Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies

Abstract

Hypertrophic cardiomyopathy (HCM) was traditionally described as an autosomal dominant Mendelian disease but is now increasingly recognized as having a complex genetic aetiology. Although eight core genes encoding sarcomeric proteins account for >90% of the pathogenic variants in patients with HCM, variants in several additional genes (ACTN2, ALPK3, CSRP3, FHOD3, FLNC, JPH2, KLHL24, PLN and TRIM63), encoding non-sarcomeric proteins with diverse functions, have been shown to be disease-causing in a small number of patients. Genome-wide association studies (GWAS) have identified numerous loci in cardiomyopathy case–control studies and biobank investigations of left ventricular functional traits. Genes associated with Mendelian cardiomyopathy are enriched in the putative causal gene lists at these loci. Intriguingly, many loci are associated with both HCM and dilated cardiomyopathy but with opposite directions of effect on left ventricular traits, highlighting a genetic basis underlying the contrasting pathophysiological effects observed in each condition. This overlap extends to rare Mendelian variants with distinct variant classes in several genes associated with HCM and dilated cardiomyopathy. In this Review, we appraise the complex contribution of the non-sarcomeric, HCM-associated genes to cardiomyopathies across a range of variant classes (from common non-coding variants of individually low effect size to complete gene knockouts), which provides insights into the genetic basis of cardiomyopathies, causal genes at GWAS loci and the application of clinical genetic testing.

Key points

  • Cardiomyopathies are often inherited diseases, but highly variable penetrance and the lack of Mendelian genetic variants in substantial numbers of patients increasingly suggests a complex genetic aetiology.

  • Genome-wide association studies have identified large overlaps in significant loci for cardiomyopathies and left ventricular traits, with opposite effects (risk or protective alleles) observed for hypertrophic and dilated cardiomyopathy.

  • Variants in genes encoding non-sarcomeric proteins account for a small proportion of patients with Mendelian hypertrophic cardiomyopathy but are the presumed causal genes at several genome-wide association study loci, expanding their role in cardiomyopathy genetics.

  • These genes have complex genotype–phenotype correlations across different variant classes (common regulatory and rare missense, truncating and biallelic loss-of-function variants), with distinct associations often observed for hypertrophic and dilated cardiomyopathy.

  • Understanding these complex, rare variant associations is essential for variant interpretation in patients with cardiomyopathies, with hypertrophic cardiomyopathy-associated minor gene variants probably more prevalent in understudied populations.

  • The shared genes and pathways identified by these rare and common variant studies provide new insights into cardiomyopathy pathophysiology and propose novel approaches for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exploring the role of common genetic variants in cardiomyopathies.
Fig. 2: Associations between LV traits, cardiomyopathies and variant classes in HCM-related genes encoding non-sarcomeric proteins.
Fig. 3: Location of selected rare variants of interest in minor HCM-associated genes.
Fig. 4: Countries of origin for patients with cardiomyopathy and biallelic truncating variants.
Fig. 5: Cellular locations and functions of proteins encoded by cardiomyopathy-associated genes.

Similar content being viewed by others

References

  1. Seidman, C. E. & Seidman, J. G. Identifying sarcomere gene mutations in hypertrophic cardiomyopathy: a personal history. Circ. Res. 108, 743–750 (2011).

    CAS  PubMed  Google Scholar 

  2. Walsh, R. et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet. Med. 19, 192–203 (2017).

    PubMed  Google Scholar 

  3. Ho, C. Y. et al. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the sarcomeric human cardiomyopathy registry (SHaRe). Circulation 138, 1387–1398 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. Mazzarotto, F. et al. Reevaluating the genetic contribution of monogenic dilated cardiomyopathy. Circulation 141, 387–398 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ingles, J. et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ. Genom. Precis. Med. 12, e002460 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jordan, E. et al. An evidence-based assessment of genes in dilated cardiomyopathy. Circulation https://doi.org/10.1161/CIRCULATIONAHA.120.053033 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. James, C. A. et al. International evidence based reappraisal of genes associated with arrhythmogenic right ventricular cardiomyopathy using the clinical genome resource framework. Circ. Genom. Precis. Med. 14, e003273 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tadros, R. et al. Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat. Genet. 53, 128–134 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Harper, A. R. et al. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat. Genet. 53, 135–142 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pirruccello, J. P. et al. Analysis of cardiac magnetic resonance imaging in 36,000 individuals yields genetic insights into dilated cardiomyopathy. Nat. Commun. 11, 2254 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ziane, R. et al. Cell membrane expression of cardiac sodium channel Na(v)1.5 is modulated by alpha-actinin-2 interaction. Biochemistry 49, 166–178 (2010).

    CAS  PubMed  Google Scholar 

  12. Lu, L. et al. Molecular coupling of a Ca2+-activated K+ channel to L-type Ca2+ channels via alpha-actinin2. Circ. Res. 100, 112–120 (2007).

    CAS  PubMed  Google Scholar 

  13. Chiu, C. et al. Mutations in alpha-actinin-2 cause hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 55, 1127–1135 (2010).

    CAS  PubMed  Google Scholar 

  14. Girolami, F. et al. Novel α-actinin 2 variant associated with familial hypertrophic cardiomyopathy and juvenile atrial arrhythmias: a massively parallel sequencing study. Circ. Cardiovasc. Genet. 7, 741–750 (2014).

    CAS  PubMed  Google Scholar 

  15. Bagnall, R. D., Molloy, L. K., Kalman, J. M. & Semsarian, C. Exome sequencing identifies a mutation in the ACTN2 gene in a family with idiopathic ventricular fibrillation, left ventricular noncompaction, and sudden death. BMC Med. Genet. 15, 99 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Prondzynski, M. et al. Disease modeling of a mutation in α-actinin 2 guides clinical therapy in hypertrophic cardiomyopathy. EMBO Mol. Med. 11, e11115 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mazzarotto, F. et al. Systematic large-scale assessment of the genetic architecture of left ventricular noncompaction reveals diverse etiologies. Genet. Med. 23, 856–864 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Singer, E. S. et al. Characterization of clinically relevant copy-number variants from exomes of patients with inherited heart disease and unexplained sudden cardiac death. Genet. Med. 23, 86–93 (2021).

    CAS  PubMed  Google Scholar 

  19. Lindholm, M. E. et al. Mono- and bi-allelic protein truncating variants in alpha-actinin 2 cause cardiomyopathy through distinct mechanisms. bioRxiv https://doi.org/10.1101/2020.11.19.389064 (2020).

    Article  Google Scholar 

  20. Arvanitis, M. et al. Genome-wide association and multi-omic analyses reveal ACTN2 as a gene linked to heart failure. Nat. Commun. 11, 1122 (2020).

    PubMed  PubMed Central  Google Scholar 

  21. Almomani, R. et al. Biallelic truncating mutations in ALPK3 cause severe pediatric cardiomyopathy. J. Am. Coll. Cardiol. 67, 515–525 (2016).

    CAS  PubMed  Google Scholar 

  22. Phelan, D. G. et al. ALPK3-deficient cardiomyocytes generated from patient-derived induced pluripotent stem cells and mutant human embryonic stem cells display abnormal calcium handling and establish that ALPK3 deficiency underlies familial cardiomyopathy. Eur. Heart J. 37, 2586–2590 (2016).

    CAS  PubMed  Google Scholar 

  23. Çağlayan, A. O. et al. ALPK3 gene mutation in a patient with congenital cardiomyopathy and dysmorphic features. Cold Spring Harb. Mol. Case Stud. 3, a001859 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Jaouadi, H. et al. Novel ALPK3 mutation in a Tunisian patient with pediatric cardiomyopathy and facio-thoraco-skeletal features. J. Hum. Genet. 63, 1077–1082 (2018).

    CAS  PubMed  Google Scholar 

  25. Al Senaidi, K. et al. Phenotypic spectrum of ALPK3-related cardiomyopathy. Am. J. Med. Genet. A 179, 1235–1240 (2019).

    CAS  PubMed  Google Scholar 

  26. Jorholt, J. et al. Two new cases of hypertrophic cardiomyopathy and skeletal muscle features associated with ALPK3 homozygous and compound heterozygous variants. Genes 11, 1201 (2020).

    CAS  PubMed Central  Google Scholar 

  27. Herkert, J. C. et al. Expanding the clinical and genetic spectrum of ALPK3 variants: phenotypes identified in pediatric cardiomyopathy patients and adults with heterozygous variants. Am. Heart J. 225, 108–119 (2020).

    CAS  PubMed  Google Scholar 

  28. Lopes, L. R. et al. Alpha-protein kinase 3 (ALPK3) truncating variants are a cause of autosomal dominant hypertrophic cardiomyopathy. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehab424 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cheawsamoot, C. et al. A pathogenic variant in ALPK3 is associated with an autosomal dominant adult-onset hypertrophic cardiomyopathy. Circ. Genom. Precis. Med. 13, e003127 (2020).

    CAS  PubMed  Google Scholar 

  30. Van Sligtenhorst, I. et al. Cardiomyopathy in α-kinase 3 (ALPK3)-deficient mice. Vet. Pathol. 49, 131–141 (2012).

    PubMed  Google Scholar 

  31. Vafiadaki, E., Arvanitis, D. A. & Sanoudou, D. Muscle LIM protein: master regulator of cardiac and skeletal muscle functions. Gene 566, 1–7 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Walsh, R. et al. Defining the genetic architecture of hypertrophic cardiomyopathy: re-evaluating the role of non-sarcomeric genes. Eur. Heart J. 38, 3461–3468 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Geier, C. et al. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum. Mol. Genet. 17, 2753–2765 (2008).

    CAS  PubMed  Google Scholar 

  34. Salazar-Mendiguchía, J. et al. The p.(Cys150Tyr) variant in CSRP3 is associated with late-onset hypertrophic cardiomyopathy in heterozygous individuals. Eur. J. Med. Genet. 63, 104079 (2020).

    PubMed  Google Scholar 

  35. Janin, A., Bessière, F., Chauveau, S., Chevalier, P. & Millat, G. First identification of homozygous truncating CSRP3 variants in two unrelated cases with hypertrophic cardiomyopathy. Gene 676, 110–116 (2018).

    CAS  PubMed  Google Scholar 

  36. Lipari, M. et al. Identification of a variant hotspot in MYBPC3 and of a novel CSRP3 autosomal recessive alteration in a cohort of Polish patients with hypertrophic cardiomyopathy. Pol. Arch. Intern. Med. 130, 89–99 (2020).

    PubMed  Google Scholar 

  37. Arber, S. et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88, 393–403 (1997).

    CAS  PubMed  Google Scholar 

  38. Knöll, R. et al. A common MLP (muscle LIM protein) variant is associated with cardiomyopathy. Circ. Res. 106, 695–704 (2010).

    PubMed  Google Scholar 

  39. Taniguchi, K. et al. Mammalian formin Fhod3 regulates actin assembly and sarcomere organization in striated muscles. J. Biol. Chem. 284, 29873–29881 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wooten, E. C. et al. Formin homology 2 domain containing 3 variants associated with hypertrophic cardiomyopathy. Circ. Cardiovasc. Genet. 6, 10–18 (2013).

    CAS  PubMed  Google Scholar 

  41. Esslinger, U. et al. Exome-wide association study reveals novel susceptibility genes to sporadic dilated cardiomyopathy. PLoS One 12, e0172995 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. Ochoa, J. P. et al. Formin homology 2 domain containing 3 (FHOD3) is a genetic basis for hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 72, 2457–2467 (2018).

    CAS  PubMed  Google Scholar 

  43. Ochoa, J. P. et al. Deletions of specific exons of FHOD3 detected by next-generation sequencing are associated with hypertrophic cardiomyopathy. Clin. Genet. 98, 86–90 (2020).

    CAS  PubMed  Google Scholar 

  44. Semsarian, C., Ingles, J. & Bagnall, R. D. Revisiting genome sequencing data in light of novel disease gene associations. J. Am. Coll. Cardiol. 73, 1365–1366 (2019).

    PubMed  Google Scholar 

  45. Lesurf, R. et al. Whole genome sequencing delineates regulatory and novel genic variants in childhood cardiomyopathy. medRxiv https://doi.org/10.1101/2020.10.12.20211474 (2020).

    Article  Google Scholar 

  46. Wu, G. et al. Variant spectrum of formin homology 2 domain-containing 3 gene in Chinese patients with hypertrophic cardiomyopathy. J. Am. Heart Assoc. 10, e018236 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Matsuyama, S. et al. Interaction between cardiac myosin-binding protein C and formin Fhod3. Proc. Natl Acad. Sci. USA 115, E4386–E4395 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Arimura, T. et al. Dilated cardiomyopathy-associated FHOD3 variant impairs the ability to induce activation of transcription factor serum response factor. Circ. J. 77, 2990–2996 (2013).

    CAS  PubMed  Google Scholar 

  49. Kan-O, M. et al. Mammalian formin Fhod3 plays an essential role in cardiogenesis by organizing myofibrillogenesis. Biol. Open 1, 889–896 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vorgerd, M. et al. A mutation in the dimerization domain of filamin c causes a novel type of autosomal dominant myofibrillar myopathy. Am. J. Hum. Genet. 77, 297–304 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Valdés-Mas, R. et al. Mutations in filamin C cause a new form of familial hypertrophic cardiomyopathy. Nat. Commun. 5, 5326 (2014).

    PubMed  Google Scholar 

  52. Verdonschot, J. A. J. et al. A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum. Mutat. 41, 1091–1111 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Whiffin, N. et al. Using high-resolution variant frequencies to empower clinical genome interpretation. Genet. Med. 19, 1151–1158 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Gómez, J. et al. Screening of the Filamin C gene in a large cohort of hypertrophic cardiomyopathy patients. Circ. Cardiovasc. Genet. 10, e001584 (2017).

    PubMed  Google Scholar 

  55. Cui, H. et al. Mutation profile of FLNC gene and its prognostic relevance in patients with hypertrophic cardiomyopathy. Mol. Genet. Genomic Med. 6, 1104–1113 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Thomson, K. L. et al. Analysis of 51 proposed hypertrophic cardiomyopathy genes from genome sequencing data in sarcomere negative cases has negligible diagnostic yield. Genet. Med. 21, 1576–1584 (2019).

    CAS  PubMed  Google Scholar 

  57. Ortiz-Genga, M. F. et al. Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. J. Am. Coll. Cardiol. 68, 2440–2451 (2016).

    CAS  PubMed  Google Scholar 

  58. Begay, R. L. et al. Filamin C truncation mutations are associated with arrhythmogenic dilated cardiomyopathy and changes in the cell-cell adhesion structures. JACC Clin. Electrophysiol. 4, 504–514 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Ader, F. et al. FLNC pathogenic variants in patients with cardiomyopathies: prevalence and genotype-phenotype correlations. Clin. Genet. 96, 317–329 (2019).

    CAS  PubMed  Google Scholar 

  60. Janin, A. et al. Truncating mutations on myofibrillar myopathies causing genes as prevalent molecular explanations on patients with dilated cardiomyopathy. Clin. Genet. 92, 616–623 (2017).

    CAS  PubMed  Google Scholar 

  61. Hall, C. L. et al. Filamin C variants are associated with a distinctive clinical and immunohistochemical arrhythmogenic cardiomyopathy phenotype. Int. J. Cardiol. 307, 101–108 (2020).

    PubMed  Google Scholar 

  62. Goli, R. et al. Genetic and phenotypic landscape of peripartum cardiomyopathy. Circulation 143, 1852–1862 (2021).

    CAS  PubMed  Google Scholar 

  63. Dalkilic, I., Schienda, J., Thompson, T. G. & Kunkel, L. M. Loss of FilaminC (FLNc) results in severe defects in myogenesis and myotube structure. Mol. Cell. Biol. 26, 6522–6534 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. van der Zwaag, P. A. et al. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur. J. Heart Fail. 14, 1199–1207 (2012).

    PubMed  PubMed Central  Google Scholar 

  65. Schmitt, J. P. et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299, 1410–1413 (2003).

    CAS  PubMed  Google Scholar 

  66. Haghighi, K. et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J. Clin. Invest. 111, 869–876 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, Z. et al. A PLN nonsense variant causes severe dilated cardiomyopathy in a novel autosomal recessive inheritance mode. Int. J. Cardiol. 279, 122–125 (2019).

    CAS  PubMed  Google Scholar 

  68. Mademont-Soler, I. et al. Additional value of screening for minor genes and copy number variants in hypertrophic cardiomyopathy. PLoS One 12, e0181465 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Vanninen, S. U. M. et al. Heterozygous junctophilin-2 (JPH2) p.(Thr161Lys) is a monogenic cause for HCM with heart failure. PLoS One 13, e0203422 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Sabater-Molina, M. et al. Mutation in JPH2 cause dilated cardiomyopathy. Clin. Genet. 90, 468–469 (2016).

    CAS  PubMed  Google Scholar 

  71. Vasilescu, C. et al. Genetic basis of severe childhood-onset cardiomyopathies. J. Am. Coll. Cardiol. 72, 2324–2338 (2018).

    CAS  PubMed  Google Scholar 

  72. Jones, E. G. et al. Analysis of enriched rare variants in JPH2-encoded junctophilin-2 among greater middle eastern individuals reveals a novel homozygous variant associated with neonatal dilated cardiomyopathy. Sci. Rep. 9, 9038 (2019).

    PubMed  PubMed Central  Google Scholar 

  73. Takeshima, H., Komazaki, S., Nishi, M., Iino, M. & Kangawa, K. Junctophilins: a novel family of junctional membrane complex proteins. Mol. Cell 6, 11–22 (2000).

    CAS  PubMed  Google Scholar 

  74. Salazar-Mendiguchía, J. et al. Mutations in TRIM63 cause an autosomal-recessive form of hypertrophic cardiomyopathy. Heart 106, 1342–1348 (2020).

    PubMed  Google Scholar 

  75. Su, M. et al. Rare variants in genes encoding MuRF1 and MuRF2 are modifiers of hypertrophic cardiomyopathy. Int. J. Mol. Sci. 15, 9302–9313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Witt, C. C. et al. Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2. EMBO J. 27, 350–360 (2008).

    CAS  PubMed  Google Scholar 

  77. Willis, M. S. et al. Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circ. Res. 100, 456–459 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hedberg-Oldfors, C. et al. Cardiomyopathy with lethal arrhythmias associated with inactivation of KLHL24. Hum. Mol. Genet. 28, 1919–1929 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lin, Z. et al. Stabilizing mutations of KLHL24 ubiquitin ligase cause loss of keratin 14 and human skin fragility. Nat. Genet. 48, 1508–1516 (2016).

    PubMed  Google Scholar 

  80. Schwieger-Briel, A. et al. Epidermolysis bullosa simplex with KLHL24 mutations is associated with dilated cardiomyopathy. J. Invest. Dermatol. 139, 244–249 (2019).

    CAS  PubMed  Google Scholar 

  81. Vermeer, M. C. S. C. et al. Gain-of-function mutation in ubiquitin-ligase KLHL24 causes desmin degradation and dilatation in hiPSC-derived engineered heart tissues. J. Clin. Invest. https://doi.org/10.1172/JCI140615 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Domínguez, F. et al. Dilated cardiomyopathy due to BLC2-associated athanogene 3 (BAG3) mutations. J. Am. Coll. Cardiol. 72, 2471–2481 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Alfares, A. A. et al. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet. Med. 17, 880–888 (2015).

    PubMed  Google Scholar 

  84. Kelly, M. A. et al. Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s inherited cardiomyopathy expert panel. Genet. Med. 20, 351–359 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. Walsh, R. et al. Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases: the case of hypertrophic cardiomyopathy. Genome Med. 11, 5 (2019).

    PubMed  PubMed Central  Google Scholar 

  86. Olivotto, I. et al. Obesity and its association to phenotype and clinical course in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 62, 449–457 (2013).

    PubMed  Google Scholar 

  87. Castel, S. E. et al. Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk. Nat. Genet. 50, 1327–1334 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Neubauer, S. et al. Distinct subgroups in hypertrophic cardiomyopathy in the NHLBI HCM registry. J. Am. Coll. Cardiol. 74, 2333–2345 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Montefiori, L. E. et al. A promoter interaction map for cardiovascular disease genetics. eLife 7, e35788 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by an Amsterdam Cardiovascular Sciences fellowship, Amsterdam UMC’s PhD scholarship, the Canadian Heart Rhythm Society (George Mines Award), the ESC (Research fellowship grant), the Canadian Institutes of Health Research (reference 169063), the Fonds de Recherche du Québec—Santé (reference 135055 [R.T.]), the Dutch Heart Foundation Netherlands Cardiovascular Research Initiative (CVON; PREDICT2 2018-30), the Netherlands Organization for Scientific Research (VICI fellowship, 016.150.610), the Leducq Foundation (project 17CVD02) and the Horstingstuit Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.W. and J.A.O. researched data for the article and wrote the manuscript. All the authors made substantial contributions to discussions of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Roddy Walsh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks D. Jacoby, J. Seidman and G. Sinagra for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinGen: https://clinicalgenome.org/

ClinVar: https://www.ncbi.nlm.nih.gov/clinvar/

gnomAD: https://gnomad.broadinstitute.org/

Supplementary information

Glossary

Genetic pleiotropy

Variants in a gene can lead to two or more unrelated phenotypes or related conditions in which the direction of effect might differ.

Protein-truncating variants

Variants that disrupt the open reading frame of a transcript, often (but not always) leading to the degradation of the disrupted mRNA through nonsense-mediated decay, which causes haploinsufficiency.

Case–control association testing

Demonstration of a significant aggregated enrichment of rare variants in a gene in case cohorts compared with controls can establish a Mendelian gene–disease association.

ClinGen

ClinGen, the Clinical Genome Resource, is an NIH-funded resource that aims to define the clinical relevance of genes implicated in inherited genetic diseases through structured curation and evaluation of published evidence.

Incomplete penetrance

Only a subset of individuals with a particular pathogenic variant have the clinical phenotype, highlighting the role of other genetic and non-genetic factors.

Biallelic variants

Biallelic loss-of-function variants are homozygous or compound heterozygous variants associated with recessive disease, usually truncating variants but can also be function-altering missense variants, equivalent to ‘human knockouts’.

Haplotypes

A group of alleles that are inherited together; genome-wide association study signals usually comprise haplotypes of numerous common variants in linkage disequilibrium, any of which might be the functional variant.

Expression quantitative trait locus

(eQTL). Shows that genetic variants or loci are associated with changes in gene expression in particular tissues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, R., Offerhaus, J.A., Tadros, R. et al. Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies. Nat Rev Cardiol 19, 151–167 (2022). https://doi.org/10.1038/s41569-021-00608-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00608-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing