Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

EPIDEMIOLOGY OF CARDIOVASCULAR DISEASE

Epidemiology of inherited arrhythmias

Abstract

The primary electrical disorders are a group of inherited cardiac ventricular arrhythmias that are a major cause of sudden cardiac death in young individuals. Inherited ventricular arrhythmias result from mutations in genes encoding cardiac ion channels or their modulatory subunits. Advances in genetic screening in the past three decades have led to the assembly of large patient cohorts with these disorders. Studies in these patients, as well as in the general population, have striven to define the prevalence of these inherited arrhythmias and the characteristics of patients with different genetic subtypes of the disease. In this Review, we provide a comprehensive update on the epidemiology of inherited ventricular arrhythmias, focusing on natural history, prevalence and patient demographics. In addition, we summarize the various founder populations (groups of individuals with a disease that is caused by a genetic defect inherited from a common ancestor) that have been identified for some of these disorders and which lead to increased prevalence in some geographical regions. To date, although numerous studies have markedly increased our understanding of the epidemiology of these disorders, demographic data, especially from non-Western countries, remain scarce. Furthermore, defining the true prevalence of these disorders remains challenging. International collaboration will undoubtedly accelerate the collection of demographic information and improve the accuracy of prevalence data.

Key points

  • The primary electrical disorders, which are a common cause of sudden cardiac death in young individuals, result from mutations in genes encoding ion channels or their regulatory proteins.

  • Genetic testing has become an integral part of the management of patients with these disorders, although debate is ongoing about the causality of some genes that have been implicated in these disorders by candidate-gene studies.

  • Multiple, large cohorts of patients have facilitated studies on the natural history of these disorders and on proarrhythmic risk factors, although very few proarrhythmic risk factors have been described for short QT syndrome, idiopathic ventricular fibrillation and early repolarization syndrome.

  • The prevalence of these primary electrical disorders is hard to establish, given their rarity; the prevalence of long QT syndrome has been established through prospective studies whereas, for the other diseases, prevalence is based on electrocardiogram features or is merely an estimation.

  • In geographical regions with founder populations, the prevalence of the primary electrical disorders is likely to be much higher than currently assumed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical overview of inherited primary rhythm disorders.
Fig. 2: Country-specific prevalence data for the primary rhythm disorders combined from different studies.

Similar content being viewed by others

References

  1. Bagnall, R. D. et al. A prospective study of sudden cardiac death among children and young adults. N. Engl. J. Med. 374, 2441–2452 (2016).

    PubMed  Google Scholar 

  2. Wang, Q. et al. Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum. Mol. Genet. 4, 1603–1607 (1995).

    CAS  PubMed  Google Scholar 

  3. Curran, M. E. et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80, 795–803 (1995).

    CAS  PubMed  Google Scholar 

  4. Ackerman, M. J. et al. HRS/EHRA Expert Consensus Statement on the state of genetic testing for the channelopathies and cardiomyopathies. Heart Rhythm 8, 1308–1339 (2011).

    PubMed  Google Scholar 

  5. Hofman, N. et al. Yield of molecular and clinical testing for arrhythmia syndromes. Circulation 128, 1513–1521 (2013).

    CAS  PubMed  Google Scholar 

  6. Bezzina, C. R., Lahrouchi, N. & Priori, S. G. Genetics of sudden cardiac death. Circ. Res. 116, 1919–1936 (2015).

    CAS  PubMed  Google Scholar 

  7. Tester, D. J., Will, M. L., Haglund, C. M. & Ackerman, M. J. Effect of clinical phenotype on yield of long QT syndrome genetic testing. J. Am. Coll. Cardiol. 47, 764–768 (2006).

    PubMed  Google Scholar 

  8. Splawski, I. et al. Spectrum of mutations in long-QT syndrome genes: KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 102, 1178–1185 (2000).

    CAS  PubMed  Google Scholar 

  9. Napolitano, C. et al. Genetic testing in the long QT syndrome. JAMA 294, 2975 (2005).

    CAS  PubMed  Google Scholar 

  10. Giudicessi, J. R., Wilde, A. A. M. & Ackerman, M. J. The genetic architecture of long QT syndrome: a critical reappraisal. Trends Cardiovasc. Med. 28, 453–464 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Rohatgi, R. K. et al. Contemporary outcomes in patients with long QT syndrome. J. Am. Coll. Cardiol. 70, 453–462 (2017).

    PubMed  Google Scholar 

  12. Schwartz, P. J. et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 103, 89–95 (2001).

    CAS  PubMed  Google Scholar 

  13. Wilde, A. A. M. et al. Auditory stimuli as a trigger for arrhythmic events differentiate HERG-related (LQTS2) patients from KVLQT1-related patients (LQTS1). J. Am. Coll. Cardiol. 33, 327–332 (1999).

    CAS  PubMed  Google Scholar 

  14. Priori, S. G. et al. Risk stratification in the long-QT syndrome. N. Engl. J. Med. 348, 1866–1874 (2003).

    PubMed  Google Scholar 

  15. Priori, S. G. et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA 292, 1341–1344 (2004).

    CAS  PubMed  Google Scholar 

  16. Wilde, A. A. M. et al. Clinical aspects of type 3 long-QT syndrome: an international multicenter study. Circulation 134, 872–882 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. Zareba, W. et al. Influence of the genotype on the clinical course of the long-QT syndrome. N. Engl. J. Med. 339, 960–965 (1998).

    CAS  PubMed  Google Scholar 

  18. Moss, A. J. et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation 115, 2481–2489 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shimizu, W. et al. Genotype-phenotype aspects of type 2 long QT syndrome. J. Am. Coll. Cardiol. 54, 2052–2062 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwartz, P. J., Crotti, L. & George, A. L. Modifier genes for sudden cardiac death. Eur. Heart J. 39, 3925–3931 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schwartz, P. J. et al. The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation 113, 783–790 (2006).

    PubMed  Google Scholar 

  22. Splawski, I. et al. CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119, 19–31 (2004).

    CAS  PubMed  Google Scholar 

  23. Moss, A. J., Schwartz, P. J., Crampton, R. S., Locati, E. & Carleen, E. The long QT syndrome: a prospective international study. Circulation 71, 17–21 (1985).

    CAS  PubMed  Google Scholar 

  24. Vincent, G. M. et al. High efficacy of β-blockers in long-QT syndrome type 1: contribution of noncompliance and QT-prolonging drugs to the occurrence of β-blocker treatment ‘failures’. Circulation 119, 215–221 (2009).

    CAS  PubMed  Google Scholar 

  25. Hobbs, J. B. et al. Risk of aborted cardiac arrest or sudden cardiac death during adolescence in the long-QT syndrome. J. Am. Med. Assoc. 296, 1249–1254 (2006).

    CAS  Google Scholar 

  26. Mazzanti, A. et al. Interplay between genetic substrate, QTc duration, and arrhythmia risk in patients with long QT syndrome. J. Am. Coll. Cardiol. 71, 1663–1671 (2018).

    PubMed  Google Scholar 

  27. Sauer, A. J. et al. Long QT syndrome in adults. J. Am. Coll. Cardiol. 49, 329–337 (2007).

    PubMed  Google Scholar 

  28. Schwartz, P. J. et al. Prevalence of the congenital long-QT syndrome. Circulation 120, 1761–1767 (2009).

    PubMed  PubMed Central  Google Scholar 

  29. Yoshinaga, M. et al. Electrocardiographic screening of 1-month-old infants for identifying prolonged QT intervals. Circ. Arrhythm. Electrophysiol. 6, 932–938 (2013).

    PubMed  Google Scholar 

  30. Hayashi, K. et al. Long QT syndrome and associated gene mutation carriers in Japanese children: results from ECG screening examinations. Clin. Sci. 117, 415–424 (2009).

    CAS  PubMed  Google Scholar 

  31. Yoshinaga, M., Kucho, Y., Nishibatake, M., Ogata, H. & Nomura, Y. Probability of diagnosing long QT syndrome in children and adolescents according to the criteria of the HRS/EHRA/APHRS expert consensus statement. Eur. Heart J. 37, 2490–2497 (2016).

    PubMed  Google Scholar 

  32. Vink, A. S. et al. Determination and interpretation of the QT interval. Circulation 138, 2345–2358 (2018).

    PubMed  Google Scholar 

  33. Goldenberg, I. et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J. Am. Coll. Cardiol. 57, 51–59 (2010).

    Google Scholar 

  34. Vink, A. S., Clur, S.-A. B., Wilde, A. A. M. & Blom, N. A. Effect of age and gender on the QTc-interval in healthy individuals and patients with long-QT syndrome. Trends Cardiovasc. Med. 28, 64–75 (2018).

    PubMed  Google Scholar 

  35. Lehmann, M. H. et al. Age-gender influence on the rate-corrected QT interval and the QT-heart rate relation in families with genotypically characterized long QT syndrome. J. Am. Coll. Cardiol. 29, 93–99 (2017).

    Google Scholar 

  36. Ozawa, J. et al. Pediatric cohort with long QT syndrome — KCNH2 mutation carriers present late onset but severe symptoms. Circ. J. 80, 696–702 (2016).

    CAS  PubMed  Google Scholar 

  37. Zareba, W. et al. Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. J. Am. Coll. Cardiol. 42, 103–109 (2003).

    PubMed  Google Scholar 

  38. Vink, A. S. et al. Effect of age and sex on the QTc interval in children and adolescents with type 1 and 2 long-QT syndrome. Circ. Arrhythm. Electrophysiol. 10, e004645 (2017).

    PubMed  Google Scholar 

  39. Moss, A. J. et al. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation 84, 1136–1144 (1991).

    CAS  PubMed  Google Scholar 

  40. Garson, A. et al. The long QT syndrome in children: an international study of 287 patients. Circulation 87, 1866–1872 (1993).

    PubMed  Google Scholar 

  41. Goldenberg, I. et al. Risk factors for aborted cardiac arrest and sudden cardiac death in children with the congenital long-QT syndrome. Circulation 117, 2184–2191 (2008).

    PubMed  PubMed Central  Google Scholar 

  42. Sedlak, T., Shufelt, C., Iribarren, C. & Merz, C. N. B. Sex hormones and the QT interval: a review. J. Womens Health 21, 933–941 (2012).

    Google Scholar 

  43. Brink, P. A. & Schwartz, P. J. Of founder populations, long QT syndrome, and destiny. Heart Rhythm 6, S25–S33 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Postema, P. G. et al. Founder mutations in the Netherlands: SCN5a 1795insD, the first described arrhythmia overlap syndrome and one of the largest and best characterised families worldwide. Neth. Heart J. 17, 422–428 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. ter Bekke, R. M. A. et al. Heritability in a SCN5A-mutation founder population with increased female susceptibility to non-nocturnal ventricular tachyarrhythmia and sudden cardiac death. Heart Rhythm 14, 1873–1881 (2017).

    PubMed  Google Scholar 

  46. Piippo, K. et al. A founder mutation of the potassium channel KCNQ1 in long QT syndrome. J. Am. Coll. Cardiol. 37, 562–568 (2001).

    CAS  PubMed  Google Scholar 

  47. Fodstad, H. et al. Four potassium channel mutations underlying long-QT syndrome (LQTS) and provide evidence for a strong founder effect in Finland. Ann. Med. 36, 53–63 (2004).

    CAS  PubMed  Google Scholar 

  48. Marjamaa, A. et al. High prevalence of four long QT syndrome founder mutations in the Finnish population. Ann. Med. 41, 234–240 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Winbo, A. et al. Origin of the Swedish long QT syndrome Y111C/KCNQ1 founder mutation. Heart Rhythm 8, 541–547 (2011).

    PubMed  Google Scholar 

  50. Arbour, L. et al. A KCNQ1 V205M missense mutation causes a high rate of long QT syndrome in a First Nations community of northern British Columbia: a community-based approach to understanding the impact. Genet. Med. 10, 545–550 (2008).

    PubMed  Google Scholar 

  51. Brink, P. A. et al. Phenotypic variability and unusual clinical severity of congenital long-QT syndrome in a founder population. Circulation 112, 2602–2610 (2005).

    PubMed  Google Scholar 

  52. Takahashi, K. et al. High prevalence of the SCN5A E1784K mutation in school children with long QT syndrome living on the Okinawa islands. Circ. J. 78, 1974–1979 (2014).

    CAS  PubMed  Google Scholar 

  53. Crotti, L. et al. NOS1AP Iis a genetic modifier of the long-QT syndrome. Circulation 120, 1657–1663 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Winbo, A. et al. Sex is a moderator of the association between NOS1AP sequence variants and QTc in two long QT syndrome founder populations: a pedigree-based measured genotype association analysis. BMC Med. Genet. 18, 74 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. Lahtinen, A. M., Marjamaa, A., Swan, H. & Kontula, K. KCNE1D85N polymorphism — a sex-specific modifier in type 1 long QT syndrome? BMC Med. Genet. 12, 11 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Antzelevitch, C. et al. J-wave syndromes expert consensus conference report: emerging concepts and gaps in knowledge. Europace 19, 665–694 (2016).

    PubMed Central  Google Scholar 

  57. Clinical Genome Resource. Explore the clinical relevance of genes & variants. ClinGen https://clinicalgenome.org/ (2015).

  58. Hosseini, S. M. et al. Reappraisal of reported genes for sudden arrhythmic death. Circulation 138, 1195–1205 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Schulze-Bahr, E. et al. Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: different incidences in familial and sporadic disease. Hum. Mutat. 21, 651–652 (2003).

    PubMed  Google Scholar 

  60. Priori, S. G. et al. Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: a prospective evaluation of 52 families. Circulation 102, 2509–2515 (2000).

    CAS  PubMed  Google Scholar 

  61. Probst, V. et al. SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome. Circ. Cardiovasc. Genet. 2, 552–557 (2009).

    CAS  PubMed  Google Scholar 

  62. Bezzina, C. R. et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat. Genet. 45, 1044–1049 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Rodríguez-Mañero, M. et al. Monomorphic ventricular tachycardia in patients with Brugada syndrome: a multicenter retrospective study. Heart Rhythm 13, 669–682 (2016).

    PubMed  Google Scholar 

  64. Matsuo, K. et al. The circadian pattern of the development of ventricular fibrillation in patients with Brugada syndrome. Eur. Heart J. 20, 465–470 (1999).

    CAS  PubMed  Google Scholar 

  65. Michowitz, Y. et al. Fever-related arrhythmic events in the multicenter survey on arrhythmic events in Brugada syndrome. Heart Rhythm 15, 1394–1401 (2018).

    PubMed  Google Scholar 

  66. Giustetto, C. et al. Atrial fibrillation in a large population with Brugada electrocardiographic pattern: prevalence, management, and correlation with prognosis. Heart Rhythm 11, 259–265 (2014).

    PubMed  Google Scholar 

  67. Bordachar, P. et al. Incidence, clinical implications and prognosis of atrial arrhythmias in Brugada syndrome. Eur. Heart J. 25, 879–884 (2004).

    PubMed  Google Scholar 

  68. Probst, V. et al. Long-term prognosis of patients diagnosed with Brugada syndrome: results from the finger Brugada syndrome registry. Circulation 121, 635–643 (2010).

    CAS  PubMed  Google Scholar 

  69. Sieira, J. et al. Asymptomatic Brugada syndrome: clinical characterization and long-term prognosis. Circ. Arrhythm. Electrophysiol. 8, 1144–1150 (2015).

    PubMed  Google Scholar 

  70. Morita, H. et al. Fragmented QRS as a marker of conduction abnormality and a predictor of prognosis of Brugada syndrome. Circulation 118, 1697–1704 (2008).

    PubMed  Google Scholar 

  71. Priori, S. G. et al. Risk stratification in Brugada syndrome: results of the PRELUDE (Programmed Electrical Stimulation Predictive Value) registry. J. Am. Coll. Cardiol. 59, 37–45 (2012).

    PubMed  Google Scholar 

  72. Sieira, J. et al. Prognostic value of programmed electrical stimulation in Brugada syndrome. Circ. Arrhythm. Electrophysiol. 8, 777–784 (2015).

    PubMed  Google Scholar 

  73. Yamagata, K. et al. Genotype-phenotype correlation of SCN5A mutation for the clinical and electrocardiographic characteristics of probands with Brugada syndrome: a Japanese multicenter registry. Circulation 135, 2255–2270 (2017).

    CAS  PubMed  Google Scholar 

  74. Meregalli, P. G. et al. Type of SCN5A mutation determines clinical severity and degree of conduction slowing in loss-of-function sodium channelopathies. Heart Rhythm 6, 341–348 (2009).

    PubMed  Google Scholar 

  75. Cordeiro, J. M. et al. Compound heterozygous mutations P336L and I1660V in the human cardiac sodium channel associated with the Brugada syndrome. Circulation 114, 2026–2033 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Postema, P. G. About Brugada syndrome and its prevalence. EP Eur. 14, 925–928 (2012).

    Google Scholar 

  77. Mizusawa, Y. & Wilde, A. A. M. Brugada syndrome. Circ. Arrhythm. Electrophysiol. 5, 606–616 (2012).

    PubMed  Google Scholar 

  78. Andorin, A. et al. Impact of clinical and genetic findings on the management of young patients with Brugada syndrome. Heart Rhythm 13, 1274–1282 (2016).

    PubMed  Google Scholar 

  79. Gonzalez Corcia, M. C. et al. Brugada syndrome in the young: an assessment of risk factors predicting future events. Europace 19, 1864–1873 (2017).

    PubMed  Google Scholar 

  80. Eckardt, L. Gender differences in Brugada syndrome. J. Cardiovasc. Electrophysiol. 18, 422–424 (2007).

    PubMed  Google Scholar 

  81. Milman, A. et al. Gender differences in patients with Brugada syndrome and arrhythmic events: data from a survey on arrhythmic events in 678 patients. Heart Rhythm 15, 1457–1465 (2018).

    PubMed  Google Scholar 

  82. Benito, B. et al. Gender differences in clinical manifestations of Brugada syndrome. J. Am. Coll. Cardiol. 52, 1567–1573 (2008).

    PubMed  Google Scholar 

  83. Shimizu, W. et al. Sex hormone and gender difference — role of testosterone on male predominance in Brugada syndrome. J. Cardiovasc. Electrophysiol. 18, 415–421 (2007).

    PubMed  Google Scholar 

  84. Probst, V. et al. Clinical aspects and prognosis of Brugada syndrome in children. Circulation 115, 2042–2048 (2007).

    PubMed  Google Scholar 

  85. Gehi, A. K., Duong, T. D., Metz, L. D., Gomes, J. A. & Mehta, D. Risk stratification of individuals with the Brugada electrocardiogram: a meta-analysis. J. Cardiovasc. Electrophysiol. 17, 577–583 (2006).

    PubMed  Google Scholar 

  86. Bezzina, C. R. et al. Common sodium channel promoter haplotype in Asian subjects underlies variability in cardiac conduction. Circulation 113, 338–344 (2006).

    CAS  PubMed  Google Scholar 

  87. Lieve, K. V. V., van der Werf, C. & Wilde, A. A. Catecholaminergic polymorphic ventricular tachycardia. Circ. J. 80, 1 (2016).

    Google Scholar 

  88. Priori, S. G. et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 106, 69–74 (2002).

    CAS  PubMed  Google Scholar 

  89. Roston, T. M. et al. Catecholaminergic polymorphic ventricular tachycardia in children: analysis of therapeutic strategies and outcomes from an international multicenter registry. Circ. Arrhythm. Electrophysiol. 8, 633–642 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Van Der Werf, C., Zwinderman, A. H. & Wilde, A. A. M. Therapeutic approach for patients with catecholaminergic polymorphic ventricular tachycardia: state of the art and future developments. Europace 14, 175–183 (2012).

    PubMed  Google Scholar 

  91. Leenhardt, A. et al. Catecholaminergic polymorphic ventricular tachycardia in children. Circulation 91, 1512–1519 (1995).

    CAS  PubMed  Google Scholar 

  92. Priori, S. G. et al. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation 105, 1342–1347 (2002).

    PubMed  Google Scholar 

  93. Sy, R. W. et al. Arrhythmia characterization and long-term outcomes in catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 8, 864–871 (2011).

    PubMed  Google Scholar 

  94. Sumitomo, N. et al. Clinical effectiveness of pulmonary vein isolation for arrhythmic events in a patient with catecholaminergic polymorphic ventricular tachycardia. Heart Vessel 25, 448–452 (2010).

    Google Scholar 

  95. Van Der Werf, C. et al. Familial evaluation in catecholaminergic polymorphic ventricular tachycardia disease penetrance and expression in cardiac ryanodine receptor mutation-carrying relatives. Circ. Arrhythm. Electrophysiol. 5, 748–756 (2012).

    PubMed  Google Scholar 

  96. Priori, S. G. & Chen, S. R. W. Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. Circ. Res. 108, 871–883 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Hayashi, M. et al. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation 119, 2426–2434 (2009).

    CAS  PubMed  Google Scholar 

  98. Ostby, S. A. et al. Competitive sports participation in patients with catecholaminergic polymorphic ventricular tachycardia: a single center’s early experience. JACC Clin. Electrophysiol. 2, 253–262 (2016).

    PubMed  Google Scholar 

  99. Postma, A. V. et al. Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 91, e21–e26 (2002).

    CAS  PubMed  Google Scholar 

  100. Leenhardt, A., Denjoy, I. & Guicheney, P. Catecholaminergic polymorphic ventricular tachycardia. Circ. Arrhythm. Electrophysiol. 5, 1044–1052 (2012).

    PubMed  Google Scholar 

  101. Priori, S. G. et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Heart Rhythm 10, 1932–1963 (2013).

    PubMed  Google Scholar 

  102. Lahrouchi, N. et al. Utility of post-mortem genetic testing in cases of sudden arrhythmic death syndrome. J. Am. Coll. Cardiol. 69, 2134–2145 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. Jiménez-Jáimez, J. et al. Diagnostic approach to unexplained cardiac arrest (from the FIVI-Gen Study). Am. J. Cardiol. 116, 894–899 (2015).

    PubMed  Google Scholar 

  104. Tester, D. J., Medeiros-Domingo, A., Will, M. L., Haglund, C. M. & Ackerman, M. J. Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. JMCP 87, 524–539 (2012).

    CAS  Google Scholar 

  105. Postma, A. V. et al. Catecholaminergic polymorphic ventricular tachycardia: RYR2 mutations, bradycardia, and follow up of the patients. J. Med. Genet. 42, 863–870 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lahat, H. et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am. J. Hum. Genet. 69, 1378–1384 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wangüemert, F. et al. Clinical and molecular characterization of a cardiac ryanodine receptor founder mutation causing catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 12, 1636–1643 (2015).

    PubMed  Google Scholar 

  108. Bhuiyan, Z. A. et al. Expanding spectrum of human RYR2-related disease. Circulation 116, 1569–1576 (2007).

    PubMed  Google Scholar 

  109. Campbell, M. J., Czosek, R. J., Hinton, R. B. & Miller, E. M. Exon 3 deletion of ryanodine receptor causes left ventricular noncompaction, worsening catecholaminergic polymorphic ventricular tachycardia, and sudden cardiac arrest. Am. J. Med. Genet. Part A 167, 2197–2200 (2015).

    CAS  Google Scholar 

  110. Dharmawan, T. et al. Identification of a novel exon3 deletion of RYR2 in a family with catecholaminergic polymorphic ventricular tachycardia. Ann. Noninvasive Electrocardiol. 24, e12623 (2019).

    PubMed  PubMed Central  Google Scholar 

  111. Ohno, S. et al. Exon 3 deletion of RYR2 encoding cardiac ryanodine receptor is associated with left ventricular non-compaction. Europace 16, 1646–1654 (2014).

    PubMed  Google Scholar 

  112. Pölönen, R. P., Penttinen, K., Swan, H. & Aalto-Setälä, K. Antiarrhythmic effects of carvedilol and flecainide in cardiomyocytes derived from catecholaminergic polymorphic ventricular tachycardia patients. Stem Cells Int. 2018, 1–11 (2018).

    Google Scholar 

  113. Patel, C., Yan, G.-X. & Antzelevitch, C. Short QT syndrome: from bench to bedside. Circ. Arrhythm. Electrophysiol. 3, 401–408 (2010).

    PubMed  PubMed Central  Google Scholar 

  114. Thorsen, K. et al. Loss-of-activity-mutation in the cardiac chloride-bicarbonate exchanger AE3 causes short QT syndrome. Nat. Commun. 8, 1696 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. Mazzanti, A. et al. Novel insight into the natural history of short QT syndrome. J. Am. Coll. Cardiol. 63, 1300–1308 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Giustetto, C. et al. Long-term follow-up of patients with short QT syndrome. J. Am. Coll. Cardiol. 58, 587–595 (2011).

    PubMed  Google Scholar 

  117. Villafañe, J. et al. Long-term follow-up of a pediatric cohort with short QT syndrome. J. Am. Coll. Cardiol. 61, 1183–1191 (2013).

    PubMed  Google Scholar 

  118. Campuzano, O. et al. Recent advances in short QT syndrome. Front. Cardiovasc. Med. 5, 1–7 (2018).

    Google Scholar 

  119. Mazzanti, A., Underwood, K., Nevelev, D., Kofman, S. & Priori, S. G. The new kids on the block of arrhythmogenic disorders: short QT syndrome and early repolarization. J. Cardiovasc. Electrophysiol. 28, 1226–1236 (2017).

    PubMed  Google Scholar 

  120. Giustetto, C. et al. Short QT syndrome and arrhythmogenic cardiac diseases in the young: the challenge of implantable cardioverter-defibrillator therapy for children. Eur. Heart J. 27, 2440–2447 (2006).

    PubMed  Google Scholar 

  121. Harrell, D. T. et al. Genotype-dependent differences in age of manifestation and arrhythmia complications in short QT syndrome. Int. J. Cardiol. 190, 393–402 (2015).

    PubMed  Google Scholar 

  122. Priori, S. G. et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 36, 2793–2867 (2015).

    PubMed  Google Scholar 

  123. Awamleh García, P. et al. Prevalence of electrocardiographic patterns associated with sudden cardiac death in the Spanish population aged 40 years or older. Results of the OFRECE study. Rev. Española Cardiol. 70, 801–807 (2017).

    Google Scholar 

  124. Anttonen, O. et al. Prevalence and prognostic significance of Short QT interval in a middle-aged Finnish population. Circulation 116, 714–720 (2007).

    CAS  PubMed  Google Scholar 

  125. Mason, J. W. et al. Electrocardiographic reference ranges derived from 79,743 ambulatory subjects. J. Electrocardiol. 40, 228–234.e8 (2007).

    PubMed  Google Scholar 

  126. Dhutia, H. et al. The prevalence and significance of a short QT interval in 18,825 low-risk individuals including athletes. Br. J. Sports Med. 50, 124–129 (2016).

    PubMed  Google Scholar 

  127. Kobza, R. et al. Prevalence of long and short QT in a young population of 41,767 predominantly male Swiss conscripts. Heart Rhythm 6, 652–657 (2009).

    PubMed  Google Scholar 

  128. Iribarren, C. et al. Short QT in a cohort of 1.7 million persons: prevalence, correlates, and prognosis. Ann. Noninvasive Electrocardiol. 19, 490–500 (2014).

    PubMed  Google Scholar 

  129. Reinig, M. G. & Engel, T. R. The shortage of short QT intervals. Chest 132, 246–249 (2007).

    PubMed  Google Scholar 

  130. Funada, A. et al. Assessment of QT intervals and prevalence of short QT syndrome in Japan. Clin. Cardiol. 31, 270–274 (2008).

    PubMed  PubMed Central  Google Scholar 

  131. Guerrier, K. et al. Short QT interval prevalence and clinical outcomes in a pediatric population. Circ. Arrhythm. Electrophysiol. 8, 1460–1464 (2015).

    PubMed  Google Scholar 

  132. Visser, M. et al. Idiopathic ventricular fibrillation: the struggle for definition, diagnosis, and follow-up. Circ. Arrhythm. Electrophysiol. 9, e003817 (2016).

    PubMed  Google Scholar 

  133. Haïssaguerre, M. et al. Mapping and ablation of idiopathic ventricular fibrillation. Circulation 106, 962–967 (2002).

    PubMed  Google Scholar 

  134. Noda, T. et al. Malignant entity of idiopathic ventricular fibrillation and polymorphic ventricular tachycardia initiated by premature extrasystoles originating from the right ventricular outflow tract. J. Am. Coll. Cardiol. 46, 1288–1294 (2005).

    PubMed  Google Scholar 

  135. Marsman, R. F. et al. A mutation in CALM1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence. J. Am. Coll. Cardiol. 63, 259–266 (2014).

    CAS  PubMed  Google Scholar 

  136. Alders, M. et al. Haplotype-sharing analysis implicates chromosome 7q36 harboring DPP6 in familial idiopathic ventricular fibrillation. Am. J. Hum. Genet. 84, 468–476 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Xiao, L. et al. Unique cardiac Purkinje fiber transient outward current β-subunit composition. Circ. Res. 112, 1310–1322 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Itoh, H. et al. A type 2 ryanodine receptor variant associated with reduced Ca2+ release and short-coupled torsades de pointes ventricular arrhythmia. Heart Rhythm 14, 98–107 (2016).

    PubMed  Google Scholar 

  139. Huikuri, H. V., Castellanos, A. & Myerburg, R. J. Sudden death due to cardiac arrhythmias. N. Engl. J. Med. 345, 1473–1482 (2001).

    CAS  PubMed  Google Scholar 

  140. Ozaydin, M. et al. Long-term outcome of patients with idiopathic ventricular fibrillation: a meta-analysis. J. Cardiovasc. Electrophysiol. 26, 1095–1104 (2015).

    PubMed  Google Scholar 

  141. Haïssaguerre, M. et al. Role of Purkinje conducting system in triggering of idiopathic ventricular fibrillation. Lancet 359, 677–678 (2002).

    PubMed  Google Scholar 

  142. Visser, M. et al. Long-term outcome of patients initially diagnosed with idiopathic ventricular fibrillation. Circ. Arrhythm. Electrophysiol. 9, e004258 (2016).

    CAS  PubMed  Google Scholar 

  143. Waldmann, V. et al. Characteristics and clinical assessment of unexplained sudden cardiac arrest in the real-world setting: focus on idiopathic ventricular fibrillation. Eur. Heart J. 39, 1981–1987 (2018).

    PubMed  PubMed Central  Google Scholar 

  144. Herman, A. R. M. et al. Outcome of apparently unexplained cardiac arrest: results from investigation and follow-up of the prospective cardiac arrest survivors with preserved ejection fraction registry. Circ. Arrhythm. Electrophysiol. 9, e003619 (2016).

    PubMed  Google Scholar 

  145. Sande, J. N. T. et al. Detailed characterization of familial idiopathic ventricular fibrillation linked to the DPP6 locus. Heart Rhythm 13, 905–912 (2016).

    PubMed  Google Scholar 

  146. Macfarlane, P. W. et al. The early repolarization pattern. J. Am. Coll. Cardiol. 66, 470–477 (2015).

    PubMed  Google Scholar 

  147. Gourraud, J.-B. et al. Identification of large families in early repolarization syndrome. J. Am. Coll. Cardiol. 61, 164–172 (2013).

    PubMed  Google Scholar 

  148. Sinner, M. F. et al. A meta-analysis of genome-wide association studies of the electrocardiographic early repolarization pattern. Heart Rhythm 9, 1627–1634 (2012).

    PubMed  PubMed Central  Google Scholar 

  149. Haissaguerre, M. et al. Sudden cardiac arrest associated with early repolarization. N. Engl. J. Med. 358, 2016–2023 (2008).

    CAS  PubMed  Google Scholar 

  150. Rosso, R. et al. J-point elevation in survivors of primary ventricular fibrillation and matched control subjects. J. Am. Coll. Cardiol. 52, 1231–1238 (2008).

    PubMed  Google Scholar 

  151. Tikkanen, J. T. et al. Long-term outcome associated with early repolarization on electrocardiography. N. Engl. J. Med. 361, 2529–2537 (2009).

    CAS  PubMed  Google Scholar 

  152. Klatsky, A. L., Oehm, R., Cooper, R. A., Udaltsova, N. & Armstrong, M. A. The early repolarization normal variant electrocardiogram: correlates and consequences. Am. J. Med. 115, 171–177 (2003).

    PubMed  Google Scholar 

  153. Wasserburger, R. H. & Alt, W. J. The normal RS-T segment elevation variant. Am. J. Cardiol. 8, 184–192 (1961).

    CAS  PubMed  Google Scholar 

  154. Mahida, S. et al. History and clinical significance of early repolarization syndrome. Heart Rhythm 12, 242–249 (2015).

    PubMed  Google Scholar 

  155. Siebermair, J. et al. Early repolarization pattern is the strongest predictor of arrhythmia recurrence in patients with idiopathic ventricular fibrillation: results from a single centre long-term follow-up over 20 years. Europace 18, 718–725 (2016).

    PubMed  Google Scholar 

  156. Aizawa, Y. et al. Dynamicity of the J-wave in idiopathic ventricular fibrillation with a special reference to pause-dependent augmentation of the J-wave. J. Am. Coll. Cardiol. 59, 1948–1953 (2012).

    PubMed  Google Scholar 

  157. Amin, A. S. et al. Fever-induced QTc prolongation and ventricular arrhythmias in individuals with type 2 congenital long QT syndrome. J. Clin. Invest. 118, 2552–2561 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Bastiaenen, R., Hedley, P. L., Christiansen, M. & Behr, E. R. Therapeutic hypothermia and ventricular fibrillation storm in early repolarization syndrome. Heart Rhythm 7, 832–834 (2010).

    PubMed  Google Scholar 

  159. Nakagawa, K., Nagase, S., Morita, H. & Ito, H. Left ventricular epicardial electrogram recordings in idiopathic ventricular fibrillation with inferior and lateral early repolarization. Heart Rhythm 11, 314–317 (2014).

    PubMed  Google Scholar 

  160. Tikkanen, J. T. et al. Early repolarization: electrocardiographic phenotypes associated with favorable long-term outcome. Circulation 123, 2666–2673 (2011).

    PubMed  Google Scholar 

  161. Patel, R. B. et al. Early repolarization associated with ventricular arrhythmias in patients with chronic coronary artery disease. Circ. Arrhythm. Electrophysiol. 3, 489–495 (2010).

    PubMed  Google Scholar 

  162. Georgopoulos, S. et al. A meta-analysis on the prognostic significance of inferolateral early repolarization pattern in Brugada syndrome. Europace 20, 134–139 (2016).

    Google Scholar 

  163. Watanabe, H. et al. High prevalence of early repolarization in short QT syndrome. Heart Rhythm 7, 647–652 (2010).

    PubMed  Google Scholar 

  164. Sinner, M. F. et al. Association of early repolarization pattern on ECG with risk of cardiac and all-cause mortality: a population-based prospective cohort study (MONICA/KORA). PLOS Med. 7, e1000314 (2010).

    PubMed  PubMed Central  Google Scholar 

  165. Haruta, D. et al. Incidence and prognostic value of early repolarization pattern in the 12-lead electrocardiogram. Circulation 123, 2931–2937 (2011).

    PubMed  Google Scholar 

  166. Walsh, J. A. et al. Natural history of the early repolarization pattern in a biracial cohort. J. Am. Coll. Cardiol. 61, 863–869 (2013).

    PubMed  PubMed Central  Google Scholar 

  167. Rollin, A. et al. Prevalence, prognosis, and identification of the malignant form of early repolarization pattern in a population-based study. Am. J. Cardiol. 110, 1302–1308 (2012).

    PubMed  Google Scholar 

  168. Wu, S.-H., Lin, X.-X., Cheng, Y.-J., Qiang, C.-C. & Zhang, J. Early repolarization pattern and risk for arrhythmia death: a meta-analysis. JACC 61, 645–650 (2013).

    PubMed  Google Scholar 

  169. Watanabe, H. et al. Clinical characteristics and risk of arrhythmia recurrences in patients with idiopathic ventricular fibrillation associated with early repolarization. Int. J. Cardiol. 159, 238–240 (2012).

    PubMed  Google Scholar 

  170. Jackson, H. A. et al. LQTS in northern BC: homozygosity for KCNQ1 V205M presents with a more severe cardiac phenotype but with minimal impact on auditory function. Clin. Genet. 86, 85–90 (2014).

    CAS  PubMed  Google Scholar 

  171. de Jager, T., Corbett, C. H., Badenhorst, J. C., Brink, P. A. & Corfield, V. A. Evidence of a long QT founder gene with varying phenotypic expression in South African families. J. Med. Genet. 33, 567–573 (1996).

    PubMed  PubMed Central  Google Scholar 

  172. Winbo, A., Diamant, U.-B., Stattin, E.-L., Jensen, S. M. & Rydberg, A. Low incidence of sudden cardiac death in a Swedish Y111C type 1 long-QT syndrome population. Circ. Cardiovasc. Genet. 2, 558–564 (2009).

    CAS  PubMed  Google Scholar 

  173. Fodstad, H. et al. Four potassium channel mutations account for 73% of the genetic spectrum underlying long-QT syndrome (LQTS) and provide evidence for a strong founder effect in Finland. Ann. Med. 36, 53–63 (2004).

    CAS  PubMed  Google Scholar 

  174. Piippo, K. et al. Homozygosity for a HERG potassium channel mutation causes a severe form of long QT syndrome: identification of an apparent founder mutation in the Finns. J. Am. Coll. Cardiol. 35, 1919–1925 (2000).

    CAS  PubMed  Google Scholar 

  175. Bezzina, C. et al. A single Na+ channel mutation causing both long-QT and Brugada syndromes. Circ. Res. 85, 1206–1213 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.A.M.W. and C.R.B acknowledge the support of the Leducq Foundation (17CVD02), the Netherlands Heart Foundation (PREDICT2, CVON2018–30) and the Netherlands Organization for Scientific Research (VICI fellowship, 016.150.610, to C.R.B.).

Author information

Authors and Affiliations

Authors

Contributions

J.A.O. wrote the manuscript and researched data for the article. C.R.B and A.A.M.W. discussed the content of the manuscript, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Arthur A. M. Wilde.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks S. Sanatani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Offerhaus, J.A., Bezzina, C.R. & Wilde, A.A.M. Epidemiology of inherited arrhythmias. Nat Rev Cardiol 17, 205–215 (2020). https://doi.org/10.1038/s41569-019-0266-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0266-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing