Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tricuspid valve disease: diagnosis, prognosis and management of a rapidly evolving field


Tricuspid valve disease, and particularly tricuspid regurgitation, is a highly prevalent condition with a complex pathophysiology and long-term adverse consequences. Although historically neglected, tricuspid valve disease has gained increasing recognition, with important advances in the assessment and management of this disorder over the past 2 decades. Surgical treatment remains the standard of care, but it continues to have one of the the highest death rates among all cardiac valve-related procedures, and a broad range of patients still do not receive effective therapy for tricuspid valve disease in contemporary clinical practice. Therefore, several alternative, less-invasive technologies for treating patients with severe, native tricuspid valve disease at high surgical risk have been developed in the past decade, with promising early results. This Review summarizes key findings and highlights the latest developments in the diagnosis and management framework that are transforming clinical practice in the complex field of tricuspid valve disease.

Key points

  • Tricuspid regurgitation is common in patients with chronic heart failure but is vastly undertreated, and its incidence is increasing, particularly among older patients with transtricuspid leads, right ventricular dysfunction or previous left-sided valve surgery.

  • Isolated tricuspid valve surgery remains rare and is associated with high in-hospital mortality, particularly in patients with previous left-sided valve surgery or initial tricuspid valve repair.

  • Comprehensive, multimodality imaging with novel quantification methods for severity assessment might improve the timely selection of those patients with meaningful clinical benefit after tricuspid valve interventions.

  • Concomitant surgical repair of tricuspid annular dilatation at the time of left-sided valve surgery is likely to become the standard of practice.

  • Three ongoing clinical trials will provide definite results on the benefit of prophylactic tricuspid valve repair during mitral valve surgery.

  • Early feasibility and safety data of emerging transcatheter therapies for tricuspid valve repair and replacement are a landmark step forward in tricuspid valve disease management; long-term durability and clinical outcomes need to be addressed in future trials.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Surgical tricuspid valve annuloplasty using an incomplete semi-rigid prosthetic ring.
Fig. 2: Transcatheter tricuspid valve repair therapies: coaptation devices.
Fig. 3: Transcatheter tricuspid valve repair therapies: annuloplasty devices.
Fig. 4: Transcatheter tricuspid valve repair therapies: heterotopic CAVI.
Fig. 5: Transcatheter tricuspid valve replacement.


  1. 1.

    Stuge, O. & Liddicoat, J. Emerging opportunities for cardiac surgeons within structural heart disease. J. Thorac. Cardiovasc. Surg. 132, 1258–1261 (2006).

    PubMed  Google Scholar 

  2. 2.

    Zack, C. J. et al. National trends and outcomes in isolated tricuspid valve surgery. J. Am. Coll. Cardiol. 70, 2953–2960 (2017).

    PubMed  Google Scholar 

  3. 3.

    Alqahtani, F. et al. Contemporary trends in the use and outcomes of surgical treatment of tricuspid regurgitation. J. Am. Heart Assoc. 6, e007597 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Dreyfus, J. et al. Timing of referral of patients with severe isolated tricuspid valve regurgitation to surgeons (from a French Nationwide Database). Am. J. Cardiol. 122, 323–326 (2018).

    PubMed  Google Scholar 

  5. 5.

    Dhoble, A. et al. National 10-year trends and outcomes of isolated and concomitant tricuspid valve surgery. J. Cardiovasc. Surg. (Torino) 60, 119–127 (2019).

    Google Scholar 

  6. 6.

    Nath, J., Foster, E. & Heidenreich, P. A. Impact of tricuspid regurgitation on long-term survival. J. Am. Coll. Cardiol. 43, 405–409 (2004).

    PubMed  Google Scholar 

  7. 7.

    Topilsky, Y. et al. Clinical outcome of isolated tricuspid regurgitation. JACC Cardiovasc. Imaging 7, 1185–1194 (2014).

    PubMed  Google Scholar 

  8. 8.

    Rodes-Cabau, J., Taramasso, M. & O’Gara, P. T. Diagnosis and treatment of tricuspid valve disease: current and future perspectives. Lancet 388, 2431–2442 (2016).

    PubMed  Google Scholar 

  9. 9.

    Asmarats, L., Puri, R., Latib, A., Navia, J. L. & Rodes-Cabau, J. Transcatheter tricuspid valve interventions: landscape, challenges, and future directions. J. Am. Coll. Cardiol. 71, 2935–2956 (2018).

    PubMed  Google Scholar 

  10. 10.

    Antunes, M. J. et al. Management of tricuspid valve regurgitation: position statement of the European Society of Cardiology Working Groups of Cardiovascular Surgery and Valvular Heart Disease. Eur. J. Cardiothorac. Surg. 52, 1022–1030 (2017).

    PubMed  Google Scholar 

  11. 11.

    Chang, J. D., Manning, W. J., Ebrille, E. & Zimetbaum, P. J. Tricuspid valve dysfunction following pacemaker or cardioverter-defibrillator implantation. J. Am. Coll. Cardiol. 69, 2331–2341 (2017).

    PubMed  Google Scholar 

  12. 12.

    Dreyfus, G. D., Martin, R. P., Chan, K. M., Dulguerov, F. & Alexandrescu, C. Functional tricuspid regurgitation: a need to revise our understanding. J. Am. Coll. Cardiol. 65, 2331–2336 (2015).

    PubMed  Google Scholar 

  13. 13.

    Dreyfus, G. D., Corbi, P. J., Chan, K. M. & Bahrami, T. Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair? Ann. Thorac. Surg. 79, 127–132 (2005).

    PubMed  Google Scholar 

  14. 14.

    Taramasso, M. et al. The growing clinical importance of secondary tricuspid regurgitation. J. Am. Coll. Cardiol. 59, 703–710 (2012).

    PubMed  Google Scholar 

  15. 15.

    Topilsky, Y. et al. Clinical context and mechanism of functional tricuspid regurgitation in patients with and without pulmonary hypertension. Circ. Cardiovasc. Imaging 5, 314–323 (2012).

    PubMed  Google Scholar 

  16. 16.

    Utsunomiya, H. et al. Functional tricuspid regurgitation caused by chronic atrial fibrillation: a real-time 3-dimensional transesophageal echocardiography study. Circ. Cardiovasc. Imaging 10, e004897 (2017).

    PubMed  Google Scholar 

  17. 17.

    Spinner, E. M. et al. Correlates of tricuspid regurgitation as determined by 3D echocardiography: pulmonary arterial pressure, ventricle geometry, annular dilatation, and papillary muscle displacement. Circ. Cardiovasc. Imaging 5, 43–50 (2012).

    PubMed  Google Scholar 

  18. 18.

    Rivero Carvallo, J. M. Signo para el diagnostico de las insuficiencias tricuspideas [Spanish]. Arch. Inst. Cardiol. Mex. 16, 531–540 (1946).

    CAS  PubMed  Google Scholar 

  19. 19.

    Topilsky, Y. et al. Pathophysiology of tricuspid regurgitation: quantitative Doppler echocardiographic assessment of respiratory dependence. Circulation 122, 1505–1513 (2010).

    PubMed  Google Scholar 

  20. 20.

    Lau, G. T., Tan, H. C. & Kritharides, L. Type of liver dysfunction in heart failure and its relation to the severity of tricuspid regurgitation. Am. J. Cardiol. 90, 1405–1409 (2002).

    PubMed  Google Scholar 

  21. 21.

    Agricola, E. et al. Effects of functional tricuspid regurgitation on renal function and long-term prognosis in patients with heart failure. J. Cardiovasc. Med. (Hagerstown) 18, 60–68 (2017).

    Google Scholar 

  22. 22.

    Ailawadi, G. et al. Model for end-stage liver disease predicts mortality for tricuspid valve surgery. Ann. Thorac. Surg. 87, 1460–1468 (2009).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Tsuda, K. et al. Simplified model for end-stage liver disease score predicts mortality for tricuspid valve surgery. Interact. Cardiovasc. Thorac. Surg. 16, 630–635 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Grote Beverborg, N., van Veldhuisen, D. J. & van der Meer, P. Anemia in heart failure: still relevant? JACC Heart Fail. 6, 201–208 (2018).

    PubMed  Google Scholar 

  25. 25.

    Kim, Y. J. et al. Determinants of surgical outcome in patients with isolated tricuspid regurgitation. Circulation 120, 1672–1678 (2009).

    PubMed  Google Scholar 

  26. 26.

    Yoon, C. H. et al. B-type natriuretic peptide in isolated severe tricuspid regurgitation: determinants and impact on outcome. J. Cardiovasc. Ultrasound 18, 139–145 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Neuhold, S. et al. Impact of tricuspid regurgitation on survival in patients with chronic heart failure: unexpected findings of a long-term observational study. Eur. Heart J. 34, 844–852 (2013).

    CAS  PubMed  Google Scholar 

  28. 28.

    Roques, F. et al. Risk factors and outcome in European cardiac surgery: analysis of the EuroSCORE multinational database of 19030 patients. Eur. J. Cardiothorac. Surg. 15, 816–822 (1999).

    CAS  PubMed  Google Scholar 

  29. 29.

    Nashef, S. A. et al. EuroSCORE II. Eur. J. Cardiothorac. Surg. 41, 734–745 (2012).

    PubMed  Google Scholar 

  30. 30.

    O’Brien, S. M. et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 2—isolated valve surgery. Ann. Thorac. Surg. 88, S23–42 (2009).

    PubMed  Google Scholar 

  31. 31.

    LaPar, D. J. et al. Development of a risk prediction model and clinical risk score for isolated tricuspid valve surgery. Ann. Thorac. Surg. 106, 129–136 (2018).

    PubMed  Google Scholar 

  32. 32.

    Hahn, R. T. State-of-the-art review of echocardiographic imaging in the evaluation and treatment of functional tricuspid regurgitation. Circ. Cardiovasc. Imaging 9, e005332 (2016).

    PubMed  Google Scholar 

  33. 33.

    Zoghbi, W. A. et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 30, 303–371 (2017).

    PubMed  Google Scholar 

  34. 34.

    Lancellotti, P. et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 14, 611–644 (2013).

    PubMed  Google Scholar 

  35. 35.

    Grant, A. D., Thavendiranathan, P., Rodriguez, L. L., Kwon, D. & Marwick, T. H. Development of a consensus algorithm to improve interobserver agreement and accuracy in the determination of tricuspid regurgitation severity. J. Am. Soc. Echocardiogr. 27, 277–284 (2014).

    PubMed  Google Scholar 

  36. 36.

    Taramasso, M. et al. The International Multicenter TriValve Registry: which patients are undergoing transcatheter tricuspid repair? JACC Cardiovasc. Interv. 10, 1982–1990 (2017).

    PubMed  Google Scholar 

  37. 37.

    Hahn, R. T. & Zamorano, J. L. The need for a new tricuspid regurgitation grading scheme. Eur. Heart J. Cardiovasc. Imaging 18, 1342–1343 (2017).

    PubMed  Google Scholar 

  38. 38.

    Stankovic, I. et al. Incremental value of the en face view of the tricuspid valve by two-dimensional and three-dimensional echocardiography for accurate identification of tricuspid valve leaflets. J. Am. Soc. Echocardiogr. 27, 376–384 (2014).

    PubMed  Google Scholar 

  39. 39.

    de Agustin, J. A. et al. Proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography applied for tricuspid regurgitation quantification. J. Am. Soc. Echocardiogr. 26, 1063–1072 (2013).

    PubMed  Google Scholar 

  40. 40.

    Dreyfus, J. et al. Comparison of 2-dimensional, 3-dimensional, and surgical measurements of the tricuspid annulus size: clinical implications. Circ. Cardiovasc. Imaging 8, e003241 (2015).

    PubMed  Google Scholar 

  41. 41.

    Kammerlander, A. A. et al. Right ventricular dysfunction, but not tricuspid regurgitation, is associated with outcome late after left heart valve procedure. J. Am. Coll. Cardiol. 64, 2633–2642 (2014).

    PubMed  Google Scholar 

  42. 42.

    Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 28, 1–39 (2015).

    PubMed  Google Scholar 

  43. 43.

    Topilsky, Y. et al. Preoperative factors associated with adverse outcome after tricuspid valve replacement. Circulation 123, 1929–1939 (2011).

    PubMed  Google Scholar 

  44. 44.

    Hsiao, S. H. et al. Severe tricuspid regurgitation shows significant impact in the relationship among peak systolic tricuspid annular velocity, tricuspid annular plane systolic excursion, and right ventricular ejection fraction. J. Am. Soc. Echocardiogr. 19, 902–910 (2006).

    PubMed  Google Scholar 

  45. 45.

    Greiner, S. et al. Reliability of noninvasive assessment of systolic pulmonary artery pressure by Doppler echocardiography compared to right heart catheterization: analysis in a large patient population. J. Am. Heart Assoc. 3, e001103 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Geske, J. B., Scantlebury, D. C., Thomas, J. D. & Nishimura, R. A. Hemodynamic evaluation of severe tricuspid regurgitation. J. Am. Coll. Cardiol. 62, e441 (2013).

    PubMed  Google Scholar 

  47. 47.

    Rao, S., Tate, D. A. & Stouffer, G. A. Hemodynamic findings in severe tricuspid regurgitation. Catheter. Cardiovasc. Interv. 81, 162–169 (2013).

    CAS  PubMed  Google Scholar 

  48. 48.

    Kwon, D. A. et al. Prediction of outcome in patients undergoing surgery for severe tricuspid regurgitation following mitral valve surgery and role of tricuspid annular systolic velocity. Am. J. Cardiol. 98, 659–661 (2006).

    PubMed  Google Scholar 

  49. 49.

    Lee, J. W. et al. Long-term prognosis of isolated significant tricuspid regurgitation. Circ. J. 74, 375–380 (2010).

    PubMed  Google Scholar 

  50. 50.

    Fukunaga, N., Okada, Y., Konishi, Y., Murashita, T. & Koyama, T. Late outcome of tricuspid annuloplasty using a flexible band/ring for functional tricuspid regurgitation. Circ. J. 79, 1299–1306 (2015).

    PubMed  Google Scholar 

  51. 51.

    Fukuda, S. et al. Determinants of recurrent or residual functional tricuspid regurgitation after tricuspid annuloplasty. Circulation 114, I582–I587 (2006).

    PubMed  Google Scholar 

  52. 52.

    Naoum, C., Blanke, P., Cavalcante, J. L. & Leipsic, J. Cardiac computed tomography and magnetic resonance imaging in the evaluation of mitral and tricuspid valve disease: implications for transcatheter interventions. Circ. Cardiovasc. Imaging 10, e005331 (2017).

    PubMed  Google Scholar 

  53. 53.

    Prihadi, E. A. et al. Imaging needs in novel transcatheter tricuspid valve interventions. JACC Cardiovasc. Imaging 11, 736–754 (2018).

    PubMed  Google Scholar 

  54. 54.

    Hung, J. et al. Usefulness of echocardiographic determined tricuspid regurgitation in predicting event-free survival in severe heart failure secondary to idiopathic-dilated cardiomyopathy or to ischemic cardiomyopathy. Am. J. Cardiol. 82, 1301–1303 (1998).

    CAS  PubMed  Google Scholar 

  55. 55.

    Koelling, T. M., Aaronson, K. D., Cody, R. J., Bach, D. S. & Armstrong, W. F. Prognostic significance of mitral regurgitation and tricuspid regurgitation in patients with left ventricular systolic dysfunction. Am. Heart J. 144, 524–529 (2002).

    PubMed  Google Scholar 

  56. 56.

    Grupper, A. et al. Effects of tricuspid valve regurgitation on outcome in patients with cardiac resynchronization therapy. Am. J. Cardiol. 115, 783–789 (2015).

    PubMed  Google Scholar 

  57. 57.

    Bar, N. et al. Clinical outcome of isolated tricuspid regurgitation in patients with preserved left ventricular ejection fraction and pulmonary hypertension. J. Am. Soc. Echocardiogr. 31, 34–41 (2018).

    PubMed  Google Scholar 

  58. 58.

    Dahou, A. et al. Tricuspid regurgitation is associated with increased risk of mortality in patients with low-flow low-gradient aortic stenosis and reduced ejection fraction: results of the multicenter TOPAS study (True or Pseudo-Severe Aortic Stenosis). JACC Cardiovasc. Interv. 8, 588–596 (2015).

    PubMed  Google Scholar 

  59. 59.

    Van de Veire, N. R. et al. Tricuspid annuloplasty prevents right ventricular dilatation and progression of tricuspid regurgitation in patients with tricuspid annular dilatation undergoing mitral valve repair. J. Thorac. Cardiovasc. Surg. 141, 1431–1439 (2011).

    PubMed  Google Scholar 

  60. 60.

    Goldstone, A. B. et al. Natural history of coexistent tricuspid regurgitation in patients with degenerative mitral valve disease: implications for future guidelines. J. Thorac. Cardiovasc. Surg. 148, 2802–2809 (2014).

    PubMed  Google Scholar 

  61. 61.

    Dumont, C. et al. Pre- and postoperative tricuspid regurgitation in patients with severe symptomatic aortic stenosis: importance of pre-operative tricuspid annulus diameter. Eur. Heart J. Cardiovasc. Imaging 19, 319–328 (2018).

    PubMed  Google Scholar 

  62. 62.

    Ohno, Y. et al. Association of tricuspid regurgitation with clinical and echocardiographic outcomes after percutaneous mitral valve repair with the MitraClip System: 30-day and 12-month follow-up from the GRASP Registry. Eur. Heart J. Cardiovasc. Imaging 15, 1246–1255 (2014).

    PubMed  Google Scholar 

  63. 63.

    Schwartz, L. A. et al. Impact of right ventricular dysfunction and tricuspid regurgitation on outcomes in patients undergoing transcatheter aortic valve replacement. J. Am. Soc. Echocardiogr. 30, 36–46 (2017).

    PubMed  Google Scholar 

  64. 64.

    McCarthy, F. H. et al. Association of tricuspid regurgitation with transcatheter aortic valve replacement outcomes: a report from the Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry. Ann. Thorac. Surg. 105, 1121–1128 (2018).

    PubMed  Google Scholar 

  65. 65.

    Amat-Santos, I. J. et al. Tricuspid but not mitral regurgitation determines mortality after TAVI in patients with nonsevere mitral regurgitation. Rev. Esp. Cardiol. (Engl. Ed) 71, 357–364 (2018).

    Google Scholar 

  66. 66.

    Pavasini, R. et al. Role of the tricuspid regurgitation after mitraclip and transcatheter aortic valve implantation: a systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Imaging 19, 654–659 (2018).

    PubMed  Google Scholar 

  67. 67.

    Prihadi, E. A. et al. Development of significant tricuspid regurgitation over time and prognostic implications: new insights into natural history. Eur. Heart J. 39, 3574–3581 (2018).

    PubMed  Google Scholar 

  68. 68.

    Ponikowski, P. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 18, 891–975 (2016).

    PubMed  Google Scholar 

  69. 69.

    Nishimura, R. A. et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63, e57–e185 (2014).

    PubMed  Google Scholar 

  70. 70.

    Cevasco, M. & Shekar, P. S. Surgical management of tricuspid stenosis. Ann. Cardiothorac. Surg. 6, 275–282 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Bruce, C. J. & Connolly, H. M. Right-sided valve disease deserves a little more respect. Circulation 119, 2726–2734 (2009).

    PubMed  Google Scholar 

  72. 72.

    Wooley, C. F., Fontana, M. E., Kilman, J. W. & Ryan, J. M. Tricuspid stenosis. Atrial systolic murmur, tricuspid opening snap, and right atrial pressure pulse. Am. J. Med. 78, 375–384 (1985).

    CAS  PubMed  Google Scholar 

  73. 73.

    Baumgartner, H. et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J. Am. Soc. Echocardiogr. 22, 1–23 (2009).

    PubMed  Google Scholar 

  74. 74.

    Yeter, E., Ozlem, K., Kilic, H., Ramazan, A. & Acikel, S. Tricuspid balloon valvuloplasty to treat tricuspid stenosis. J. Heart Valve Dis. 19, 159–160 (2010).

    PubMed  Google Scholar 

  75. 75.

    Baumgartner, H. et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 38, 2739–2791 (2017).

    PubMed  Google Scholar 

  76. 76.

    McElhinney, D. B. et al. Mid-term valve-related outcomes after transcatheter tricuspid valve-in-valve or valve-in-ring replacement. J. Am. Coll. Cardiol. 73, 148–157 (2019).

    CAS  PubMed  Google Scholar 

  77. 77.

    Connolly, H. M. et al. Early and late outcomes of surgical treatment in carcinoid heart disease. J. Am. Coll. Cardiol. 66, 2189–2196 (2015).

    PubMed  Google Scholar 

  78. 78.

    Seeburger, J. et al. Minimally invasive isolated tricuspid valve surgery. J. Heart Valve Dis. 19, 189–193 (2010).

    PubMed  Google Scholar 

  79. 79.

    Bevan, P. J., Haydock, D. A. & Kang, N. Long-term survival after isolated tricuspid valve replacement. Heart Lung Circ. 23, 697–702 (2014).

    PubMed  Google Scholar 

  80. 80.

    De Meester, P., Van De Bruaene, A., Voigt, J. U., Herijgers, P. & Budts, W. Outcome and determinants of prognosis in patients undergoing isolated tricuspid valve surgery: retrospective single center analysis. Int. J. Cardiol. 175, 333–339 (2014).

    PubMed  Google Scholar 

  81. 81.

    Urbandt, P., Santana, O., Mihos, C. G., Pineda, A. M. & Joseph, L. Minimally invasive approach for isolated tricuspid valve surgery. J. Heart Valve Dis. 23, 783–787 (2014).

    PubMed  Google Scholar 

  82. 82.

    Arbulu, A., Holmes, R. J. & Asfaw, I. Tricuspid valvulectomy without replacement. Twenty years’ experience. J. Thorac. Cardiovasc. Surg. 102, 917–922 (1991).

    CAS  PubMed  Google Scholar 

  83. 83.

    Miro, J. M., Moreno, A. & Mestres, C. A. Infective endocarditis in intravenous drug abusers. Curr. Infect. Dis. Rep. 5, 307–316 (2003).

    PubMed  Google Scholar 

  84. 84.

    Chikwe, J., Itagaki, S., Anyanwu, A. & Adams, D. H. Impact of concomitant tricuspid annuloplasty on tricuspid regurgitation, right ventricular function, and pulmonary artery hypertension after repair of mitral valve prolapse. J. Am. Coll. Cardiol. 65, 1931–1938 (2015).

    PubMed  Google Scholar 

  85. 85.

    Beckmann, A. et al. German heart surgery report 2016: the annual updated registry of the German Society for Thoracic and Cardiovascular Surgery. Thorac. Cardiovasc. Surg. 65, 505–518 (2017).

    PubMed  Google Scholar 

  86. 86.

    Kilic, A., Saha-Chaudhuri, P., Rankin, J. S. & Conte, J. V. Trends and outcomes of tricuspid valve surgery in North America: an analysis of more than 50,000 patients from the Society of Thoracic Surgeons database. Ann. Thorac. Surg. 96, 1546–1552 (2013).

    PubMed  Google Scholar 

  87. 87.

    US National Library of Medicine. (2019).

  88. 88.

    US National Library of Medicine. (2018).

  89. 89.

    US National Library of Medicine. (2017).

  90. 90.

    Buzzatti, N. et al. Long-term outcomes of tricuspid valve replacement after previous left-side heart surgery. Eur. J. Cardiothorac. Surg. 46, 713–719 (2014).

    PubMed  Google Scholar 

  91. 91.

    Taramasso, M., Pozzoli, A., Buzzatti, N. & Alfieri, O. Assessing operative risk and benefit in elderly patients with heart valve disease. Eur. Heart J. 34, 2788–2791 (2013).

    PubMed  Google Scholar 

  92. 92.

    Lee, R. et al. Fifteen-year outcome trends for valve surgery in North America. Ann. Thorac. Surg. 91, 677–684 (2011).

    PubMed  Google Scholar 

  93. 93.

    Healthcare Cost and Utilization Project (HCUP). Overview of the Nationwide Inpatient Sample (NIS). H.CUP (2018).

  94. 94.

    World Health Organization. ICD-11 (2019).

  95. 95.

    US National Library of Medicine. (2017).

  96. 96.

    McCarthy, P. M. et al. Tricuspid valve repair: durability and risk factors for failure. J. Thorac. Cardiovasc. Surg. 127, 674–685 (2004).

    PubMed  Google Scholar 

  97. 97.

    Navia, J. L. et al. Surgical management of secondary tricuspid valve regurgitation: annulus, commissure, or leaflet procedure? J. Thorac. Cardiovasc. Surg. 139, 1473–1482 (2010).

    PubMed  Google Scholar 

  98. 98.

    Parolari, A., Barili, F., Pilozzi, A. & Pacini, D. Ring or suture annuloplasty for tricuspid regurgitation? A meta-analysis review. Ann. Thorac. Surg. 98, 2255–2263 (2014).

    PubMed  Google Scholar 

  99. 99.

    Pagnesi, M. et al. Tricuspid annuloplasty versus a conservative approach in patients with functional tricuspid regurgitation undergoing left-sided heart valve surgery: a study-level meta-analysis. Int. J. Cardiol. 240, 138–144 (2017).

    PubMed  Google Scholar 

  100. 100.

    Dreyfus, G. D., Raja, S. G. & John Chan, K. M. Tricuspid leaflet augmentation to address severe tethering in functional tricuspid regurgitation. Eur. J. Cardiothorac. Surg. 34, 908–910 (2008).

    PubMed  Google Scholar 

  101. 101.

    Lapenna, E. et al. The clover technique for the treatment of complex tricuspid valve insufficiency: midterm clinical and echocardiographic results in 66 patients. Eur. J. Cardiothorac. Surg. 37, 1297–1303 (2010).

    PubMed  Google Scholar 

  102. 102.

    Hetzer, R., Javier, M. & Delmo Walter, E. M. The double-orifice valve technique to treat tricuspid valve incompetence. J. Heart Valve Dis. 25, 66–71 (2016).

    PubMed  Google Scholar 

  103. 103.

    Chang, B. C. et al. Long-term clinical results of tricuspid valve replacement. Ann. Thorac. Surg. 81, 1317–1323 (2006).

    PubMed  Google Scholar 

  104. 104.

    Songur, C. M., Simsek, E., Ozen, A., Kocabeyoglu, S. & Donmez, T. A. Long term results comparing mechanical and biological prostheses in the tricuspid valve position: which valve types are better—mechanical or biological prostheses? Heart Lung Circ. 23, 1175–1178 (2014).

    PubMed  Google Scholar 

  105. 105.

    Kaplan, M., Kut, M. S., Demirtas, M. M., Cimen, S. & Ozler, A. Prosthetic replacement of tricuspid valve: bioprosthetic or mechanical. Ann. Thorac. Surg. 73, 467–473 (2002).

    PubMed  Google Scholar 

  106. 106.

    Cho, W. C. et al. Mechanical valve replacement versus bioprosthetic valve replacement in the tricuspid valve position. J. Card. Surg. 28, 212–217 (2013).

    PubMed  Google Scholar 

  107. 107.

    Filsoufi, F. et al. Long-term outcomes of tricuspid valve replacement in the current era. Ann. Thorac. Surg. 80, 845–850 (2005).

    PubMed  Google Scholar 

  108. 108.

    Nickenig, G. et al. Transcatheter treatment of severe tricuspid regurgitation with the edge-to-edge MitraClip technique. Circulation 135, 1802–1814 (2017).

    PubMed  Google Scholar 

  109. 109.

    Besler, C. et al. Predictors of procedural and clinical outcomes in patients with symptomatic tricuspid regurgitation undergoing transcatheter edge-to-edge repair. JACC Cardiovasc. Interv. 11, 1119–1128 (2018).

    PubMed  Google Scholar 

  110. 110.

    Braun, D. et al. One-year results of transcatheter treatment of severe tricuspid regurgitation using the edge-to-edge repair technique. EuroIntervention 14, e413–e415 (2018).

    PubMed  Google Scholar 

  111. 111.

    US National Library of Medicine. (2018).

  112. 112.

    Campelo-Parada, F. et al. First-in-man experience of a novel transcatheter repair system for treating severe tricuspid regurgitation. J. Am. Coll. Cardiol. 66, 2475–2483 (2015).

    PubMed  Google Scholar 

  113. 113.

    Perlman, G. et al. Transcatheter tricuspid valve repair with a new transcatheter coaptation system for the treatment of severe tricuspid regurgitation: 1-year clinical and echocardiographic results. JACC Cardiovasc. Interv. 10, 1994–2003 (2017).

    PubMed  Google Scholar 

  114. 114.

    US National Library of Medicine. (2019).

  115. 115.

    Kodali, S. The FORMA early feasibility study: 30-day outcomes of transcatheter tricuspid valve therapy in patients with severe secondary tricuspid regurgitation. Presented at Transcatheter Cardiovascular Therapeutics (TCT), 2017.

  116. 116.

    Asmarats, L., Philippon, F., Bedard, E. & Rodes-Cabau, J. FORMA tricuspid repair system: device enhancements and initial experience. EuroIntervention 14, 1656–1657 (2019).

  117. 117.

    US National Library of Medicine. (2017).

  118. 118.

    Praz, F. et al. Compassionate use of the PASCAL transcatheter mitral valve repair system for patients with severe mitral regurgitation: a multicentre, prospective, observational, first-in-man study. Lancet 390, 773–780 (2017).

    PubMed  Google Scholar 

  119. 119.

    Fam, N. P., Ho, E. C., Zahrani, M., Samargandy, S. & Connelly, K. A. Transcatheter tricuspid valve repair with the PASCAL system. JACC Cardiovasc. Interv. 11, 407–408 (2018).

    PubMed  Google Scholar 

  120. 120.

    Kay, J. H., Maselli-Campagna, G. & Tsuji, K. K. Surgical treatment of tricuspid insufficiency. Ann. Surg. 162, 53–58 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Schofer, J. et al. First-in-human transcatheter tricuspid valve repair in a patient with severely regurgitant tricuspid valve. J. Am. Coll. Cardiol. 65, 1190–1195 (2015).

    PubMed  Google Scholar 

  122. 122.

    US National Library of Medicine. (2017).

  123. 123.

    Hahn, R. T. et al. Early feasibility study of a transcatheter tricuspid valve annuloplasty: SCOUT trial 30-day results. J. Am. Coll. Cardiol. 69, 1795–1806 (2017).

    PubMed  Google Scholar 

  124. 124.

    Hahn, R. T. SCOUT I 12-month data. Presented at Transcatheter Cardiovascular Therapeutics (TCT), 2017.

  125. 125.

    US National Library of Medicine. (2018).

  126. 126.

    Latib, A. et al. First-in-man implantation of a tricuspid annular remodeling device for functional tricuspid regurgitation. JACC Cardiovasc. Interv. 8, e211–e214 (2015).

    PubMed  Google Scholar 

  127. 127.

    US National Library of Medicine. (2018).

  128. 128.

    Denti, P. 4Tech – clinical outcomes and current challenges. Presented at PCR London Valves, 2017.

  129. 129.

    US National Library of Medicine. (2018).

  130. 130.

    Khan, J. M. et al. Transcatheter pledget-assisted suture tricuspid annuloplasty (PASTA) to create a double-orifice valve. Catheter. Cardiovasc. Interv. 92, E175–E184 (2018).

    PubMed  Google Scholar 

  131. 131.

    Greenbaum, A. B. Transcatheter tricuspid valve repair: available techniques and patient candidates criteria. Presented at the Cardiovascular Research Technologies (CRT) Annual Symposium, 2018.

  132. 132.

    US National Library of Medicine. (2016).

  133. 133.

    Maisano, F. Transcatheter tricuspid valve repair: up to six-month results from the muticentre trial. Presented at EuroPCR, 2018.

  134. 134.

    US National Library of Medicine. (2019).

  135. 135.

    Rogers, J. H. et al. Transcatheter annuloplasty for mitral regurgitation with an adjustable semi-rigid complete ring: initial experience with the Millipede IRIS device. Structural Heart 2, 45–50 (2018).

    Google Scholar 

  136. 136.

    Rogers, T. et al. Transatrial intrapericardial tricuspid annuloplasty. JACC Cardiovasc. Interv. 8, 483–491 (2015).

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Lauten, A. et al. Heterotopic transcatheter tricuspid valve implantation: first-in-man application of a novel approach to tricuspid regurgitation. Eur. Heart J. 32, 1207–1213 (2011).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Laule, M. et al. Percutaneous transfemoral management of severe secondary tricuspid regurgitation with Edwards Sapien XT bioprosthesis: first-in-man experience. J. Am. Coll. Cardiol. 61, 1929–1931 (2013).

    PubMed  Google Scholar 

  139. 139.

    Figulla, H. R., Kiss, K. & Lauten, A. Transcatheter interventions for tricuspid regurgitation - heterotopic technology: TricValve. EuroIntervention 12, Y116–Y118 (2016).

    PubMed  Google Scholar 

  140. 140.

    Toggweiler, S. et al. First-in-man implantation of the Tricento(R) transcatheter heart valve for the treatment of severe tricuspid regurgitation. EuroIntervention 14, 758–761 (2018).

    PubMed  Google Scholar 

  141. 141.

    Lauten, A. et al. Interventional treatment of severe tricuspid regurgitation: early clinical experience in a multicenter, observational, first-in-man study. Circ. Cardiovasc. Interv. 11, e006061 (2018).

    PubMed  Google Scholar 

  142. 142.

    US National Library of Medicine. (2018).

  143. 143.

    US National Library of Medicine. (2018).

  144. 144.

    Boudjemline, Y. et al. Steps toward the percutaneous replacement of atrioventricular valves an experimental study. J. Am. Coll. Cardiol. 46, 360–365 (2005).

    PubMed  Google Scholar 

  145. 145.

    Bai, Y. et al. An integrated pericardial valved stent special for percutaneous tricuspid implantation: an animal feasibility study. J. Surg. Res. 160, 215–221 (2010).

    PubMed  Google Scholar 

  146. 146.

    Kefer, J., Sluysmans, T. & Vanoverschelde, J. L. Transcatheter sapien valve implantation in a native tricuspid valve after failed surgical repair. Catheter. Cardiovasc. Interv. 83, 841–845 (2014).

    PubMed  Google Scholar 

  147. 147.

    Navia, J. L. et al. First-in-human implantations of the NaviGate bioprosthesis in a severely dilated tricuspid annulus and in a failed tricuspid annuloplasty ring. Circ. Cardiovasc. Interv. 10, e005840 (2017).

    PubMed  Google Scholar 

  148. 148.

    Asmarats, L. et al. Transcatheter tricuspid valve replacement for treating severe tricuspid regurgitation: initial experience with the NaviGate bioprosthesis. Can. J. Cardiol. 34, 1370.e5–1370.e7 (2018).

    Google Scholar 

  149. 149.

    Hahn, R. T. NaviGate transcatheter tricuspid valve replacement: early findings – technology and clinical updates. Presented at the Structural Heart Disease Summit, 2018.

  150. 150.

    US National Library of Medicine. (2018).

  151. 151.

    Taramasso, M. et al. Outcomes after current transcatheter tricuspid valve intervention: mid-term results from the International TriValve Registry. JACC Cardiovasc. Interv. 12, 155–165 (2018).

    PubMed  Google Scholar 

  152. 152.

    Rogers, J. H. & Bolling, S. F. The tricuspid valve: current perspective and evolving management of tricuspid regurgitation. Circulation 119, 2718–2725 (2009).

    PubMed  Google Scholar 

  153. 153.

    van Rosendael, P. J. et al. Computed tomography for planning transcatheter tricuspid valve therapy. Eur. Heart J. 38, 665–674 (2017).

    PubMed  Google Scholar 

  154. 154.

    Chikwe, J. Y. & Castillo, J. G. in Hurst’s the Heart (eds Fuster, V., Harrington, R. A., Narula, J. & Eapen, Z. J.) 14th edn Ch. 51 (McGraw-Hill, New York, 2017)

  155. 155.

    Fam, N. P., Ho, E. C., Ahmed, N. & Connelly, K. A. Transcatheter edge-to-edge repair of lead-associated tricuspid regurgitation. EuroIntervention 13, 1166–1167 (2017).

    PubMed  Google Scholar 

  156. 156.

    Ancona, F. et al. Multimodality imaging of the tricuspid valve with implication for percutaneous repair approaches. Heart 103, 1073–1081 (2017).

    PubMed  Google Scholar 

  157. 157.

    Schueler, R., Hammerstingl, C., Werner, N. & Nickenig, G. Interventional direct annuloplasty for functional tricuspid regurgitation. JACC Cardiovasc. Interv 10, 415–416 (2017).

    PubMed  Google Scholar 

Download references


L.A. has received support from a grant from the Fundación Alfonso Martin Escudero. J.R.-C. holds the Canadian Research Chair ‘Fondation Famille Jacques Larivière’ for the Development of Structural Heart Disease Interventions.

Author information




All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Josep Rodés-Cabau.

Ethics declarations

Competing interests

M.T. is a consultant for 4TECH, Abbott Vascular, Boston Scientific and CoreMedic and has received speaker honoraria from Edwards Lifesciences. J.R.-C. has received institutional research grants from Edwards Lifesciences. L.A. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asmarats, L., Taramasso, M. & Rodés-Cabau, J. Tricuspid valve disease: diagnosis, prognosis and management of a rapidly evolving field. Nat Rev Cardiol 16, 538–554 (2019).

Download citation

Further reading


Quick links