Coronary vessel formation in development and disease: mechanisms and insights for therapy


The formation of new blood vessels after myocardial infarction (MI) is essential for the survival of existing and regenerated cardiac tissue. However, the extent of endogenous revascularization after MI is insufficient, and MI can often result in ventricular remodelling, progression to heart failure and premature death. The neutral results of numerous clinical trials that have evaluated the efficacy of angiogenic therapy to revascularize the infarcted heart reflect our poor understanding of the processes required to form a functional coronary vasculature. In this Review, we describe the latest advances in our understanding of the processes involved in coronary vessel formation, with mechanistic insights taken from developmental studies. Coronary vessels originate from multiple cellular sources during development and form through a number of distinct and carefully orchestrated processes. The ectopic reactivation of developmental programmes has been proposed as a new paradigm for regenerative medicine, therefore, a complete understanding of these processes is crucial. Furthermore, knowledge of how these processes differ between the embryonic and adult heart, and how they might be more closely recapitulated after injury are critical for our understanding of regenerative biology, and might facilitate the identification of tractable molecular targets to therapeutically promote neovascularization and regeneration of the infarcted heart.

Key points

  • The coronary vasculature is established in mammals during embryonic and neonatal development, with endothelial cells derived predominantly from the sinus venosus and the endocardium, and mural cells mainly from the epicardium.

  • Neovascularization after myocardial infarction is essential for the restoration of blood flow to the injured myocardium, but the endogenous mechanisms by which new vessels grow is poorly understood.

  • To date, no effective treatment to induce coronary neovascularization has been identified.

  • The neonatal mouse heart has greater regenerative capacity than the adult mouse heart.

  • The regulatory pathways that control angiogenesis during development are activated in the injured myocardium in the neonatal mouse heart, but are repressed or not activated in the infarct region in the adult mouse heart.

  • Genetic cell lineage tracing and single-cell transcriptomic analyses might provide insights into mechanisms that can be targeted to increase the neovascularization and regeneration of the injured myocardium.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Development of the embryonic coronary vasculature.
Fig. 2: Molecular mechanisms that control formation of the coronary vasculature.
Fig. 3: Proposed mechanisms of coronary neovascularization after myocardial infarction.
Fig. 4: Regulatory pathways in coronary vessel development.


  1. 1.

    Padro, T. et al. ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on ‘coronary microvascular dysfunction in cardiovascular disease’. Cardiovasc. Res. 116, 741–755 (2020).

    CAS  Google Scholar 

  2. 2.

    Seiler, C., Stoller, M., Pitt, B. & Meier, P. The human coronary collateral circulation: development and clinical importance. Eur. Heart J. 34, 2674–2682 (2013).

    CAS  Google Scholar 

  3. 3.

    Reffelmann, T. & Kloner, R. A. The no-reflow phenomenon: a basic mechanism of myocardial ischemia and reperfusion. Basic. Res. Cardiol. 101, 359–372 (2006).

    Google Scholar 

  4. 4.

    Regenfus, M. et al. Six-year prognostic value of microvascular obstruction after reperfused ST-elevation myocardial infarction as assessed by contrast-enhanced cardiovascular magnetic resonance. Am. J. Cardiol. 116, 1022–1027 (2015).

    Google Scholar 

  5. 5.

    Giacca, M. & Zacchigna, S. VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther. 19, 622–629 (2012).

    CAS  Google Scholar 

  6. 6.

    Stewart, D. J. et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol. Ther. 17, 1109–1115 (2009).

    CAS  Google Scholar 

  7. 7.

    Henry, T. D. et al. The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107, 1359–1365 (2003).

    CAS  Google Scholar 

  8. 8.

    Simons, M. et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 105, 788–793 (2002).

    CAS  Google Scholar 

  9. 9.

    Yu, A. Y. et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α. J. Clin. Invest. 103, 691–696 (1999).

    CAS  Google Scholar 

  10. 10.

    Siu, C. W., Liao, S. Y., Liu, Y., Lian, Q. & Tse, H. F. Stem cells for myocardial repair. Thrombosis Haemost. 104, 6–12 (2010).

    CAS  Google Scholar 

  11. 11.

    Lindsey, M. L. et al. A novel collagen matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis. J. Am. Coll. Cardiol. 66, 1364–1374 (2015).

    Google Scholar 

  12. 12.

    He, L. et al. Preexisting endothelial cells mediate cardiac neovascularization after injury. J. Clin. Invest. 127, 2968–2981 (2017).

    Google Scholar 

  13. 13.

    Fiedler, J. et al. Development of long noncoding RNA-based strategies to modulate tissue vascularization. J. Am. Coll. Cardiol. 66, 2005–2015 (2015).

    CAS  Google Scholar 

  14. 14.

    Xu, Z. M., Huang, F. & Huang, W. Q. Angiogenic lncRNAs: a potential therapeutic target for ischaemic heart disease. Life Sci. 211, 157–171 (2018).

    CAS  Google Scholar 

  15. 15.

    Fan, Z. G. et al. MicroRNA-210 promotes angiogenesis in acute myocardial infarction. Mol. Med. Rep. 17, 5658–5665 (2018).

    CAS  Google Scholar 

  16. 16.

    Tseliou, E. et al. Angiogenesis, cardiomyocyte proliferation and anti-fibrotic effects underlie structural preservation post-infarction by intramyocardially-injected cardiospheres. PLoS ONE 9, e88590 (2014).

    Google Scholar 

  17. 17.

    Zhao, L., Johnson, T. & Liu, D. Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases. Stem Cell Res. Ther. 8, 125 (2017).

    Google Scholar 

  18. 18.

    Vrijsen, K. R. et al. Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Adv. Healthc. Mater. 5, 2555–2565 (2016).

    CAS  Google Scholar 

  19. 19.

    Bollini, S. et al. Re-activated adult epicardial progenitor cells are a heterogeneous population molecularly distinct from their embryonic counterparts. Stem Cell Dev. 23, 1719–1730 (2014).

    CAS  Google Scholar 

  20. 20.

    Dubé, K. N. et al. Recapitulation of developmental mechanisms to revascularize the ischemic heart. JCI Insight 2, e96800 (2017).

    Google Scholar 

  21. 21.

    Reese, D. E., Mikawa, T. & Bader, D. M. Development of the coronary vessel system. Circ. Res. 91, 761–768 (2002).

    CAS  Google Scholar 

  22. 22.

    Norman, S. & Riley, P. R. Anatomy and development of the cardiac lymphatic vasculature: its role in injury and disease. Clin. Anat. 29, 305–315 (2016).

    Google Scholar 

  23. 23.

    Ratajska, A. et al. Comparative and developmental anatomy of cardiac lymphatics. ScientificWorldJournal 2014, 183170 (2014).

    CAS  Google Scholar 

  24. 24.

    Conway, E. M., Collen, D. & Carmeliet, P. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49, 507–521 (2001).

    CAS  Google Scholar 

  25. 25.

    Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).

    CAS  Google Scholar 

  26. 26.

    Hu, N., Yost, H. J. & Clark, E. B. Cardiac morphology and blood pressure in the adult zebrafish. Anat. Rec. 264, 1–12 (2001).

    CAS  Google Scholar 

  27. 27.

    Kapuria, S., Yoshida, T. & Lien, C. L. Coronary vasculature in cardiac development and regeneration. J. Cardiovasc. Dev. Dis. 5, 59 (2018).

    CAS  Google Scholar 

  28. 28.

    Hutchins, G. M., Kessler-Hanna, A. & Moore, G. W. Development of the coronary arteries in the embryonic human heart. Circulation 77, 1250–1257 (1988).

    CAS  Google Scholar 

  29. 29.

    Bogers, A. J., Gittenberger-de Groot, A. C., Poelmann, R. E., Peault, B. M. & Huysmans, H. A. Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat. Embryol. 180, 437–441 (1989).

    CAS  Google Scholar 

  30. 30.

    Tian, X. et al. Peritruncal coronary endothelial cells contribute to proximal coronary artery stems and their aortic orifices in the mouse heart. PLoS ONE 8, e80857 (2013).

    Google Scholar 

  31. 31.

    Mikawa, T. & Fischman, D. A. Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc. Natl Acad. Sci. USA 89, 9504–9508 (1992).

    CAS  Google Scholar 

  32. 32.

    Gittenberger-de Groot, A. C., Eralp, I., Lie-Venema, H., Bartelings, M. M. & Poelmann, R. E. Development of the coronary vasculature and its implications for coronary abnormalities in general and specifically in pulmonary atresia without ventricular septal defect. Acta Paediatr. Suppl. 93, 13–19 (2004).

    CAS  Google Scholar 

  33. 33.

    Gittenberger-de Groot, A. C., Vrancken Peeters, M. P., Bergwerff, M., Mentink, M. M. & Poelmann, R. E. Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ. Res. 87, 969–971 (2000).

    CAS  Google Scholar 

  34. 34.

    Cai, C. L. et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 454, 104–108 (2008).

    CAS  Google Scholar 

  35. 35.

    Acharya, A., Baek, S. T., Banfi, S., Eskiocak, B. & Tallquist, M. D. Efficient inducible Cre-mediated recombination in Tcf21 cell lineages in the heart and kidney. Genesis 49, 870–877 (2011).

    CAS  Google Scholar 

  36. 36.

    Red-Horse, K., Ueno, H., Weissman, I. L. & Krasnow, M. A. Coronary arteries form by developmental reprogramming of venous cells. Nature 464, 549–553 (2010).

    CAS  Google Scholar 

  37. 37.

    Wu, B. et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 151, 1083–1096 (2012).

    CAS  Google Scholar 

  38. 38.

    Zhang, H. et al. Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circ. Res. 118, 1880–1893 (2016).

    CAS  Google Scholar 

  39. 39.

    Tian, X. et al. Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science 345, 90–94 (2014).

    CAS  Google Scholar 

  40. 40.

    Su, T. et al. Single-cell analysis of early progenitor cells that build coronary arteries. Nature 559, 356–362 (2018).

    CAS  Google Scholar 

  41. 41.

    Payne, S. et al. Regulatory pathways governing murine coronary vessel formation are dysregulated in the injured adult heart. Nat. Commun. 10, 3276 (2019).

    Google Scholar 

  42. 42.

    Fang, J. S. et al. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat. Commun. 8, 2149 (2017).

    Google Scholar 

  43. 43.

    Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 9, 653–660 (2003).

    CAS  Google Scholar 

  44. 44.

    Harrison, M. R. et al. Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish. Dev. Cell 33, 442–454 (2015).

    CAS  Google Scholar 

  45. 45.

    Cano, E. et al. Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio-venous connections. Proc. Natl Acad. Sci. USA 113, 656–661 (2016).

    CAS  Google Scholar 

  46. 46.

    Cossette, S. & Misra, R. The identification of different endothelial cell populations within the mouse proepicardium. Dev. Dyn. 240, 2344–2353 (2011).

    Google Scholar 

  47. 47.

    Zhou, B. & Pu, W. T. Genetic Cre-loxP assessment of epicardial cell fate using Wt1-driven Cre alleles. Circ. Res. 111, e276–e280 (2012).

    CAS  Google Scholar 

  48. 48.

    Pu, W. et al. Genetic targeting of organ-specific blood vessels. Circ. Res. 123, 86–99 (2018).

    CAS  Google Scholar 

  49. 49.

    Katz, T. C. et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell 22, 639–650 (2012).

    CAS  Google Scholar 

  50. 50.

    Zhou, B. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454, 109–113 (2008).

    CAS  Google Scholar 

  51. 51.

    Kamimura, T., Yamagishi, T. & Nakajima, Y. Avian coronary endothelium is a mosaic of sinus venosus- and ventricle-derived endothelial cells in a region-specific manner. Dev. Growth Differ. 60, 97–111 (2018).

    CAS  Google Scholar 

  52. 52.

    Smart, N., Dube, K. N. & Riley, P. R. Coronary vessel development and insight towards neovascular therapy. Int. J. Exp. Pathol. 90, 262–283 (2009).

    CAS  Google Scholar 

  53. 53.

    Chen, H. I. et al. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development 141, 4500–4512 (2014).

    CAS  Google Scholar 

  54. 54.

    Tian, X. et al. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res. 23, 1075–1090 (2013).

    CAS  Google Scholar 

  55. 55.

    Sharma, B. et al. Alternative progenitor cells compensate to rebuild the coronary vasculature in elabela- and Apj-deficient hearts. Dev. Cell 42, 655–666.e3 (2017).

    CAS  Google Scholar 

  56. 56.

    Olivey, H. E. & Svensson, E. C. Epicardial-myocardial signaling directing coronary vasculogenesis. Circ. Res. 106, 818–832 (2010).

    CAS  Google Scholar 

  57. 57.

    Perez-Pomares, J. M. & de la Pompa, J. L. Signaling during epicardium and coronary vessel development. Circ. Res. 109, 1429–1442 (2011).

    CAS  Google Scholar 

  58. 58.

    Arita, Y. et al. Myocardium-derived angiopoietin-1 is essential for coronary vein formation in the developing heart. Nat. Commun. 5, 4552 (2014).

    CAS  Google Scholar 

  59. 59.

    Ivins, S. et al. The CXCL12/CXCR4 axis plays a critical role in coronary artery development. Dev. Cell 33, 455–468 (2015).

    CAS  Google Scholar 

  60. 60.

    Chen, H. I. et al. VEGF-C and aortic cardiomyocytes guide coronary artery stem development. J. Clin. Invest. 124, 4899–4914 (2014).

    CAS  Google Scholar 

  61. 61.

    Aghajanian, H. et al. Coronary vasculature patterning requires a novel endothelial ErbB2 holoreceptor. Nat. Commun. 7, 12038 (2016).

    CAS  Google Scholar 

  62. 62.

    Chang, A. H. et al. DACH1 stimulates shear stress-guided endothelial cell migration and coronary artery growth through the CXCL12-CXCR4 signaling axis. Genes. Dev. 31, 1308–1324 (2017).

    CAS  Google Scholar 

  63. 63.

    Das, S. et al. A unique collateral artery development program promotes neonatal heart regeneration. Cell 176, 1128–1142.e18 (2019).

    CAS  Google Scholar 

  64. 64.

    Chen, Q. et al. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat. Commun. 7, 12422 (2016).

    CAS  Google Scholar 

  65. 65.

    Smith, C. L., Baek, S. T., Sung, C. Y. & Tallquist, M. D. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ. Res. 108, e15–e26 (2011).

    CAS  Google Scholar 

  66. 66.

    Wang, S. et al. Alterations in retinoic acid signaling affect the development of the mouse coronary vasculature. Dev. Dyn. 247, 976–991 (2018).

    CAS  Google Scholar 

  67. 67.

    Wei, K. et al. Developmental origin of age-related coronary artery disease. Cardiovasc. Res. 107, 287–294 (2015).

    CAS  Google Scholar 

  68. 68.

    Liu, Q. et al. Smooth muscle origin of postnatal 2nd CVP is pre-determined in early embryo. Biochem. Biophys. Res. Commun. 471, 430–436 (2016).

    CAS  Google Scholar 

  69. 69.

    Acharya, A. et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 139, 2139–2149 (2012).

    CAS  Google Scholar 

  70. 70.

    Arima, Y. et al. Preotic neural crest cells contribute to coronary artery smooth muscle involving endothelin signalling. Nat. Commun. 3, 1267 (2012).

    Google Scholar 

  71. 71.

    Mellgren, A. M. et al. Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ. Res. 103, 1393–1401 (2008).

    CAS  Google Scholar 

  72. 72.

    Sinha, S., Iyer, D. & Granata, A. Embryonic origins of human vascular smooth muscle cells: implications for in vitro modeling and clinical application. Cell Mol. Life Sci. 71, 2271–2288 (2014).

    CAS  Google Scholar 

  73. 73.

    Marin-Juez, R. et al. Fast revascularization of the injured area is essential to support zebrafish heart regeneration. Proc. Natl Acad. Sci. USA 113, 11237–11242 (2016).

    CAS  Google Scholar 

  74. 74.

    Kumar, S. et al. Angiogenesis factor from human myocardial infarcts. Lancet 2, 364–368 (1983).

    CAS  Google Scholar 

  75. 75.

    White, F. C. & Bloor, C. M. Coronary vascular remodeling and coronary resistance during chronic ischemia. Am. J. Cardiovasc. Pathol. 4, 193–202 (1992).

    CAS  Google Scholar 

  76. 76.

    Shammas, N. W., Moss, A. J., Sullebarger, J. T., Gutierrez, O. H. & Rocco, T. A. Acquired coronary angiogenesis after myocardial infarction. Cardiology 83, 212–216 (1993).

    CAS  Google Scholar 

  77. 77.

    Kocher, A. A. et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7, 430–436 (2001).

    CAS  Google Scholar 

  78. 78.

    Smart, N. & Riley, P. R. The stem cell movement. Circ. Res. 102, 1155–1168 (2008).

    CAS  Google Scholar 

  79. 79.

    Fujisawa, T. et al. Endothelial progenitor cells do not originate from the bone marrow. Circulation 140, 1524–1526 (2019).

    CAS  Google Scholar 

  80. 80.

    Pasquinelli, G. et al. Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cell 25, 1627–1634 (2007).

    CAS  Google Scholar 

  81. 81.

    Klein, D. et al. Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS ONE 6, e20540 (2011).

    CAS  Google Scholar 

  82. 82.

    Tang, Z. et al. Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat.Commun. 3, 875 (2012).

    Google Scholar 

  83. 83.

    Psaltis, P. J. et al. Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature. Circ. Res. 115, 364–375 (2014).

    CAS  Google Scholar 

  84. 84.

    Ingram, D. A. et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 105, 2783–2786 (2005).

    CAS  Google Scholar 

  85. 85.

    Stapor, P. C., Sweat, R. S., Dashti, D. C., Betancourt, A. M. & Murfee, W. L. Pericyte dynamics during angiogenesis: new insights from new identities. J. Vasc. Res. 51, 163–174 (2014).

    Google Scholar 

  86. 86.

    Hu, Y. et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J. Clin. Invest. 113, 1258–1265 (2004).

    CAS  Google Scholar 

  87. 87.

    Psaltis, P. J. & Simari, R. D. Vascular wall progenitor cells in health and disease. Circ. Res. 116, 1392–1412 (2015).

    CAS  Google Scholar 

  88. 88.

    Armulik, A., Genove, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    CAS  Google Scholar 

  89. 89.

    Gerhardt, H. & Betsholtz, C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 314, 15–23 (2003).

    Google Scholar 

  90. 90.

    Kelly-Goss, M. R., Sweat, R. S., Stapor, P. C., Peirce, S. M. & Murfee, W. L. Targeting pericytes for angiogenic therapies. Microcirculation 21, 345–357 (2014).

    Google Scholar 

  91. 91.

    Katare, R. et al. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ. Res. 109, 894–906 (2011).

    CAS  Google Scholar 

  92. 92.

    Chen, C. W. et al. Human pericytes for ischemic heart repair. Stem Cell 31, 305–316 (2013).

    CAS  Google Scholar 

  93. 93.

    Ubil, E. et al. Mesenchymal-endothelial transition contributes to cardiac neovascularization. Nature 514, 585–590 (2014).

    CAS  Google Scholar 

  94. 94.

    Li, J. et al. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am. J. Physiol. 270, H1803–H1811 (1996).

    CAS  Google Scholar 

  95. 95.

    Levy, A. P. Hypoxic regulation of VEGF mRNA stability by RNA-binding proteins. Trends Cardiovasc. Med. 8, 246–250 (1998).

    CAS  Google Scholar 

  96. 96.

    Ahn, A., Frishman, W. H., Gutwein, A., Passeri, J. & Nelson, M. Therapeutic angiogenesis: a new treatment approach for ischemic heart disease–part II. Cardiol. Rev. 16, 219–229 (2008).

    Google Scholar 

  97. 97.

    Ahn, A., Frishman, W. H., Gutwein, A., Passeri, J. & Nelson, M. Therapeutic angiogenesis: a new treatment approach for ischemic heart disease–part I. Cardiol. Rev 16, 163–171 (2008).

    Google Scholar 

  98. 98.

    Virag, J. I. & Murry, C. E. Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. Am. J. Pathol. 163, 2433–2440 (2003).

    Google Scholar 

  99. 99.

    Ren, G., Michael, L. H., Entman, M. L. & Frangogiannis, N. G. Morphological characteristics of the microvasculature in healing myocardial infarcts. J. Histochem. Cytochem. 50, 71–79 (2002).

    CAS  Google Scholar 

  100. 100.

    Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    CAS  Google Scholar 

  101. 101.

    He, L., Tian, X., Zhang, H., Wythe, J. D. & Zhou, B. Fabp4-CreER lineage tracing reveals two distinctive coronary vascular populations. J. Cell Mol. Med. 18, 2152–2156 (2014).

    CAS  Google Scholar 

  102. 102.

    Zhao, L. et al. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc. Natl Acad. Sci. USA 111, 1403–1408 (2014).

    CAS  Google Scholar 

  103. 103.

    Augustin, H. G. & Koh, G. Y. Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science 357, eaal2379 (2017).

    Google Scholar 

  104. 104.

    Sacilotto, N. et al. Analysis of Dll4 regulation reveals a combinatorial role for Sox and Notch in arterial development. Proc. Natl Acad. Sci. USA 110, 11893–11898 (2013).

    CAS  Google Scholar 

  105. 105.

    Neal, A. et al. Venous identity requires BMP signalling through ALK3. Nat. Commun. 10, 453 (2019).

    CAS  Google Scholar 

  106. 106.

    Pfaltzgraff, E. R. & Bader, D. M. Heterogeneity in vascular smooth muscle cell embryonic origin in relation to adult structure, physiology, and disease. Dev. Dyn. 244, 410–416 (2015).

    Google Scholar 

  107. 107.

    Habib, A., Lachman, N., Christensen, K. N. & Asirvatham, S. J. The anatomy of the coronary sinus venous system for the cardiac electrophysiologist. Europace 11, v15–v21 (2009).

    Google Scholar 

  108. 108.

    Claxton, S. et al. Efficient, inducible Cre-recombinase activation in vascular endothelium. Genesis. 46, 74–80 (2008).

    CAS  Google Scholar 

  109. 109.

    Miquerol, L. et al. Endothelial plasticity drives arterial remodeling within the endocardium after myocardial infarction. Circ. Res. 116, 1765–1771 (2015).

    CAS  Google Scholar 

  110. 110.

    Kobayashi, K. et al. Dynamics of angiogenesis in ischemic areas of the infarcted heart. Sci. Rep. 7, 7156 (2017).

    Google Scholar 

  111. 111.

    Swinkels, B. M., Boersma, L. V., Rensing, B. J. & Jaarsma, W. Isolated left ventricular noncompaction in a patient presenting with a subacute myocardial infarction. Neth. Heart J. 15, 109–111 (2007).

    CAS  Google Scholar 

  112. 112.

    Lin, L. Y. et al. Endocardial remodeling in heart failure patients with impaired and preserved left ventricular systolic function–a magnetic resonance image study. Sci. Rep. 6, 20868 (2016).

    CAS  Google Scholar 

  113. 113.

    Tang, J. et al. Genetic fate mapping defines the vascular potential of endocardial cells in the adult heart. Circ. Res. 122, 984–993 (2018).

    CAS  Google Scholar 

  114. 114.

    Li, Z. et al. Single-cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident endothelial cells following myocardial infarction. Eur. Heart J. 40, 2507–2520 (2019).

    CAS  Google Scholar 

  115. 115.

    Manavski, Y. et al. Clonal expansion of endothelial cells contributes to ischemia-induced neovascularization. Circ. Res. 122, 670–677 (2018).

    CAS  Google Scholar 

  116. 116.

    Guo, L., Zhang, H., Hou, Y., Wei, T. & Liu, J. Plasmalemma vesicle-associated protein: a crucial component of vascular homeostasis. Exp. Ther.Med. 12, 1639–1644 (2016).

    CAS  Google Scholar 

  117. 117.

    Carson-Walter, E. B. et al. Plasmalemmal vesicle associated protein-1 is a novel marker implicated in brain tumor angiogenesis. Clin. Cancer Res. 11, 7643–7650 (2005).

    CAS  Google Scholar 

  118. 118.

    Keuschnigg, J. et al. The prototype endothelial marker PAL-E is a leukocyte trafficking molecule. Blood 114, 478–484 (2009).

    CAS  Google Scholar 

  119. 119.

    Kocijan, T. et al. Genetic lineage tracing reveals poor angiogenic potential of cardiac endothelial cells. Cardiovasc. Res. (2020).

  120. 120.

    Zhou, B. et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J. Clin. Invest. 121, 1894–1904 (2011).

    CAS  Google Scholar 

  121. 121.

    Zhao, T., Zhao, W., Chen, Y., Ahokas, R. A. & Sun, Y. Vascular endothelial growth factor (VEGF)-A: role on cardiac angiogenesis following myocardial infarction. Microvasc. Res. 80, 188–194 (2010).

    CAS  Google Scholar 

  122. 122.

    Yang, Z. et al. Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis 211, 103–109 (2010).

    CAS  Google Scholar 

  123. 123.

    Takahashi, M. et al. Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am. J. Physiol. Heart Circ. Physiol. 291, H886–H893 (2006).

    CAS  Google Scholar 

  124. 124.

    Claesson-Welsh, L. Vascular permeability–the essentials. Upsala J. Med. Sci. 120, 135–143 (2015).

    Google Scholar 

  125. 125.

    Thiagarajan, H., Thiyagamoorthy, U., Shanmugham, I., Dharmalingam Nandagopal, G. & Kaliyaperumal, A. Angiogenic growth factors in myocardial infarction: a critical appraisal. Heart Fail. Rev. 22, 665–683 (2017).

    CAS  Google Scholar 

  126. 126.

    Pontes-Quero, S. et al. High mitogenic stimulation arrests angiogenesis. Nat. Commun. 10, 2016 (2019).

    Google Scholar 

  127. 127.

    Zangi, L. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 31, 898–907 (2013).

    CAS  Google Scholar 

  128. 128.

    Nieminen, T. et al. The impact of the receptor binding profiles of the vascular endothelial growth factors on their angiogenic features. Biochim. Biophys. Acta 1840, 454–463 (2014).

    CAS  Google Scholar 

  129. 129.

    Nurro, J. et al. AdVEGF-B186 and AdVEGF-DΔNΔC induce angiogenesis and increase perfusion in porcine myocardium. Heart 102, 1716–1720 (2016).

    CAS  Google Scholar 

  130. 130.

    Vieira, J. M. et al. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. J. Clin. Invest. 128, 3402–3412 (2018).

    Google Scholar 

  131. 131.

    Hartikainen, J. et al. Adenoviral intramyocardial VEGF-DΔNΔC gene transfer increases myocardial perfusion reserve in refractory angina patients: a phase I/IIa study with 1-year follow-up. Eur. Heart J. 38, 2547–2555 (2017).

    CAS  Google Scholar 

  132. 132.

    Crawford, Y. et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15, 21–34 (2009).

    CAS  Google Scholar 

  133. 133.

    Rigamonti, N. et al. Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade. Cell Rep. 8, 696–706 (2014).

    CAS  Google Scholar 

  134. 134.

    Casanovas, O., Hicklin, D. J., Bergers, G. & Hanahan, D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8, 299–309 (2005).

    CAS  Google Scholar 

  135. 135.

    Paku, S. & Paweletz, N. First steps of tumor-related angiogenesis. Lab. Invest. 65, 334–346 (1991).

    CAS  Google Scholar 

  136. 136.

    Benjamin, L. E., Hemo, I. & Keshet, E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125, 1591–1598 (1998).

    CAS  Google Scholar 

  137. 137.

    House, S. L. et al. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 310, H559–H571 (2016).

    Google Scholar 

  138. 138.

    Nissen, L. J. et al. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J. Clin. Invest. 117, 2766–2777 (2007).

    CAS  Google Scholar 

  139. 139.

    Hosaka, K. et al. Dual roles of endothelial FGF-2-FGFR1-PDGF-BB and perivascular FGF-2-FGFR2-PDGFRβ signaling pathways in tumor vascular remodeling. Cell Discov. 4, 3 (2018).

    Google Scholar 

  140. 140.

    Cao, R. et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat. Med. 9, 604–613 (2003).

    CAS  Google Scholar 

  141. 141.

    Khand, A. et al. The collateral circulation of the heart in coronary total arterial occlusions in man: systematic review of assessment and pathophysiology. Am. Heart J. 166, 941–952 (2013).

    Google Scholar 

  142. 142.

    He, L. et al. Genetic lineage tracing discloses arteriogenesis as the main mechanism for collateral growth in the mouse heart. Cardiovasc. Res. 109, 419–430 (2016).

    CAS  Google Scholar 

  143. 143.

    Zhang, H. & Faber, J. E. De-novo collateral formation following acute myocardial infarction: dependence on CCR2+ bone marrow cells. J. Mol. Cell Cardiol. 87, 4–16 (2015).

    CAS  Google Scholar 

  144. 144.

    Loffredo, S., Staiano, R. I., Granata, F., Genovese, A. & Marone, G. Immune cells as a source and target of angiogenic and lymphangiogenic factors. Chem. Immunol. Allergy 99, 15–36 (2014).

    CAS  Google Scholar 

  145. 145.

    Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829–840 (2010).

    CAS  Google Scholar 

  146. 146.

    Hinkel, R. et al. MRTF-A controls vessel growth and maturation by increasing the expression of CCN1 and CCN2. Nat. Commun. 5, 3970 (2014).

    CAS  Google Scholar 

  147. 147.

    Kikuchi, K. et al. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138, 2895–2902 (2011).

    CAS  Google Scholar 

  148. 148.

    Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619 (2006).

    CAS  Google Scholar 

  149. 149.

    Marin-Juez, R. et al. Coronary revascularization during heart regeneration is regulated by epicardial and endocardial cues and forms a scaffold for cardiomyocyte repopulation. Dev. Cell 51, 503–515.e4 (2019).

    CAS  Google Scholar 

  150. 150.

    Henry, T. D. et al. Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. Am. Heart J. 142, 872–880 (2001).

    CAS  Google Scholar 

  151. 151.

    Losordo, D. W. et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98, 2800–2804 (1998).

    CAS  Google Scholar 

  152. 152.

    Vale, P. R. et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 103, 2138–2143 (2001).

    CAS  Google Scholar 

  153. 153.

    Rosengart, T. K. et al. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100, 468–474 (1999).

    CAS  Google Scholar 

  154. 154.

    Fuchs, S. et al. A randomized, double-blind, placebo-controlled, multicenter, pilot study of the safety and feasibility of catheter-based intramyocardial injection of AdVEGF121 in patients with refractory advanced coronary artery disease. Catheter. Cardiovasc. Interv. 68, 372–378 (2006).

    Google Scholar 

  155. 155.

    Tio, R. A. et al. PET for evaluation of differential myocardial perfusion dynamics after VEGF gene therapy and laser therapy in end-stage coronary artery disease. J. Nucl. Med. 45, 1437–1443 (2004).

    Google Scholar 

  156. 156.

    Losordo, D. W. et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 105, 2012–2018 (2002).

    CAS  Google Scholar 

  157. 157.

    Hedman, M. et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 107, 2677–2683 (2003).

    CAS  Google Scholar 

  158. 158.

    Hedman, M. et al. Eight-year safety follow-up of coronary artery disease patients after local intracoronary VEGF gene transfer. Gene. Ther. 16, 629–634 (2009).

    CAS  Google Scholar 

  159. 159.

    Kastrup, J. et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris: a randomized double-blind placebo-controlled study: the Euroinject One trial. J. Am. Coll. Cardiol. 45, 982–988 (2005).

    CAS  Google Scholar 

  160. 160.

    Kastrup, J. et al. A randomised, double-blind, placebo-controlled, multicentre study of the safety and efficacy of BIOBYPASS (AdGVVEGF121.10NH) gene therapy in patients with refractory advanced coronary artery disease: the NOVA trial. EuroIntervention 6, 813–818 (2011).

    Google Scholar 

  161. 161.

    Grines, C. L. et al. Angiogenic gene therapy (AGENT) trial in patients with stable angina pectoris. Circulation 105, 1291–1297 (2002).

    CAS  Google Scholar 

  162. 162.

    Schumacher, B., Pecher, P., von Specht, B. U. & Stegmann, T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 97, 645–650 (1998).

    CAS  Google Scholar 

  163. 163.

    Sellke, F. W., Laham, R. J., Edelman, E. R., Pearlman, J. D. & Simons, M. Therapeutic angiogenesis with basic fibroblast growth factor: technique and early results. Ann. Thorac. Surg. 65, 1540–1544 (1998).

    CAS  Google Scholar 

  164. 164.

    Laham, R. J. et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 100, 1865–1871 (1999).

    CAS  Google Scholar 

  165. 165.

    Laham, R. J. et al. Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I open-label dose escalation study. J. Am. Coll. Cardiol. 36, 2132–2139 (2000).

    CAS  Google Scholar 

  166. 166.

    Unger, E. F. et al. Effects of a single intracoronary injection of basic fibroblast growth factor in stable angina pectoris. Am. J. Cardiol. 85, 1414–1419 (2000).

    CAS  Google Scholar 

  167. 167.

    Henry, T. D. et al. Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J. Am. Coll. Cardiol. 50, 1038–1046 (2007).

    CAS  Google Scholar 

  168. 168.

    Kukula, K. et al. Intramyocardial plasmid-encoding human vascular endothelial growth factor A165/basic fibroblast growth factor therapy using percutaneous transcatheter approach in patients with refractory coronary artery disease (VIF-CAD). Am. Heart J. 161, 581–589 (2011).

    CAS  Google Scholar 

  169. 169.

    Ripa, R. S. et al. Intramyocardial injection of vascular endothelial growth factor-A165 plasmid followed by granulocyte-colony stimulating factor to induce angiogenesis in patients with severe chronic ischaemic heart disease. Eur. Heart J. 27, 1785–1792 (2006).

    CAS  Google Scholar 

  170. 170.

    Merki, E. et al. Epicardial retinoid X receptor α is required for myocardial growth and coronary artery formation. Proc.Natl Acad Sci. USA 102, 18455–18460 (2005).

    CAS  Google Scholar 

Download references


The authors are supported by funding from the British Heart Foundation: a DPhil studentship to I.-E. L. (FS/12/69/30008), a senior fellowship to S.D.V. (FS/17/35/32929), an Ian Fleming fellowship to N.S. (FS/19/32/34376), and project grants to S.D.V. and N.S. (PG/16/34/32135 and PG/18/62/33967). The authors are also supported by the Oxbridge BHF Centre of Regenerative Medicine (RM/17/2/33380) and the BHF Oxford Centre of Research Excellence (RE/13/1/30181).

Author information




I.-E.L. and N.S. wrote the article and contributed to the discussion of its content. All authors researched data for the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Nicola Smart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks B. Zhou, F. Sellke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



The process by which new blood vessels arise from pre-existing vessels, typically by sprouting or splitting.


The remodelling of pre-existing, interconnecting vessels into larger arteries. During development, this process is accompanied by mural cell recruitment.


The formation of new blood vessel networks capable of perfusion, for example, to replace those damaged by myocardial infarction.

Vascular plexus

A primitive network of vessels that forms initially during development before undergoing differentiation and remodelling to give rise to vessels of different sizes and types.

Proepicardial organ

A transient developmental outgrowth of mesothelial cells arising in the region of the septum transversum (embryonic days 8.5–9.5 in mice). Cells of the proepicardium delaminate over the outer surface of the heart to give rise to the epicardium.

Septum transversum

A sheet of mesoderm-derived tissue that forms in the mammalian embryo to separate the thoracic and abdominal cavities. Later in development, the septum transversum gives rise to the diaphragm and ventral mesentery.


A mesothelial layer of cells on the outer surface of the heart, which contributes progenitor cells to the embryonic heart and stimulates sprouting of vessels from the sinus venosus.

Sinus venosus

The venous inflow tract of the embryonic heart that is continuous with the atria. The sinus venosus contributes a large proportion of coronary endothelial cells during embryonic stages. Later in development, the sinus venosus is incorporated into right atrium and coronary sinus veins.

Cre–loxP-based cell lineage tracing

A bacteriophage recombination system that is used predominantly in mouse and fish studies to genetically label a cell and trace its progeny.


The innermost layer of tissue that lines the chambers of the heart, comprising a specialized type of endothelial cell.

Single-cell RNA sequencing

The sequencing of an entire transcriptome at the level of individual cells to reveal heterogeneity between different cells, for example, those that make up a particular tissue or organism.

Blood island

A cluster of primitive erythroblasts surrounded by an endothelial covering that gives rise to early blood-filled vessels.

Mural cells

Support cells that surround the endothelium of blood vessels, with important roles in vessel development, homeostasis and stability. Mural cells include pericytes of the microcirculation and vascular smooth muscle cells that densely surround large arteries in multiple layers.

Collateral artery

New arterial segments that bridge two original arteries, forming a natural bypass to ensure blood flow downstream of an obstruction.


Mural support cells that wrap around the endothelium of capillaries and venules, and have important homeostatic roles in vessel maintenance and regulation of blood flow.

Epithelial-to-mesenchymal transition

A process by which epithelial cells, such as those of the epicardium, lose polarity and cell–cell contacts and transition into mesenchymal cells, characterized by a more migratory phenotype, which subsequently differentiate into fibroblasts or mural cells (in the case of epicardium-derived cells).

Neural crest

A transient embryonic cell lineage that gives rise to the peripheral nervous system, as well as non-neural cell types, including vascular smooth muscle cells, pigment cells and cells of craniofacial bones, cartilage and connective tissue.

Endothelial progenitor cells

Circulating cells that express some markers that define vascular endothelial cells, as well as markers associated with some stem cells, and are thus considered a type of progenitor cell. Upon appropriate stimulation, endothelial progenitor cells have been shown to differentiate into endothelial-like cells in vitro.


The sprouting of capillaries into the ischaemic region and transformation into arteries by recruitment of vascular smooth muscle cells.

Clonal expansion

Formation of a group of identical cells that arises from a single cell by proliferation.

Endothelial-to-mesenchymal transition

The transformation of endothelial cells into mesenchymal cells, which can subsequently differentiate into fibroblasts or mural cells.


A region of the heart that receives blood from distal branches of two large coronary arteries, such as the capillary network at the anterior midline of the heart.

Mitogenic stimulation

Treatment with one or more growth factors, typically peptides, to induce a cell to undergo division and proliferate.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lupu, IE., De Val, S. & Smart, N. Coronary vessel formation in development and disease: mechanisms and insights for therapy. Nat Rev Cardiol 17, 790–806 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing