimensions and prediction of fit. ASAIO J. 42, M337–M342 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Sueshiro, M., Fukunaga, S., Hirai, S., Sueda, T. & Matsuura, Y. Eccentric roller type total artificial heart designed for implantation. Artif. Organs 22, 451–457 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Kobayashi, M. et al. In vitro evaluation of linear motor-driven total artificial heart. Artif. Organs 20, 1320–1324 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Yamada, H., Yamaguchi, M., Kobayashi, K., Matsuura, Y. & Takano, H. Development and test of a linear motor-driven total artificial heart. IEEE Eng. Med. Biol. Mag. 14, 84–90 (1995).

    Article  Google Scholar 

  69. Weber, S. et al. MagScrew TAH: an update. ASAIO J. 51, xxxvi–xlvi (2005).

    Article  PubMed  Google Scholar 

  70. Gao, H. et al. In vitro assessment of the Milwaukee heart and right to left balance. ASAIO J. 38, M722–M725 (1992).

    Article  CAS  PubMed  Google Scholar 

  71. Sauer, I. M., Frank, J., Spiegelberg, A. & Bücherl, E. S. Ovalis TAH: development and in vitro testing of a new electromechanical energy converter for a total artificial heart. ASAIO J. 46, 744–748 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Mehta, S. M. et al. Testing of a 50 cc stroke volume completely implantable artificial heart: expanding chronic mechanical circulatory support to women, adolescents, and small stature men. ASAIO J. 46, 779–782 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Szabó, Z. et al. Scandinavian real heart (SRH) 11 implantation as total artificial heart (TAH)-experimental update. J. Clin. Exp. Cardiol. 9, 2 (2018).

    Article  Google Scholar 

  74. Sonntag, S. J. et al. Virtual implantations to transition from porcine to bovine animal models for a total artificial heart. Artif. Organs 44, 384–393 (2020).

    Article  PubMed  Google Scholar 

  75. Pelletier, B. et al. System overview of the fully implantable destination therapy — ReinHeart total artificial heart. Eur. J. Cardiothorac. Surg. 47, 80–86 (2015).

    Article  PubMed  Google Scholar 

  76. Tozzi, P. et al. An original valveless artificial heart providing pulsatile flow tested in mock circulatory loops. Int. J. Artif. Organs 40, 683–689 (2017).

    Article  PubMed  Google Scholar 

  77. Kirklin, J. K. et al. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J. Heart Lung Transpl. 36, 1080–1086 (2017).

    Article  Google Scholar 

  78. Potapov, E. V., Kaufmann, F., Müller, M., Mulzer, J. & Falk, V. Longest ongoing support (13 years) with magnetically levitated left ventricular assist device. ASAIO J. 66, e121–e122 (2020).

    Article  PubMed  Google Scholar 

  79. Yang, M. in Technology and Therapy Management 99–100 (Springer, 2020).

  80. Healy, A. H. et al. Physiologic effects of continuous-flow left ventricular assist devices. J. Surg. Res. 202, 363–371 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bhimaraj, A., Uribe, C. & Suarez, E. E. Physiological impact of continuous flow on end-organ function: clinical implications in the current era of left ventricular assist devices. Methodist. Debakey Cardiovasc. J. 11, 12–17 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Isoyama, T. et al. New version of flow-transformed pulsatile total artificial heart with no electrical switching valve. Artif. Organs 19, 694–696 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Abe, Y. et al. Results of animal experiments with the fourth model of the undulation pump total artificial heart. Artif. Organs 35, 781–790 (2011).

    Article  PubMed  Google Scholar 

  84. Qian, K. X., Ru, W. M., Zeng, P. & Yuan, H. Y. A novel impeller TAH using magnetic bearings for load reduction. J. Med. Eng. Technol. 26, 214–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Feng, J. et al. New continuous-flow total artificial heart and vascular permeability. J. Surg. Res. 199, 296–305 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lebreton, G., Mastroianni, C., Amour, J. & Leprince, P. Implantation of two HVADs used as a total artificial heart: a new approach. Ann. Thorac. Surg. 107, e165–e167 (2019).

    Article  PubMed  Google Scholar 

  87. Mulvihill, M. S. et al. Usefulness of two centrifugal ventricular assist devices in a total artificial heart configuration: a preliminary report. J. Heart Lung Transpl. 36, 1266–1268 (2017).

    Article  Google Scholar 

  88. Cohn, W. E. et al. Eight-year experience with a continuous-flow total artificial heart in calves. ASAIO J. 60, 25–30 (2014).

    Article  PubMed  Google Scholar 

  89. Pirk, J. et al. Total artificial heart support with two continuous-flow ventricular assist devices in a patient with an infiltrating cardiac sarcoma. ASAIO J. 59, 178–180 (2013).

    Article  PubMed  Google Scholar 

  90. Frazier, O. H. & Cohn, W. E. Continuous-flow total heart replacement device implanted in a 55-year-old man with end-stage heart failure and severe amyloidosis. Tex. Heart Inst. J. 39, 542–546 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Strueber, M., Schmitto, J. D., Kutschka, I. & Haverich, A. Placement of two implantable centrifugal pumps to serve as a total artificial heart after cardiectomy. J. Thorac. Cardiovasc. Surg. 143, 507–509 (2012).

    Article  PubMed  Google Scholar 

  92. Frazier, O. H., Cohn, W. E., Tuzun, E., Winkler, J. A. & Gregoric, I. D. Continuous-flow total artificial heart supports long-term survival of a calf. Tex. Heart Inst. J. 36, 568–574 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Baldwin, A. C., Gemmato, C. J., Cohn, W. E. & Frazier, O. H. Feasibility of long-term continuous flow total heart replacement in calves. Int. J. Artif. Organs 45, 44–51 (2021).

    Article  PubMed  Google Scholar 

  94. Daneshmand, M. A., Bishawi, M., Milano, C. A. & Schroder, J. N. The HeartMate 6. ASAIO J. 66, e46–e49 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kleinheyer, M. et al. Rapid speed modulation of a rotary total artificial heart impeller. Artif. Organs 40, 824–833 (2016).

    Article  PubMed  Google Scholar 

  96. Fukamachi, K. et al. Generating pulsatility by pump speed modulation with continuous-flow total artificial heart in awake calves. J. Artif. Organs 20, 381–385 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Miyamoto, T. et al. Analysis of Cleveland clinic continuous-flow total artificial heart performance using the virtual mock loop: comparison with an in vivo study. Artif. Organs 44, 375–383 (2020).

    Article  PubMed  Google Scholar 

  98. Abe, Y. et al. Animal experiments of the helical flow total artificial heart. Artif. Organs 39, 670–680 (2015).

    Article  PubMed  Google Scholar 

  99. Fox, C. et al. Hybrid continuous-flow total artificial heart. Artif. Organs 42, 500–509 (2018).

    Article  PubMed  Google Scholar 

  100. Glynn, J. et al. The OregonHeart total artificial heart: design and performance on a mock circulatory loop. Artif. Organs 41, 904–910 (2017).

    Article  PubMed  Google Scholar 

  101. Jurney, P. L. et al. Characterization of a pulsatile rotary total artificial heart. Artif. Organs 45, 135–142 (2021).

    Article  PubMed  Google Scholar 

  102. Franklin, D. L., Van Citters, R. L. & Rushmer, R. F. Balance between right and left ventricular output. Circ. Res. 10, 17–26 (1962).

    Article  CAS  PubMed  Google Scholar 

  103. Ley, S., Kreitner, K. F., Morgenstern, I., Thelen, M. & Kauczor, H. U. Bronchopulmonary shunts in patients with chronic thromboembolic pulmonary hypertension: evaluation with helical CT and MR imaging. Am. J. Roentgenol. 179, 1209–1215 (2002).

    Article  Google Scholar 

  104. Baile, E. M., Ling, H., Heyworth, J. R., Hogg, J. C. & Pare, P. D. Bronchopulmonary anastomotic and noncoronary collateral blood flow in humans during cardiopulmonary bypass. Chest 87, 749–754 (1985).

    Article  CAS  PubMed  Google Scholar 

  105. Bhunia, S. K. & Kung, R. T. Indirect bronchial shunt flow measurements in AbioCor implantable replacement heart recipients. ASAIO J. 50, 211–214 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Nestler, F. et al. Investigation of the inherent left-right flow balancing of rotary total artificial hearts by means of a resistance box. Artif. Organs 44, 584–593 (2020).

    Article  PubMed  Google Scholar 

  107. Latrémouille, C. et al. A bioprosthetic total artificial heart for end-stage heart failure: results from a pilot study. J. Heart Lung Transpl. 37, 33–37 (2018).

    Article  Google Scholar 

  108. Slepian, M. J. et al. The Syncardia™ total artificial heart: in vivo, in vitro, and computational modeling studies. J. Biomech. 46, 266–275 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Crosby, J. R. et al. Physiological characterization of the SynCardia total artificial heart in a mock circulation system. ASAIO J. 61, 274–281 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Diedrich, M. et al. Experimental investigation of right–left flow balance concepts for a total artificial heart. Artif. Organs 45, 364–372 (2021).

    Article  PubMed  Google Scholar 

  111. Horvath, D. et al. Mechanism of self-regulation and in vivo performance of the cleveland clinic continuous-flow total artificial heart. Artif. Organs 41, 411–417 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Kung, R. T. et al. Progress in the development of the ABIOMED total artificial heart. ASAIO J. 41, M245–M248 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Harasaki, H. et al. Progress in Cleveland Clinic — Nimbus total artificial heart development. ASAIO J. 40, M494–M498 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Kim, H. C., Khanwilkar, P. S., Bearnson, G. B. & Olsen, D. B. Development of a microcontroller-based automatic control system for the electrohydraulic total artificial heart. IEEE Trans. Biomed. Eng. 44, 77–89 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Snyder, A. J. et al. An electrically powered total artificial heart. Over 1 year survival in the calf. ASAIO J. 38, M707–M712 (1992).

    Article  CAS  PubMed  Google Scholar 

  116. Abe, Y. et al. Third model of the undulation pump total artificial heart. ASAIO J. 49, 123–127 (2003).

    Article  PubMed  Google Scholar 

  117. Dowling, R. D. et al. Initial experience with the AbioCor implantable replacement heart at the University of Louisville. ASAIO J. 46, 579–581 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Latrémouille, C. et al. Animal studies with the Carmat bioprosthetic total artificial heart. Eur. J. Cardiothorac. Surg. 47, e172–e179 (2015).

    Article  PubMed  Google Scholar 

  119. Vasků, J. et al. A comparative study of a group of eight calves, surviving longer than 1 month with the total artificial heart. Artif. Organs 7, 470–478 (1983).

    Article  PubMed  Google Scholar 

  120. Vasků, J., Urbánek, P., Dostál, M. & Vasků, J. The applicability of experimental experience with the total artificial heart to its clinical use. Int. J. Artif. Organs 15, 307–311 (1992).

    Article  PubMed  Google Scholar 

  121. Copeland, J. G. et al. The total artificial heart as a bridge to transplantation. A report of two cases. JAMA 256, 2991–2995 (1986).

    Article  CAS  PubMed  Google Scholar 

  122. Shumakov, V. et al. Clinical indications for the use of the “Poisk-IOM” total artificial heart: the experience of 13 implantations in humans. Artif. Organs 15, 372–375 (1991).

    Article  CAS  PubMed  Google Scholar 

  123. Wei, J. et al. Successful use of Phoenix-7 total artificial heart. Transpl. Proc. 30, 3403–3404 (1998).

    Article  CAS  Google Scholar 

  124. Trubel, W. et al. Clinical total artificial heart bridging: Viennese strategy and experiences. Artif. Organs 13, 470–475 (1989).

    Article  CAS  PubMed  Google Scholar 

  125. Frazier, O. H. et al. The total artificial heart: where we stand. Cardiology 101, 117–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Alaeddine, M., Ploutz, M., Arabia, F. A. & Velez, D. A. Implantation of total artificial heart in a 10-year-old after support with a temporary perventricular assist device. J. Thorac. Cardiovasc. Surg. 159, e227–e229 (2020).

    Article  PubMed  Google Scholar 

  127. SynCardia. Turkish man becomes world’s longest supported syncardia temporary total artificial heart patient. SynCardia https://syncardia.com/news/turkish-man-becomes-worlds-longest-supported-syncardia-temporary-total-artificial-heart-patient/ (2017).

  128. David, C. H. et al. A heart transplant after total artificial heart support: initial and long-term results. Eur. J. Cardiothorac. Surg. 58, 1175–1181 (2020).

    Article  PubMed  Google Scholar 

  129. Carrier, M. et al. Outcomes after heart transplantation and total artificial heart implantation: a multicenter study. J. Heart Lung Transplant. 28, 28 (2020).

    Google Scholar 

  130. Hulman, M., Artemiou, P., Hudec, V., Olejarova, I. & Goncalvesova, E. SynCardia, total artificial heart, as a bridge to transplant. Bratisl. Lek. Listy 120, 325–330 (2019).

    CAS  PubMed  Google Scholar 

  131. Nguyen, A. et al. Experience with the SynCardia total artificial heart in a Canadian centre. Can. J. Surg. 60, 375–379 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kirsch, M. E. et al. SynCardia temporary total artificial heart as bridge to transplantation: current results at La Pitié hospital. Ann. Thorac. Surg. 95, 1640–1646 (2013).

    Article  PubMed  Google Scholar 

  133. Copeland, J. G. et al. Experience with more than 100 total artificial heart implants. J. Thorac. Cardiovasc. Surg. 143, 727–734 (2012).

    Article  PubMed  Google Scholar 

  134. Roussel, J. C. et al. CardioWest (Jarvik) total artificial heart: a single-center experience with 42 patients. Ann. Thorac. Surg. 87, 124–130 (2009).

    Article  PubMed  Google Scholar 

  135. El-Banayosy, A. et al. CardioWest total artificial heart: bad Oeynhausen experience. Ann. Thorac. Surg. 80, 548–552 (2005).

    Article  PubMed  Google Scholar 

  136. Thanavaro, K. L., Tang, D. G., Kasirajan, V. & Shah, K. B. Clinical indications for implantation of the total artificial heart. ASAIO J. 60, 594–596 (2014).

    Article  PubMed  Google Scholar 

  137. Carmat. Carmat outlines commercial and development plan for its total artificial heart. Carmat https://www.carmatsa.com/carmat-content/uploads/2021/01/pr_carmat_conference_06-01-21.pdf (2021).

  138. Netuka, I. et al. Initial bridge to transplant experience with a bioprosthetic autoregulated artificial heart. J. Heart Lung Transpl. 39, 1491–1493 (2020).

    Article  Google Scholar 

  139. Unthan, K. et al. Design and evaluation of a fully implantable control unit for blood pumps. Biomed. Res. Int. 2015, 257848 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kluin, J. et al. In situ heart valve tissue engineering using a bioresorbable elastomeric implant — from material design to 12 months follow-up in sheep. Biomaterials 125, 101–117 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Zilla, P., Deutsch, M., Bezuidenhout, D., Davies, N. H. & Pennel, T. Progressive reinvention or destination lost? Half a century of cardiovascular tissue engineering. Front. Cardiovasc. Med. 7, 159 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Chen, Z. et al. Device-induced platelet dysfunction in mechanically assisted circulation increases the risks of thrombosis and bleeding. Artif. Organs 43, 745–755 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zaiser, A. S. et al. Adverse events of percutaneous microaxial left ventricular assist devices-a retrospective, single-centre cohort study. J. Clin. Med. 10, 3710 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. HybridHeart. The development of a soft biocompatible artificial heart. HybridHeart https://www.hybridheart.eu/ (2021).

  145. Kohll, A. X. et al. Long-term performance of a pneumatically actuated soft pump manufactured by rubber compression molding. Soft Robot. 6, 206–213 (2019).

    Article  PubMed  Google Scholar 

  146. Roche, E. T. et al. Soft robotic sleeve supports heart function. Sci. Transl. Med. 9, eaaf3925 (2017).

    Article  PubMed  Google Scholar 

  147. Banerjee, H., Tse, Z. T. H. & Ren, H. Soft robotics with compliance and adaptation for biomedical applications and forthcoming challenges. Int. J. Robot. Autom. 33, 69–80 (2018).

    Google Scholar 

  148. Greatrex, N., Kleinheyer, M., Nestler, F. & Timms, D. The Maglev heart. IEEE Spectr. 56, 22–29 (2019).

    Article  Google Scholar 

  149. Parnis, S. M. et al. Chronic in vivo evaluation of an electrohydraulic total artificial heart. ASAIO J. 40, M489–M493 (1994).

    Article  CAS  PubMed  Google Scholar 

  150. Dowling, R. D., Etoch, S. W., Stevens, K. A., Johnson, A. C. & Gray, L. A. Jr Current status of the AbioCor implantable replacement heart. Ann. Thorac. Surg. 71, S147–S149 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Takatani, S. et al. Totally implantable total artificial heart and ventricular assist device with multipurpose miniature electromechanical energy system. Artif. Organs 18, 80–92 (1994).

    Article  CAS  PubMed  Google Scholar 

  152. Takatani, S. et al. Left and right pump output control in one-piece electromechanical total artificial heart. Artif. Organs 17, 176–184 (1993).

    Article  CAS  PubMed  Google Scholar 

  153. Cohn, W. E. et al. Pulsatile outflow in cows supported long-term with the BiVACOR rotary TAH. J. Heart Lung Transplant. 36, S14 (2017).

    Article  Google Scholar 

  154. Dostál, M. et al. Hematological and biochemical studies in calves living over 100 days with the polymethylmethacrylate total artificial heart TNS Brno II. Int. J. Artif. Organs 9, 39–48 (1986).

    Article  PubMed  Google Scholar 

  155. Vasků, J. et al. Recent efforts in artificial heart research in Czechoslovakia. ASAIO Trans. 35, 805–811 (1989).

    PubMed  Google Scholar 

  156. Smadja, D. M. et al. The Carmat bioprosthetic total artificial heart is associated with early hemostatic recovery and no acquired von Willebrand syndrome in calves. J. Cardiothorac. Vasc. Anesth. 31, 1595–1602 (2017).

    Article  PubMed  Google Scholar 

  157. Karimov, J. H. et al. First report of 90-day support of two calves with a continuous-flow total artificial heart. J. Thorac. Cardiovasc. Surg. 150, 687–693.e681 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Taenaka, Y. et al. Development and evaluation of components for a totally implantable artificial heart system. ASAIO J. 40, M314–M318 (1994).

    Article  CAS  PubMed  Google Scholar 

  159. Taenaka, Y. et al. An electrohydraulic total artificial heart with a separately placed actuator. ASAIO Trans. 36, M242–M245 (1990).

    CAS  PubMed  Google Scholar 

  160. Tatsumi, E. et al. A blood pump with an interatrial shunt for use as an electrohydraulic total artificial heart. ASAIO J. 38, M425–M430 (1992).

    Article  CAS  PubMed  Google Scholar 

  161. Tatsumi, E. et al. The National Cardiovascular Center electrohydraulic total artificial heart and ventricular assist device systems: current status of development. ASAIO J. 49, 243–249 (2003).

    Article  PubMed  Google Scholar 

  162. Tatsumi, E. et al. Current status of development and in vivo evaluation of the National Cardiovascular Center electrohydraulic total artificial heart system. J. Artif. Organs 3, 62–69 (2000).

    Article  Google Scholar 

  163. Doi, K. et al. In vivo studies of the MagScrew total artificial heart in calves. ASAIO J. 48, 222–225 (2002).

    Article  PubMed  Google Scholar 

  164. Kuroda, H. et al. Postoperative pulmonary complications in calves after implantation of an electric total artificial heart. ASAIO J. 44, M613–M618 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. Pierce, W. S. et al. An electric artificial heart for clinical use. Ann. Surg. 212, 339–343 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Snyder, A. J. et al. In vivo testing of a completely implanted total artificial heart system. ASAIO J. 39, M177–M184 (1993).

    CAS  PubMed  Google Scholar 

  167. Shaffer, L. J. et al. Total artificial heart implantation in calves with pump on an angled port design. Trans. Am. Soc. Artif. Intern. Organs 25, 254–259 (1979).

    Article  CAS  PubMed  Google Scholar 

  168. Abe, Y. et al. Development of mechanical circulatory support devices at the University of Tokyo. J. Artif. Organs 10, 60–70 (2007).

    Article  PubMed  Google Scholar 

  169. Mochizuki, S. et al. Results of animal experiments using an undulation pump total artificial heart: analysis of 10 day and 19 day survival. ASAIO J. 46, 500–504 (2000).

    Article  CAS  PubMed  Google Scholar 

  170. Wampler, R. et al. Performance of a novel shuttling total artificial heart on a on a mock circulatory loop. J. Heart Lung Transplant. 36, S56–S57 (2017).

    Article  Google Scholar 

  171. Cooley, D. The total artificial heart. Nat. Med. 9, 108–111 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Emmanuel, S. et al. Anatomical human fitting of the BiVACOR total artificial heart. Artif. Organs 46, 50–56 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Mohacsi, P. & Leprince, P. The Carmat total artificial heart. Eur. J. Cardiothorac. Surg. 46, 933–934 (2014).

    Article  PubMed  Google Scholar 

  174. Pieper, I. L. et al. Evaluation of the novel total artificial heart Realheart in a pilot human fitting study. Artif. Organs 44, 174–177 (2020).

    Article  PubMed  Google Scholar 

  175. Yu, L. S. et al. A compact and noise free electrohydraulic total artificial heart. ASAIO J. 39, M386–M391 (1993).

    CAS  PubMed  Google Scholar 

  176. Rosenberg, G. et al. Dynamic in vitro and in vivo performance of a permanent total artificial heart. Artif. Organs 22, 87–94 (1998).

    Article  CAS  PubMed  Google Scholar 

  177. Marieb, E. N. & Hoehn, K. in The Heart 679–681 (Pearson, 2013).

Download references

Acknowledgements

The authors are grateful to L. C. van Laake (AMOLF, Netherlands), D. Zrinscak (Scuola Superiore Sant’Anna, Italy) and A. Henseler (evos GmbH, Germany) for their contributions and discussions; D. van Urk (Amsterdam UMC, The Netherlands) for assisting with screening and selecting articles; T. Azami (Amsterdam UMC, The Netherlands) and C. M. van de Beek (Amsterdam UMC, The Netherlands) for assistance with data extraction; C. E. J. M. Limpens (Amsterdam UMC, The Netherlands) and A. Malekzadeh (Amsterdam UMC, The Netherlands) for their help with the literature search; and ReinHeart TAH GmbH, Germany for providing additional data upon request. The authors’ work is part of the HybridHeart project and is funded by the European Union Horizon 2020 research and innovation programme under grant agreement no. 767195.

Author information

Authors and Affiliations

Authors

Contributions

A.V. and M.A. did the major literature search and wrote the first draft. All of the authors contributed to the discussion of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jolanda Kluin.

Ethics declarations

Competing interests

A.V., M.A., H.K., J.T.B.O. and J.K. are part of the HybridHeart consortium. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Driveline

Percutaneous cable that transmits electrical power from an external driver to the internally implanted device such as a TAH or LVAD.

Transcutaneous energy transfer (TET) system

A wireless power delivery system that uses magnetic fields to transfer power across the skin without the need for direct electrical connectivity.

Bronchial shunt

The physiological passage of oxygenated blood from the aorta to the bronchial circulation. This blood returns directly to the left atrium, thereby bypassing the right side of the heart.

Frank–Starling mechanism

This law states that the stroke volume of the heart increases in response to an increase in the volume of blood in the ventricles before contraction (the end diastolic volume), when all other factors remain constant.

Preload

The filling pressure of the ventricle at the end of diastole, which is determined by the atrial pressure.

Stator

The stationary part of a rotary machine or device.

Investigational device exemption

Type of FDA approval that allows the investigational device to be used in a clinical study in order to collect safety and efficacy data.

Afterload

The amount of pressure that the ventricle needs to exert to eject the blood during ventricular contraction.

Biofunctionalization

The modification of a material to add a biological function, such as replace or repair, while at the same time being accepted by the host organism.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vis, A., Arfaee, M., Khambati, H. et al. The ongoing quest for the first total artificial heart as destination therapy. Nat Rev Cardiol 19, 813–828 (2022). https://doi.org/10.1038/s41569-022-00723-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-022-00723-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing