Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease

Abstract

Epidemiological and clinical studies over the past decade have firmly established that elevated plasma concentrations of lipoprotein(a) (Lp(a)) are an important, independent and probably causal risk factor for the development of cardiovascular diseases. Whereas a link between Lp(a) levels and atherosclerotic cardiovascular disease (ASCVD) has been appreciated for decades, the role of Lp(a) in calcific aortic valve disease (CAVD) and aortic stenosis has come into focus only in the past 5 years. ASCVD and CAVD are aetiologically distinct but have several risk factors in common and similar pathological processes at the cellular and molecular levels. Oxidized phospholipids, which modify Lp(a) primarily by covalent binding to its unique apolipoprotein(a) (apo(a)) component, might hold the key to Lp(a) pathogenicity and provide a mechanistic link between ASCVD and CAVD. Oxidized phospholipids colocalize with apo(a)–Lp(a) in arterial and aortic valve lesions and directly participate in the pathogenesis of these disorders by promoting endothelial dysfunction, lipid deposition, inflammation and osteogenic differentiation, leading to calcification. The advent of potent Lp(a)-lowering therapies provides the opportunity to address directly the causality of Lp(a) in ASCVD and CAVD and, more importantly, to provide both a novel approach to reduce the residual risk of ASCVD and a long-sought medical treatment for CAVD.

Key points

  • Elevated plasma concentrations of lipoprotein(a) (Lp(a)) are an independent — and possibly causal — risk factor for atherothrombotic cardiovascular disease and calcific aortic valve disease.

  • The mechanisms by which Lp(a) accelerates these disorders are not fully understood, but the oxidized phospholipids present on apolipoprotein(a) might have an important role.

  • Lp(a) is the major carrier of oxidized phospholipids in human plasma, and interventions that lower plasma Lp(a) levels also reduce the oxidized phospholipid concentration in plasma.

  • The oxidized phospholipids on apolipoprotein(a) have been shown to mediate numerous, and partially overlapping, molecular and cellular events underlying atherothrombotic cardiovascular disease and calcific aortic valve disease.

  • Direct evidence demonstrating that lowering plasma Lp(a) levels reduces the risk of cardiovascular disease is lacking, as are conclusive data on the specific role of Lp(a)-associated oxidized phospholipids.

  • Cardiovascular outcome studies and further basic science investigations will be required to address these important questions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of lipoprotein(a).
Fig. 2: Regulation of lipoprotein(a) biosynthesis and catabolism.
Fig. 3: Cellular effects of lipoprotein(a) and lipoprotein(a)-associated oxidized phospholipids.
Fig. 4: Molecular events elicited by oxidized phospholipids on apolipoprotein(a) and lipoprotein(a).

Similar content being viewed by others

References

  1. Ellis, K. L., Boffa, M. B., Sahebkar, A., Koschinsky, M. L. & Watts, G. F. The renaissance of lipoprotein(a): brave new world for preventive cardiology? Prog. Lipid Res. 68, 57–82 (2017).

    CAS  PubMed  Google Scholar 

  2. Witztum, J. L. & Ginsberg, H. N. Lipoprotein (a): coming of age at last. J. Lipid Res. 57, 336–339 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Berg, K. A. New serum type system in man — the Lp system. Acta Pathol. Microbiol. Scand. 59, 369–382 (1963).

    CAS  PubMed  Google Scholar 

  4. McLean, J. W. et al. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 330, 132–137 (1987).

    CAS  PubMed  Google Scholar 

  5. van der Hoek, Y. Y., Wittekoek, M. E., Beisiegel, U., Kastelein, J. J. & Koschinsky, M. L. The apolipoprotein(a) kringle IV repeats which differ from the major repeat kringle are present in variably-sized isoforms. Hum. Mol. Genet. 2, 361–366 (1993).

    PubMed  Google Scholar 

  6. Lackner, C., Cohen, J. C. & Hobbs, H. H. Molecular definition of the extreme size polymorphism in apolipoprotein(a). Hum. Mol. Genet. 2, 933–940 (1993).

    CAS  PubMed  Google Scholar 

  7. Koschinsky, M. L., Cote, G. P., Gabel, B. & van der Hoek, Y. Y. Identification of the cysteine residue in apolipoprotein(a) that mediates extracellular coupling with apolipoprotein B-100. J. Biol. Chem. 268, 19819–19825 (1993).

    CAS  PubMed  Google Scholar 

  8. Guevara, J. et al. Comparison of ligand-binding sites of modeled apo[a] kringle-like sequences in human lipoprotein[a]. Arterioscler. Thromb. 13, 758–770 (1993).

    CAS  PubMed  Google Scholar 

  9. Guevara, J. Jr. et al. Proposed mechanisms for binding of apo[a] kringle type 9 to apo B-100 in human lipoprotein[a]. Biophys. J. 64, 686–700 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rahman, M., Jia, Z., Gabel, B. R., Marcovina, S. M. & Koschinsky, M. L. Expression of apolipoprotein(a) kringle IV type 9 in Escherichia coli: demonstration of a specific interaction between kringle IV type 9 and apolipoproteinB-100. Protein Eng. 11, 1249–1256 (1998).

    CAS  PubMed  Google Scholar 

  11. McCormick, S. P. et al. Mutagenesis of the human apolipoprotein B gene in a yeast artificial chromosome reveals the site of attachment for apolipoprotein(a). Proc. Natl Acad. Sci. USA 92, 10147–10151 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gabel, B. R. & Koschinsky, M. I. Analysis of the proteolytic activity of a recombinant form of apolipoprotein(a). Biochemistry 34, 15777–15784 (1995).

    CAS  PubMed  Google Scholar 

  13. Boffa, M. B. & Koschinsky, M. L. Lipoprotein (a): truly a direct prothrombotic factor in cardiovascular disease? J. Lipid Res. 57, 745–757 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Castellino, F. J. & McCance, S. G. The kringle domains of human plasminogen. Ciba Found. Symp. 212, 46–60; discussion 60–65 (1997).

    CAS  PubMed  Google Scholar 

  15. Rahman, M. N. et al. Comparative analyses of the lysine binding site properties of apolipoprotein(a) kringle IV types 7 and 10. Biochemistry 41, 1149–1155 (2002).

    CAS  PubMed  Google Scholar 

  16. Harpel, P. C., Gordon, B. R. & Parker, T. S. Plasmin catalyzes binding of lipoprotein (a) to immobilized fibrinogen and fibrin. Proc. Natl Acad. Sci. USA 86, 3847–3851 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoover-Plow, J. & Huang, M. Lipoprotein(a) metabolism: potential sites for therapeutic targets. Metabolism 62, 479–491 (2013).

    CAS  PubMed  Google Scholar 

  18. Ernst, A. et al. Identification of two functionally distinct lysine-binding sites in kringle 37 and in kringles 32–36 of human apolipoprotein(a). J. Biol. Chem. 270, 6227–6234 (1995).

    CAS  PubMed  Google Scholar 

  19. Gabel, B. R., May, L. F., Marcovina, S. M. & Koschinsky, M. L. Lipoprotein(a) assembly. Quantitative assessment of the role of apo(a) kringle IV types 2–10 in particle formation. Arterioscler. Thromb. Vasc. Biol. 16, 1559–1567 (1996).

    CAS  PubMed  Google Scholar 

  20. Reyes-Soffer, G., Ginsberg, H. N. & Ramakrishnan, R. The metabolism of lipoprotein (a): an ever-evolving story. J. Lipid Res. 58, 1756–1764 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kostner, K. M. & Kostner, G. M. Lipoprotein (a): a historical appraisal. J. Lipid Res. 58, 1–14 (2017).

    CAS  PubMed  Google Scholar 

  22. Chiesa, G. et al. Reconstitution of lipoprotein(a) by infusion of human low density lipoprotein into transgenic mice expressing human apolipoprotein(a). J. Biol. Chem. 267, 24369–24374 (1992).

    CAS  PubMed  Google Scholar 

  23. White, A. L. & Lanford, R. E. Cell surface assembly of lipoprotein(a) in primary cultures of baboon hepatocytes. J. Biol. Chem. 269, 28716–28723 (1994).

    CAS  PubMed  Google Scholar 

  24. Bonen, D. K., Hausman, A. M., Hadjiagapiou, C., Skarosi, S. F. & Davidson, N. O. Expression of a recombinant apolipoprotein(a) in HepG2 cells. Evidence for intracellular assembly of lipoprotein(a). J. Biol. Chem. 272, 5659–5667 (1997).

    CAS  PubMed  Google Scholar 

  25. Su, W., Campos, H., Judge, H., Walsh, B. W. & Sacks, F. M. Metabolism of Apo(a) and ApoB100 of lipoprotein(a) in women: effect of postmenopausal estrogen replacement. J. Clin. Endocrinol. Metab. 83, 3267–3276 (1998).

    CAS  PubMed  Google Scholar 

  26. Frischmann, M. E. et al. In vivo stable-isotope kinetic study suggests intracellular assembly of lipoprotein(a). Atherosclerosis 225, 322–327 (2012).

    CAS  PubMed  Google Scholar 

  27. Demant, T., Seeberg, K., Bedynek, A. & Seidel, D. The metabolism of lipoprotein(a) and other apolipoprotein B-containing lipoproteins: a kinetic study in humans. Atherosclerosis 157, 325–339 (2001).

    CAS  PubMed  Google Scholar 

  28. Jenner, J. L. et al. The metabolism of apolipoproteins (a) and B-100 within plasma lipoprotein (a) in human beings. Metabolism 54, 361–369 (2005).

    CAS  PubMed  Google Scholar 

  29. Diffenderfer, M. R. et al. Distinct metabolism of apolipoproteins (a) and B-100 within plasma lipoprotein(a). Metabolism 65, 381–390 (2016).

    CAS  PubMed  Google Scholar 

  30. Rader, D. J., Cain, W., Zech, L. A., Usher, D. & Brewer, H. B. Jr. Variation in lipoprotein(a) concentrations among individuals with the same apolipoprotein (a) isoform is determined by the rate of lipoprotein(a) production. J. Clin. Invest. 91, 443–447 (1993).

    CAS  Google Scholar 

  31. Krempler, F., Kostner, G. M., Bolzano, K. & Sandhofer, F. Turnover of lipoprotein (a) in man. J. Clin. Invest. 65, 1483–1490 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rader, D. J. et al. The inverse association of plasma lipoprotein(a) concentrations with apolipoprotein(a) isoform size is not due to differences in Lp(a) catabolism but to differences in production rate. J. Clin. Invest. 93, 2758–2763 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. White, A. L., Guerra, B. & Lanford, R. E. Influence of allelic variation on apolipoprotein(a) folding in the endoplasmic reticulum. J. Biol. Chem. 272, 5048–5055 (1997).

    CAS  PubMed  Google Scholar 

  34. White, A. L., Hixson, J. E., Rainwater, D. L. & Lanford, R. E. Molecular basis for “null” lipoprotein(a) phenotypes and the influence of apolipoprotein(a) size on plasma lipoprotein(a) level in the baboon. J. Biol. Chem. 269, 9060–9066 (1994).

    CAS  PubMed  Google Scholar 

  35. Marcovina, S. M. et al. Differences in Lp[a] concentrations and apo[a] polymorphs between black and white Americans. J. Lipid Res. 37, 2569–2585 (1996).

    CAS  PubMed  Google Scholar 

  36. Coassin, S. et al. A novel but frequent variant in LPA KIV-2 is associated with a pronounced Lp(a) and cardiovascular risk reduction. Eur. Heart J. 38, 1823–1831 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Boffelli, D., Zajchowski, D. A., Yang, Z. & Lawn, R. M. Estrogen modulation of apolipoprotein(a) expression. Identification of a regulatory element. J. Biol. Chem. 274, 15569–15574 (1999).

    CAS  PubMed  Google Scholar 

  38. Zysow, B. R., Kauser, K., Lawn, R. M. & Rubanyi, G. M. Effects of estrus cycle, ovariectomy, and treatment with estrogen, tamoxifen, and progesterone on apolipoprotein(a) gene expression in transgenic mice. Arterioscler. Thromb. Vasc. Biol. 17, 1741–1745 (1997).

    CAS  PubMed  Google Scholar 

  39. Chennamsetty, I. et al. Nicotinic acid inhibits hepatic APOA gene expression: studies in humans and in transgenic mice. J. Lipid Res. 53, 2405–2412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chennamsetty, I. et al. Farnesoid X receptor represses hepatic human APOA gene expression. J. Clin. Invest. 121, 3724–3734 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Muller, N. et al. IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans. J. Lipid Res. 56, 1034–1042 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. Cain, W. J. et al. Lipoprotein [a] is cleared from the plasma primarily by the liver in a process mediated by apolipoprotein [a]. J. Lipid Res. 46, 2681–2691 (2005).

    CAS  PubMed  Google Scholar 

  43. Hofmann, S. L. et al. Overexpression of human low density lipoprotein receptors leads to accelerated catabolism of Lp(a) lipoprotein in transgenic mice. J. Clin. Invest. 85, 1542–1547 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Romagnuolo, R. et al. Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor. J. Biol. Chem. 290, 11649–11662 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Raal, F. J. et al. PCSK9 inhibition-mediated reduction in Lp(a) with evolocumab: an analysis of 10 clinical trials and the LDL receptor’s role. J. Lipid Res. 57, 1086–1096 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tam, S. P., Zhang, X. & Koschinsky, M. L. Interaction of a recombinant form of apolipoprotein[a] with human fibroblasts and with the human hepatoma cell line HepG2. J. Lipid Res. 37, 518–533 (1996).

    CAS  PubMed  Google Scholar 

  47. Sharma, M., Redpath, G. M., Williams, M. J. & McCormick, S. P. Recycling of apolipoprotein(a) after PlgRKT-mediated endocytosis of lipoprotein(a). Circ. Res. 120, 1091–1102 (2017).

    CAS  PubMed  Google Scholar 

  48. Yang, X. P. et al. Scavenger receptor-BI is a receptor for lipoprotein(a). J. Lipid Res. 54, 2450–2457 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gaudet, D. et al. Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am. J. Cardiol. 114, 711–715 (2014).

    CAS  PubMed  Google Scholar 

  50. Raal, F. J. et al. Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): a pooled analysis of more than 1,300 patients in 4 phase II trials. J. Am. Coll. Cardiol. 63, 1278–1288 (2014).

    CAS  PubMed  Google Scholar 

  51. Watts, G. F. et al. Controlled study of the effect of proprotein convertase subtilisin-kexin type 9 inhibition with evolocumab on lipoprotein(a) particle kinetics. Eur. Heart J. 39, 2577–2585 (2018).

    PubMed  Google Scholar 

  52. Villard, E. F. et al. PCSK9 modulates the secretion but not the cellular uptake of lipoprotein(a) ex vivo. JACC Basic Transl Sci. 1, 419–427 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. Boffelli, D., Cheng, J. F. & Rubin, E. M. Convergent evolution in primates and an insectivore. Genomics 83, 19–23 (2004).

    CAS  PubMed  Google Scholar 

  54. Schneider, M. et al. High-level lipoprotein [a] expression in transgenic mice: evidence for oxidized phospholipids in lipoprotein [a] but not in low density lipoproteins. J. Lipid Res. 46, 769–778 (2005).

    CAS  PubMed  Google Scholar 

  55. Schaefer, E. J. et al. Lipoprotein(a) levels and risk of coronary heart disease in men. The Lipid Research Clinics Coronary Primary Prevention Trial. JAMA 271, 999–1003 (1994).

    CAS  PubMed  Google Scholar 

  56. Bostom, A. G. et al. A prospective investigation of elevated lipoprotein (a) detected by electrophoresis and cardiovascular disease in women. The Framingham Heart Study. Circulation 90, 1688–1695 (1994).

    CAS  PubMed  Google Scholar 

  57. Ridker, P. M., Hennekens, C. H. & Stampfer, M. J. A prospective study of lipoprotein(a) and the risk of myocardial infarction. JAMA 270, 2195–2199 (1993).

    CAS  PubMed  Google Scholar 

  58. Cantin, B. et al. Is lipoprotein(a) an independent risk factor for ischemic heart disease in men? The Quebec Cardiovascular Study. J. Am. Coll. Cardiol. 31, 519–525 (1998).

    CAS  PubMed  Google Scholar 

  59. Marcovina, S. M. & Albers, J. J. Lipoprotein (a) measurements for clinical application. J. Lipid Res. 57, 526–537 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Emerging, Risk Factors Collaboration. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA 302, 412–423 (2009).

    Google Scholar 

  61. Clarke, R. et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 361, 2518–2528 (2009).

    CAS  PubMed  Google Scholar 

  62. Kamstrup, P. R., Tybjaerg-Hansen, A., Steffensen, R. & Nordestgaard, B. G. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA 301, 2331–2339 (2009).

    CAS  PubMed  Google Scholar 

  63. Nordestgaard, B. G. & Langsted, A. Lipoprotein (a) as a cause of cardiovascular disease: insights from epidemiology, genetics, and biology. J. Lipid Res. 57, 1953–1975 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kamstrup, P. R. & Nordestgaard, B. G. Lipoprotein(a) concentrations, isoform size, and risk of type 2 diabetes: a Mendelian randomisation study. Lancet Diabetes Endocrinol. 1, 220–227 (2013).

    CAS  PubMed  Google Scholar 

  65. Kamstrup, P. R. & Nordestgaard, B. G. Elevated lipoprotein(a) levels, LPA risk genotypes, and increased risk of heart failure in the general population. JACC Heart Fail. 4, 78–87 (2016).

    PubMed  Google Scholar 

  66. Thanassoulis, G. et al. Genetic associations with valvular calcification and aortic stenosis. N. Engl. J. Med. 368, 503–512 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kamstrup, P. R., Tybjaerg-Hansen, A. & Nordestgaard, B. G. Elevated lipoprotein(a) and risk of aortic valve stenosis in the general population. J. Am. Coll. Cardiol. 63, 470–477 (2014).

    CAS  PubMed  Google Scholar 

  68. Kamstrup, P. R., Tybjaerg-Hansen, A. & Nordestgaard, B. G. Genetic evidence that lipoprotein(a) associates with atherosclerotic stenosis rather than venous thrombosis. Arterioscler. Thromb. Vasc. Biol. 32, 1732–1741 (2012).

    CAS  PubMed  Google Scholar 

  69. Kivimaki, M. et al. Conventional and Mendelian randomization analyses suggest no association between lipoprotein(a) and early atherosclerosis: the Young Finns Study. Int. J. Epidemiol. 40, 470–478 (2011).

    PubMed  Google Scholar 

  70. Langsted, A., Kamstrup, P. R. & Nordestgaard, B. G. High lipoprotein(a) and low risk of major bleeding in brain and airways in the general population: a Mendelian randomization study. Clin. Chem. 63, 1714–1723 (2017).

    CAS  PubMed  Google Scholar 

  71. Saleheen, D. et al. Apolipoprotein(a) isoform size, lipoprotein(a) concentration, and coronary artery disease: a mendelian randomisation analysis. Lancet Diabetes Endocrinol. 5, 524–533 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Helgadottir, A. et al. Apolipoprotein(a) genetic sequence variants associated with systemic atherosclerosis and coronary atherosclerotic burden but not with venous thromboembolism. J. Am. Coll. Cardiol. 60, 722–729 (2012).

    CAS  PubMed  Google Scholar 

  73. Hopewell, J. C. et al. Lipoprotein(a) genetic variants associated with coronary and peripheral vascular disease but not with stroke risk in the Heart Protection Study. Circ. Cardiovasc. Genet. 4, 68–73 (2011).

    CAS  PubMed  Google Scholar 

  74. Laschkolnig, A. et al. Lipoprotein (a) concentrations, apolipoprotein (a) phenotypes, and peripheral arterial disease in three independent cohorts. Cardiovasc. Res. 103, 28–36 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gurdasani, D. et al. Lipoprotein(a) and risk of coronary, cerebrovascular, and peripheral artery disease: the EPIC-Norfolk prospective population study. Arterioscler. Thromb. Vasc. Biol. 32, 3058–3065 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Emdin, C. A. et al. Phenotypic characterization of genetically lowered human lipoprotein(a) levels. J. Am. Coll. Cardiol. 68, 2761–2772 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Afshar, M. et al. Estimating the population impact of Lp(a) lowering on the incidence of myocardial infarction and aortic stenosis — brief report. Arterioscler. Thromb. Vasc. Biol. 36, 2421–2423 (2016).

    CAS  PubMed  Google Scholar 

  78. Burgess, S. et al. Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies: a Mendelian randomization analysis. JAMA Cardiol. 3, 619–627 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. Albers, J. J. et al. Relationship of apolipoproteins A-1 and B, and lipoprotein(a) to cardiovascular outcomes: the AIM-HIGH trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglyceride and Impact on Global Health Outcomes). J. Am. Coll. Cardiol. 62, 1575–1579 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tsimikas, S. et al. Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet 386, 1472–1483 (2015).

    CAS  PubMed  Google Scholar 

  81. Viney, N. J. et al. Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet 388, 2239–2253 (2016).

    CAS  PubMed  Google Scholar 

  82. Berg, K. et al. Lp(a) lipoprotein level predicts survival and major coronary events in the Scandinavian Simvastatin Survival Study. Clin. Genet. 52, 254–261 (1997).

    CAS  PubMed  Google Scholar 

  83. Shlipak, M. G. et al. Estrogen and progestin, lipoprotein(a), and the risk of recurrent coronary heart disease events after menopause. JAMA 283, 1845–1852 (2000).

    CAS  PubMed  Google Scholar 

  84. Nestel, P. J. et al. Plasma lipoprotein(a) concentration predicts future coronary and cardiovascular events in patients with stable coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 33, 2902–2908 (2013).

    CAS  PubMed  Google Scholar 

  85. Arsenault, B. J. et al. Prediction of cardiovascular events in statin-treated stable coronary patients of the treating to new targets randomized controlled trial by lipid and non-lipid biomarkers. PLOS ONE 9, e114519 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. O’Donoghue, M. L. et al. Lipoprotein(a) for risk assessment in patients with established coronary artery disease. J. Am. Coll. Cardiol. 63, 520–527 (2014).

    PubMed  Google Scholar 

  87. Schwartz, G. G. et al. Association of lipoprotein(a) with risk of recurrent ischemic events following acute coronary syndrome: Analysis of the dal-outcomes randomized clinical trial. JAMA Cardiol. 3, 164–168 (2017).

    PubMed Central  Google Scholar 

  88. Zewinger, S. et al. Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study. Lancet Diabetes Endocrinol. 5, 534–543 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dahabreh, I. J. & Kent, D. M. Index event bias as an explanation for the paradoxes of recurrence risk research. JAMA 305, 822–823 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Smits, L. J. et al. Index event bias-a numerical example. J. Clin. Epidemiol. 66, 192–196 (2013).

    PubMed  Google Scholar 

  91. Varvel, S., McConnell, J. P. & Tsimikas, S. Prevalence of elevated Lp(a) mass levels and patient thresholds in 532 359 patients in the United States. Arterioscler. Thromb. Vasc. Biol. 36, 2239–2245 (2016).

    CAS  PubMed  Google Scholar 

  92. O’Donoghue, M. L. et al. Lipoprotein(a), PCSK9 inhibition and Cardiovascular Risk: Insights from the FOURIER Trial. Circulation https://doi.org/10.1161/CIRCULATIONAHA.118.037184 (2018).

    PubMed  Google Scholar 

  93. Bittner, V. et al. Lp(a) and cardiovascular outcomes: an analysis from the ODYSSEY OUTCOMES trial. Atheroscler. Suppl. 32, 24–25 (2018).

    Google Scholar 

  94. Alonso, R. et al. Lipoprotein(a) levels in familial hypercholesterolemia: an important predictor of cardiovascular disease independent of the type of LDL receptor mutation. J. Am. Coll. Cardiol. 63, 1982–1989 (2014).

    CAS  PubMed  Google Scholar 

  95. Langsted, A., Kamstrup, P. R., Benn, M., Tybjaerg-Hansen, A. & Nordestgaard, B. G. High lipoprotein(a) as a possible cause of clinical familial hypercholesterolaemia: a prospective cohort study. Lancet Diabetes Endocrinol. 4, 577–587 (2016).

    CAS  PubMed  Google Scholar 

  96. Ellis, K. L. et al. Elevated lipoprotein(a) and familial hypercholesterolemia in the coronary care unit: between Scylla and Charybdis. Clin. Cardiol. 41, 378–384 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. van Capelleveen, J. C., van der Valk, F. M. & Stroes, E. S. Current therapies for lowering lipoprotein (a). J. Lipid Res. 57, 1612–1618 (2016).

    PubMed  PubMed Central  Google Scholar 

  98. O’Brien, K. D. et al. Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arterioscler. Thromb. Vasc. Biol. 16, 523–532 (1996).

    PubMed  Google Scholar 

  99. Stewart, B. F. et al. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J. Am. Coll. Cardiol. 29, 630–634 (1997).

    CAS  PubMed  Google Scholar 

  100. Gotoh, T. et al. Correlation between lipoprotein(a) and aortic valve sclerosis assessed by echocardiography (the JMS Cardiac Echo and Cohort Study). Am. J. Cardiol. 76, 928–932 (1995).

    CAS  PubMed  Google Scholar 

  101. Thanassoulis, G. Lipoprotein (a) in calcific aortic valve disease: from genomics to novel drug target for aortic stenosis. J. Lipid Res. 57, 917–924 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mathieu, P., Arsenault, B. J., Boulanger, M. C., Bosse, Y. & Koschinsky, M. L. Pathobiology of Lp(a) in calcific aortic valve disease. Expert Rev. Cardiovasc. Ther. 15, 797–807 (2017).

    CAS  PubMed  Google Scholar 

  103. Chan, K. L. et al. Effect of Lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation 121, 306–314 (2010).

    CAS  PubMed  Google Scholar 

  104. Kvidal, P., Bergstrom, R., Horte, L. G. & Stahle, E. Observed and relative survival after aortic valve replacement. J. Am. Coll. Cardiol. 35, 747–756 (2000).

    CAS  PubMed  Google Scholar 

  105. Dweck, M. R., Boon, N. A. & Newby, D. E. Calcific aortic stenosis: a disease of the valve and the myocardium. J. Am. Coll. Cardiol. 60, 1854–1863 (2012).

    PubMed  Google Scholar 

  106. Schnitzler, J. G., Dallinga-Thie, G. M. & Kroon, J. The role of (modified) lipoproteins in vascular function: a duet between monocytes and the endothelium. Curr. Med. Chem. https://doi.org/10.2174/0929867325666180316121015 (2018).

    Article  Google Scholar 

  107. Berliner, J. A., Leitinger, N. & Tsimikas, S. The role of oxidized phospholipids in atherosclerosis. J. Lipid Res. 50, S207–S212 (2009).

    PubMed  PubMed Central  Google Scholar 

  108. Yeang, C. et al. Effect of therapeutic interventions on oxidized phospholipids on apolipoprotein B100 and lipoprotein(a). J. Clin. Lipidol. 10, 594–603 (2016).

    PubMed  Google Scholar 

  109. Tsimikas, S. et al. High-dose atorvastatin reduces total plasma levels of oxidized phospholipids and immune complexes present on apolipoprotein B-100 in patients with acute coronary syndromes in the MIRACL trial. Circulation 110, 1406–1412 (2004).

    CAS  PubMed  Google Scholar 

  110. Friedman, P., Horkko, S., Steinberg, D., Witztum, J. L. & Dennis, E. A. Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids. Importance of Schiff base formation and aldol condensation. J. Biol. Chem. 277, 7010–7020 (2002).

    CAS  PubMed  Google Scholar 

  111. Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558, 301–306 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. van Dijk, R. A. et al. Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions. J. Lipid Res. 53, 2773–2790 (2012).

    PubMed  PubMed Central  Google Scholar 

  113. Torzewski, M. et al. Lipoprotein(a) associated molecules are prominent components in plasma and valve leaflets in calcific aortic valve stenosis. JACC Basic Transl Sci. 2, 229–240 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. Bergmark, C. et al. A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. J. Lipid Res. 49, 2230–2239 (2008).

    CAS  PubMed  Google Scholar 

  115. Tsimikas, S. et al. Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J. Am. Coll. Cardiol. 41, 360–370 (2003).

    CAS  PubMed  Google Scholar 

  116. Tsimikas, S. et al. Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N. Engl. J. Med. 353, 46–57 (2005).

    CAS  PubMed  Google Scholar 

  117. Kiechl, S. et al. Oxidized phospholipids, lipoprotein(a), lipoprotein-associated phospholipase A2 activity, and 10-year cardiovascular outcomes: prospective results from the Bruneck study. Arterioscler. Thromb. Vasc. Biol. 27, 1788–1795 (2007).

    CAS  PubMed  Google Scholar 

  118. Tsimikas, S. et al. Oxidation-specific biomarkers, lipoprotein(a), and risk of fatal and nonfatal coronary events. J. Am. Coll. Cardiol. 56, 946–955 (2010).

    CAS  PubMed  Google Scholar 

  119. Capoulade, R. et al. Oxidized phospholipids, lipoprotein(a), and progression of calcific aortic valve stenosis. J. Am. Coll. Cardiol. 66, 1236–1246 (2015).

    CAS  PubMed  Google Scholar 

  120. Kamstrup, P. R., Hung, M. Y., Witztum, J. L., Tsimikas, S. & Nordestgaard, B. G. Oxidized phospholipids and risk of calcific aortic valve disease: the Copenhagen General Population Study. Arterioscler. Thromb. Vasc. Biol. 37, 1570–1578 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Tsimikas, S. et al. Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a): short-term and long-term immunologic responses to oxidized low-density lipoprotein. Circulation 109, 3164–3170 (2004).

    CAS  PubMed  Google Scholar 

  122. Arai, K. et al. The I4399M variant of apolipoprotein(a) is associated with increased oxidized phospholipids on apolipoprotein B-100 particles. Atherosclerosis 209, 498–503 (2010).

    CAS  PubMed  Google Scholar 

  123. Tsimikas, S., Tsironis, L. D. & Tselepis, A. D. New insights into the role of lipoprotein(a)-associated lipoprotein-associated phospholipase A2 in atherosclerosis and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 27, 2094–2099 (2007).

    CAS  PubMed  Google Scholar 

  124. Tselepis, A. D. Oxidized phospholipids and lipoprotein-associated phospholipase A2 as important determinants of Lp(a) functionality and pathophysiological role. J. Biomed. Res. 32, 13–22 (2016).

    Google Scholar 

  125. Leibundgut, G. et al. Determinants of binding of oxidized phospholipids on apolipoprotein (a) and lipoprotein (a). J. Lipid Res. 54, 2815–2830 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Scipione, C. A. et al. Mechanistic insights into Lp(a)-induced IL-8 expression: a role for oxidized phospholipid modification of apo(a). J. Lipid Res. 56, 2273–2285 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Taleb, A., Witztum, J. L. & Tsimikas, S. Oxidized phospholipids on apoB-100-containing lipoproteins: a biomarker predicting cardiovascular disease and cardiovascular events. Biomark. Med. 5, 673–694 (2011).

    CAS  PubMed  Google Scholar 

  128. Tsironis, L. D., Mitsios, J. V., Milionis, H. J., Elisaf, M. & Tselepis, A. D. Effect of lipoprotein (a) on platelet activation induced by platelet-activating factor: role of apolipoprotein (a) and endogenous PAF-acetylhydrolase. Cardiovasc. Res. 63, 130–138 (2004).

    CAS  PubMed  Google Scholar 

  129. Blencowe, C., Hermetter, A., Kostner, G. M. & Deigner, H. P. Enhanced association of platelet-activating factor acetylhydrolase with lipoprotein (a) in comparison with low density lipoprotein. J. Biol. Chem. 270, 31151–31157 (1995).

    CAS  PubMed  Google Scholar 

  130. Karabina, S. A. et al. PAF-acetylhydrolase activity of Lp(a) before and during Cu(2+)-induced oxidative modification in vitro. Atherosclerosis 125, 121–134 (1996).

    CAS  PubMed  Google Scholar 

  131. Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485–497 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Tsimikas, S. et al. Pro-inflammatory interleukin-1 genotypes potentiate the risk of coronary artery disease and cardiovascular events mediated by oxidized phospholipids and lipoprotein(a). J. Am. Coll. Cardiol. 63, 1724–1734 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Edelstein, C. et al. Lysine-phosphatidylcholine adducts in kringle V impart unique immunological and potential pro-inflammatory properties to human apolipoprotein(a). J. Biol. Chem. 278, 52841–52847 (2003).

    CAS  PubMed  Google Scholar 

  134. Seimon, T. A. et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab. 12, 467–482 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. van der Valk, F. M. et al. Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans. Circulation 134, 611–624 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. Cho, T., Jung, Y. & Koschinsky, M. L. Apolipoprotein(a), through its strong lysine-binding site in KIV(10′), mediates increased endothelial cell contraction and permeability via a Rho/Rho kinase/MYPT1-dependent pathway. J. Biol. Chem. 283, 30503–30512 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Cho, T., Romagnuolo, R., Scipione, C., Boffa, M. B. & Koschinsky, M. L. Apolipoprotein(a) stimulates nuclear translocation of beta-catenin: a novel pathogenic mechanism for lipoprotein(a). Mol. Biol. Cell 24, 210–221 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Liu, L. et al. Apolipoprotein(a) stimulates vascular endothelial cell growth and migration and signals through integrin alphaVbeta3. Biochem. J. 418, 325–336 (2009).

    CAS  PubMed  Google Scholar 

  139. Boonmark, N. W. et al. Modification of apolipoprotein(a) lysine binding site reduces atherosclerosis in transgenic mice. J. Clin. Invest. 100, 558–564 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Hughes, S. D. et al. Lipoprotein(a) vascular accumulation in mice. In vivo analysis of the role of lysine binding sites using recombinant adenovirus. J. Clin. Invest. 100, 1493–1500 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bouchareb, R. et al. Autotaxin derived from lipoprotein(a) and valve interstitial cells promotes inflammation and mineralization of the aortic valve. Circulation 132, 677–690 (2015).

    CAS  PubMed  Google Scholar 

  142. Nsaibia, M. J. et al. Autotaxin interacts with lipoprotein(a) and oxidized phospholipids in predicting the risk of calcific aortic valve stenosis in patients with coronary artery disease. J. Intern. Med. 280, 509–517 (2016).

    CAS  PubMed  Google Scholar 

  143. Yu, B. et al. Lipoprotein(a) induces human aortic valve interstitial cell calcification. JACC Basic Transl Sci. 2, 358–371 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. Tsimikas, S. The re-emergence of lipoprotein(a) in a broader clinical arena. Prog. Cardiovasc. Dis. 59, 135–144 (2016).

    PubMed  Google Scholar 

  145. Boffa, M. B. & Koschinsky, M. L. The journey towards understanding lipoprotein(a) and cardiovascular disease risk: are we there yet? Curr. Opin. Lipidol. 29, 259–267 (2018).

    CAS  PubMed  Google Scholar 

  146. Waldmann, E. & Parhofer, K. G. Lipoprotein apheresis to treat elevated lipoprotein(a). J. Lipid Res. 57, 1751–1757 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Mochalkin, I., Cheng, B., Klezovitch, O., Scanu, A. M. & Tulinsky, A. Recombinant kringle IV-10 modules of human apolipoprotein(a): structure, ligand binding modes, and biological relevance. Biochemistry 38, 1990–1998 (1999).

    CAS  PubMed  Google Scholar 

  148. Koschinsky, M. L. & Marcovina, S. M. Structure-function relationships in apolipoprotein(a): insights into lipoprotein(a) assembly and pathogenicity. Curr. Opin. Lipidol. 15, 167–174 (2004).

    CAS  PubMed  Google Scholar 

  149. Koschinsky, M. L., Boffa, M. B. o Marcovina, S. M. in Clinical Lipidology: A Companion to Braunwald’s Heart Disease (ed. Ballantyne, C. M.) 109–127 (Elsevier, 2015).

Download references

Acknowledgements

M.L.K. acknowledges grant support for her lipoprotein(a) research programme from the Heart and Stroke Foundation of Canada, the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada and ASPIRE Cardiovascular Research Awards.

Reviewer information

Nature Reviews Cardiology thanks G. Kostner, J. Witztum and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article and discussed its content. M.B.B. wrote the manuscript, and M.L.K. reviewed and edited it before submission.

Corresponding author

Correspondence to Michael B. Boffa.

Ethics declarations

Competing interests

M.B.B. has a research contract from IONIS. M.L.K. has research contracts from CardioVax, Eli Lilly and IONIS and is on the advisory board and/or speakers’ bureau of Amgen, Eli Lilly, IONIS and Sanofi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boffa, M.B., Koschinsky, M.L. Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat Rev Cardiol 16, 305–318 (2019). https://doi.org/10.1038/s41569-018-0153-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-018-0153-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing