Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transfer RNAs as dynamic and critical regulators of cancer progression

Abstract

Transfer RNAs (tRNAs) have been historically viewed as non-dynamic adaptors that decode the genetic code into proteins. Recent work has uncovered dynamic regulatory roles for these fascinating molecules. Advances in tRNA detection methods have revealed that specific tRNAs can become modulated upon DNA copy number and chromatin alterations and can also be perturbed by oncogenic signalling and transcriptional regulators in cancer cells or the tumour microenvironment. Such alterations in the levels of specific tRNAs have been shown to causally impact cancer progression, including metastasis. Moreover, sequencing methods have identified tRNA-derived small RNAs that influence various aspects of cancer progression, such as cell proliferation and invasion, and could serve as diagnostic and prognostic biomarkers or putative therapeutic targets in various cancers. Finally, there is accumulating evidence, including from genetic models, that specific tRNA synthetases — the enzymes responsible for charging tRNAs with amino acids — can either promote or suppress tumour formation. In this Review, we provide an overview of how deregulation of tRNAs influences cancer formation and progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transfer RNA structure and biogenesis.
Fig. 2: Roles of mature transfer RNAs in oncogenic transformation and cancer progression.
Fig. 3: Regulation of transfer RNA expression in cancer.
Fig. 4: Examples of oncogenic and tumour-suppressive transfer RNA-derived fragments in cancer.

Similar content being viewed by others

References

  1. Hoagland, M. B., Zamecnik, P. C. & Stephenson, M. L. Intermediate reactions in protein biosynthesis. Biochim. Biophys. Acta 24, 215–216 (1957).

    Article  CAS  PubMed  Google Scholar 

  2. Ogata, K. & Nohara, H. The possible role of the ribonucleic acid (RNA) of the pH 5 enzyme in amino acid activation. Biochim. Biophys. Acta 25, 659–660 (1957).

    Article  CAS  PubMed  Google Scholar 

  3. Holley, R. W. An alanine-dependent, ribonuclease-inhibited conversion of AMP to ATP, and its possible relationship to protein synthesis. J. Am. Chem. Soc. 79, 658–662 (1957). This study, together with Hoagland et al. (1957) and Ogata et al. (1957), is one of the original studies that discovered tRNAs.

    Article  CAS  Google Scholar 

  4. Söll, D. & RajBhandary, U. L. tRNA: Structure, Biosynthesis, and Function (Wiley, 1995).

  5. Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 22, 375–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Suzuki, T., Nagao, A. & Suzuki, T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu. Rev. Genet. 45, 299–329 (2011). This is a comprehensive review on human mt-tRNAs.

    Article  CAS  PubMed  Google Scholar 

  7. Orellana, E. A., Siegal, E. & Gregory, R. I. tRNA dysregulation and disease. Nat. Rev. Genet. 23, 651–664 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Holley, R. W. et al. Structure of a ribonucleic acid. Science 147, 1462–1465 (1965). This paper describes the first sequence of a tRNA.

    Article  CAS  PubMed  Google Scholar 

  9. Kim, S. H. et al. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185, 435–440 (1974).

    Article  CAS  PubMed  Google Scholar 

  10. Cramer, F., Erdmann, V. A., von der Haar, F. & Schlimme, E. Structure and reactivity of tRNA. J. Cell Physiol. 74, 163–178 (1969).

    Article  CAS  Google Scholar 

  11. Ramsay, E. P. & Vannini, A. Structural rearrangements of the RNA polymerase III machinery during tRNA transcription initiation. Biochim. Biophys. Acta Gene Regul. Mech. 1861, 285–294 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Phizicky, E. M. & Hopper, A. K. tRNA biology charges to the front. Genes Dev. 24, 1832–1860 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rak, R. et al. Dynamic changes in tRNA modifications and abundance during T cell activation. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2106556118 (2021).

  14. Torrent, M., Chalancon, G., de Groot, N. S., Wuster, A. & Madan Babu, M. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Sci. Signal. 11, eaat6409 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pinkard, O., McFarland, S., Sweet, T. & Coller, J. Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation. Nat. Commun. 11, 4104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kimura, S., Dedon, P. C. & Waldor, M. K. Comparative tRNA sequencing and RNA mass spectrometry for surveying tRNA modifications. Nat. Chem. Biol. 16, 964–972 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gingold, H. et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell 158, 1281–1292 (2014). This paper classifiesproliferation-specificanddifferentiation-specifictRNAs.

    Article  CAS  PubMed  Google Scholar 

  19. Oler, A. J. et al. Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat. Struct. Mol. Biol. 17, 620–628 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barski, A. et al. Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes. Nat. Struct. Mol. Biol. 17, 629–634 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goodarzi, H. et al. Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell 165, 1416–1427 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 50, D231–D235 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, W., Foo, M., Eren, A. M. & Pan, T. tRNA modification dynamics from individual organisms to metaepitranscriptomics of microbiomes. Mol. Cell 82, 891–906 (2022). This article includes a systematic analysis of current tRNA profiling methods.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chujo, T. & Tomizawa, K. Human transfer RNA modopathies: diseases caused by aberrations in transfer RNA modifications. FEBS J. 288, 7096–7122 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barbieri, I. & Kouzarides, T. Role of RNA modifications in cancer. Nat. Rev. Cancer 20, 303–322 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Clark, W. C., Evans, M. E., Dominissini, D., Zheng, G. & Pan, T. tRNA base methylation identification and quantification via high-throughput sequencing. RNA 22, 1771–1784 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Crick, F. H. Codon–anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548–555 (1966).

    Article  CAS  PubMed  Google Scholar 

  28. Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 49, 9077–9096 (2021). This resource paper, together with Chan et al. (2016), describes the GtRNAdb database of predicted tRNA sequences.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pavon-Eternod, M. et al. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res. 37, 7268–7280 (2009). This paper is one of the first to attempt global profiling of tRNA levels in cancer using microarrays.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pavon-Eternod, M., Gomes, S., Rosner, M. R. & Pan, T. Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells. RNA 19, 461–466 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Earnest-Noble, L. B. et al. Two isoleucyl tRNAs that decode synonymous codons divergently regulate breast cancer metastatic growth by controlling translation of proliferation-regulating genes. Nat. Cancer 3, 1484–1497 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Taylor, M. W., Granger, G. A., Buck, C. A. & Holland, J. J. Similarities and differences among specific tRNA’s in mammalian tissues. Proc. Natl Acad. Sci. USA 57, 1712–1719 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gallo, R. C. Transfer RNA’s in human leukemia. J. Cell Physiol. 74, 149–153 (1969).

    Article  CAS  Google Scholar 

  35. Baliga, B. S., Borek, E., Weinstein, I. B. & Srinivasan, P. R. Differences in the transfer RNA’s of normal liver and Novikoff hepatoma. Proc. Natl Acad. Sci. USA 62, 899–905 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Birch, J. et al. The initiator methionine tRNA drives cell migration and invasion leading to increased metastatic potential in melanoma. Biol. Open 5, 1371–1379 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ruggero, D. Translational control in cancer etiology. Cold Spring Harb. Perspect. Biol. 5, a012336 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Silvera, D., Formenti, S. C. & Schneider, R. J. Translational control in cancer. Nat. Rev. Cancer 10, 254–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Clarke, C. J. et al. The initiator methionine tRNA drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis. Curr. Biol. 26, 755–765 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, J. et al. SOX4-mediated repression of specific tRNAs inhibits proliferation of human glioblastoma cells. Proc. Natl Acad. Sci. USA 117, 5782–5790 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, B. et al. miR-34a directly targets tRNAiMet precursors and affects cellular proliferation, cell cycle, and apoptosis. Proc. Natl Acad. Sci. USA 115, 7392–7397 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shigematsu, M. et al. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs. Nucleic Acids Res. 45, e70 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Behrens, A., Rodschinka, G. & Nedialkova, D. D. High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq. Mol. Cell 81, 1802–1815.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gogakos, T. et al. Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP. Cell Rep. 20, 1463–1475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lucas, M. C. et al. Quantitative analysis of tRNA abundance and modifications by nanopore RNA sequencing. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01743-6 (2023).

    Article  PubMed  Google Scholar 

  47. Iben, J. R. & Maraia, R. J. tRNA gene copy number variation in humans. Gene 536, 376–384 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Darrow, E. M. & Chadwick, B. P. A novel tRNA variable number tandem repeat at human chromosome 1q23.3 is implicated as a boundary element based on conservation of a CTCF motif in mouse. Nucleic Acids Res. 42, 6421–6435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parisien, M., Wang, X. & Pan, T. Diversity of human tRNA genes from the 1000-Genomes Project. RNA Biol. 10, 1853–1867 (2014).

    Article  Google Scholar 

  50. Berg, M. D. et al. Targeted sequencing reveals expanded genetic diversity of human transfer RNAs. RNA Biol. 16, 1574–1585 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Thornlow, B. P. et al. Transfer RNA genes experience exceptionally elevated mutation rates. Proc. Natl Acad. Sci. USA 115, 8996–9001 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ishimura, R. et al. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 345, 455–459 (2014). This is one of the first reports of a tRNA mutation causing a tissue-specific phenotype in a mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schoenmakers, E. et al. Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis. J. Clin. Invest. 126, 992–996 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Santos, M. et al. Codon misreading tRNAs promote tumor growth in mice. RNA Biol. 15, 773–786 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. Doran, J. L., Bingle, W. H. & Roy, K. L. Two human genes encoding tRNA. Gene 65, 329–336 (1988).

    Article  CAS  PubMed  Google Scholar 

  56. Sprague, K. U., Larson, D. & Morton, D. 5′ Flanking sequence signals are required for activity of silkworm alanine tRNA genes in homologous in vitro transcription systems. Cell 22, 171–178 (1980).

    Article  CAS  PubMed  Google Scholar 

  57. Park, J. L. et al. Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics 9, 171–187 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. White, R. J. Transcription by RNA polymerase III: more complex than we thought. Nat. Rev. Genet. 12, 459–463 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Larminie, C. G. et al. Mechanistic analysis of RNA polymerase III regulation by the retinoblastoma protein. EMBO J. 16, 2061–2071 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cairns, C. A. & White, R. J. p53 is a general repressor of RNA polymerase III transcription. EMBO J. 17, 3112–3123 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Crighton, D. et al. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J. 22, 2810–2820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421, 290–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Kenneth, N. S. et al. TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proc. Natl Acad. Sci. USA 104, 14917–14922 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Willis, I. M. & Moir, R. D. Signaling to and from the RNA polymerase III transcription and processing machinery. Annu. Rev. Biochem. 87, 75–100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Raha, D. et al. Close association of RNA polymerase II and many transcription factors with Pol III genes. Proc. Natl Acad. Sci. USA 107, 3639–3644 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, J. et al. SOX4 inhibits GBM cell growth and induces G0/G1 cell cycle arrest through Akt–p53 axis. BMC Neurol. 14, 207 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Smith, D. K., Yang, J., Liu, M. L. & Zhang, C. L. Small molecules modulate chromatin accessibility to promote NEUROG2-mediated fibroblast-to-neuron reprogramming. Stem Cell Rep. 7, 955–969 (2016).

    Article  CAS  Google Scholar 

  68. Lee, H., Goodarzi, H., Tavazoie, S. F. & Alarcon, C. R. TMEM2 is a SOX4-regulated gene that mediates metastatic migration and invasion in breast cancer. Cancer Res. 76, 4994–5005 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vervoort, S. J., van Boxtel, R. & Coffer, P. J. The role of SRY-related HMG box transcription factor 4 (SOX4) in tumorigenesis and metastasis: friend or foe? Oncogene 32, 3397–3409 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Besser, D. et al. DNA methylation inhibits transcription by RNA polymerase III of a tRNA gene, but not of a 5S rRNA gene. FEBS Lett. 269, 358–362 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Bartke, T. et al. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143, 470–484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rossello-Tortella, M., Bueno-Costa, A., Martinez-Verbo, L., Villanueva, L. & Esteller, M. DNA methylation-associated dysregulation of transfer RNA expression in human cancer. Mol. Cancer 21, 48 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tavtigian, S. V. et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat. Genet. 27, 172–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Xu, B., Tong, N., Li, J. M., Zhang, Z. D. & Wu, H. F. ELAC2 polymorphisms and prostate cancer risk: a meta-analysis based on 18 case-control studies. Prostate Cancer Prostatic Dis. 13, 270–277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lubas, M., Chlebowski, A., Dziembowski, A. & Jensen, T. H. Biochemistry and function of RNA exosomes. Enzymes 31, 1–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Kadaba, S. et al. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev. 18, 1227–1240 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Whipple, J. M., Lane, E. A., Chernyakov, I., D’Silva, S. & Phizicky, E. M. The yeast rapid tRNA decay pathway primarily monitors the structural integrity of the acceptor and T-stems of mature tRNA. Genes Dev. 25, 1173–1184 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Alexandrov, A. et al. Rapid tRNA decay can result from lack of nonessential modifications. Mol. Cell 21, 87–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. De Zoysa, T. & Phizicky, E. M. Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but with different consequences. PLoS Genet. 16, e1008893 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wilusz, J. E., Whipple, J. M., Phizicky, E. M. & Sharp, P. A. tRNAs marked with CCACCA are targeted for degradation. Science 334, 817–821 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Orellana, E. A. et al. METTL1-mediated m7G modification of Arg-TCT tRNA drives oncogenic transformation. Mol. Cell 81, 3323–3338.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Han, H. et al. N7-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nat. Commun. 13, 1478 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen, J. et al. Aberrant translation regulated by METTL1/WDR4-mediated tRNA N7-methylguanosine modification drives head and neck squamous cell carcinoma progression. Cancer Commun. 42, 223–244 (2022).

    Article  Google Scholar 

  84. Dai, Z. et al. N7-methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol. Cell 81, 3339–3355.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Chen, Z. et al. METTL1 promotes hepatocarcinogenesis via m7G tRNA modification-dependent translation control. Clin. Transl. Med. 11, e661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pandolfini, L. et al. METTL1 promotes let-7 microRNA processing via m7G methylation. Mol. Cell 74, 1278–1290.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cheng, W., Gao, A., Lin, H. & Zhang, W. Novel roles of METTL1/WDR4 in tumor via m7G methylation. Mol. Ther. Oncolytics 26, 27–34 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Girstmair, H. et al. Depletion of cognate charged transfer RNA causes translational frameshifting within the expanded CAG stretch in huntingtin. Cell Rep. 3, 148–159 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Guzy, R. D. et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 1, 401–408 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Bell, E. L. et al. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell Biol. 177, 1029–1036 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nawrot, B., Sochacka, E. & Duchler, M. tRNA structural and functional changes induced by oxidative stress. Cell Mol. Life Sci. 68, 4023–4032 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Endres, L. et al. Alkbh8 regulates selenocysteine-protein expression to protect against reactive oxygen species damage. PLoS ONE 10, e0131335 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chan, C. T. et al. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat. Commun. 3, 937 (2012).

    Article  PubMed  Google Scholar 

  94. Netzer, N. et al. Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature 462, 522–526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schwenzer, H. et al. Oxidative stress triggers selective tRNA retrograde transport in human cells during the integrated stress response. Cell Rep. 26, 3416–3428.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Thompson, D. M., Lu, C., Green, P. J. & Parker, R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14, 2095–2103 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Goodarzi, H. et al. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161, 790–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huh, D. et al. A stress-induced tyrosine-tRNA depletion response mediates codon-based translational repression and growth suppression. EMBO J. 40, e106696 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Yamasaki, S., Ivanov, P., Hu, G. F. & Anderson, P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J. Cell Biol. 185, 35–42 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Masson, G. R. Towards a model of GCN2 activation. Biochem. Soc. Trans. 47, 1481–1488 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pataskar, A. et al. Tryptophan depletion results in tryptophan-to-phenylalanine substitutants. Nature 603, 721–727 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hsu, D. J. et al. Arginine limitation drives a directed codon-dependent DNA sequence evolution response in colorectal cancer cells. Sci. Adv. 9, eade9120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Passarelli, M. C. et al. Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codon-dependent translation dynamics. Nat. Cell Biol. 24, 307–315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Turvey, A. K., Horvath, G. A. & Cavalcanti, A. R. O. Aminoacyl-tRNA synthetases in human health and disease. Front. Physiol. 13, 1029218 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hyeon, D. Y. et al. Evolution of the multi-tRNA synthetase complex and its role in cancer. J. Biol. Chem. 294, 5340–5351 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang, J. & Yang, X. L. Novel functions of cytoplasmic aminoacyl-tRNA synthetases shaping the hallmarks of cancer. Enzymes 48, 397–423 (2020).

    Article  PubMed  Google Scholar 

  107. Sung, Y., Yoon, I., Han, J. M. & Kim, S. Functional and pathologic association of aminoacyl-tRNA synthetases with cancer. Exp. Mol. Med. 54, 553–566 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Guo, M. & Schimmel, P. Essential nontranslational functions of tRNA synthetases. Nat. Chem. Biol. 9, 145–153 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Wang, J. et al. Multi-omics database analysis of aminoacyl-tRNA synthetases in cancer. Genes 11, 1384 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Thandapani, P. et al. Valine tRNA levels and availability regulate complex I assembly in leukaemia. Nature 601, 428–433 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Su, Z., Wilson, B., Kumar, P. & Dutta, A. Noncanonical roles of tRNAs: tRNA fragments and beyond. Annu. Rev. Genet. 54, 47–69 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Borek, E. et al. High turnover rate of transfer RNA in tumor tissue. Cancer Res. 37, 3362–3366 (1977).

    CAS  PubMed  Google Scholar 

  114. Speer, J., Gehrke, C. W., Kuo, K. C., Waalkes, T. P. & Borek, E. tRNA breakdown products as markers for cancer. Cancer 44, 2120–2123 (1979).

    Article  CAS  PubMed  Google Scholar 

  115. Kumar, P., Anaya, J., Mudunuri, S. B. & Dutta, A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol. 12, 78 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Pliatsika, V. et al. MINTbase v2.0: a comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all the cancer genome atlas projects. Nucleic Acids Res. 46, D152–D159 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Yao, D. et al. OncotRF: an online resource for exploration of tRNA-derived fragments in human cancers. RNA Biol. 17, 1081–1091 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, S. R. & Collins, K. Starvation-induced cleavage of the tRNA anticodon loop in Tetrahymena thermophila. J. Biol. Chem. 280, 42744–42749 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Tao, E. W., Cheng, W. Y., Li, W. L., Yu, J. & Gao, Q. Y. tiRNAs: a novel class of small noncoding RNAs that helps cells respond to stressors and plays roles in cancer progression. J. Cell Physiol. 235, 683–690 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Fu, H. et al. Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett. 583, 437–442 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Donovan, J., Rath, S., Kolet-Mandrikov, D. & Korennykh, A. Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery. RNA 23, 1660–1671 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nechooshtan, G., Yunusov, D., Chang, K. & Gingeras, T. R. Processing by RNase 1 forms tRNA halves and distinct Y RNA fragments in the extracellular environment. Nucleic Acids Res. 48, 8035–8049 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lee, Y. S., Shibata, Y., Malhotra, A. & Dutta, A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 23, 2639–2649 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Oberbauer, V. & Schaefer, M. R. tRNA-derived small RNAs: biogenesis, modification, function and potential impact on human disease development. Genes 9, 607 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Guzzi, N. & Bellodi, C. Novel insights into the emerging roles of tRNA-derived fragments in mammalian development. RNA Biol. 17, 1214–1222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fagan, S. G., Helm, M. & Prehn, J. H. M. tRNA-derived fragments: a new class of non-coding RNA with key roles in nervous system function and dysfunction. Prog. Neurobiol. 205, 102118 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Thompson, D. M. & Parker, R. Stressing out over tRNA cleavage. Cell 138, 215–219 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Maute, R. L. et al. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc. Natl Acad. Sci. USA 110, 1404–1409 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Balatti, V. et al. TCL1 targeting miR-3676 is codeleted with tumor protein p53 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 112, 2169–2174 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pekarsky, Y. et al. Dysregulation of a family of short noncoding RNAs, tsRNAs, in human cancer. Proc. Natl Acad. Sci. USA 113, 5071–5076 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, H. et al. The tRNA-derived fragment tRF-24-V29K9UV3IU functions as a miRNA-like RNA to prevent gastric cancer progression by inhibiting GPR78 expression. J. Oncol. 2022, 8777697 (2022).

    PubMed  PubMed Central  Google Scholar 

  132. Dong, D. D., Zhou, H. & Li, G. GPR78 promotes lung cancer cell migration and metastasis by activation of Gαq-Rho GTPase pathway. BMB Rep. 49, 623–628 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shi, Z. & Barna, M. Translating the genome in time and space: specialized ribosomes, RNA regulons, and RNA-binding proteins. Annu. Rev. Cell Dev. Biol. 31, 31–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Falconi, M. et al. A novel 3′-tRNAGlu-derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin. FASEB J. 33, 13228–13240 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Guzzi, N. et al. Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome. Nat. Cell Biol. 24, 299–306 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Guzzi, N. et al. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell 173, 1204–1216.e26 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Pan, L. et al. Inflammatory cytokine-regulated tRNA-derived fragment tRF-21 suppresses pancreatic ductal adenocarcinoma progression. J. Clin. Invest. 131, e148130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tong, L. et al. The tRNA-derived fragment-3017A promotes metastasis by inhibiting NELL2 in human gastric cancer. Front. Oncol. 10, 570916 (2020).

    Article  PubMed  Google Scholar 

  139. Zhang, F. et al. A 3′-tRNA-derived fragment enhances cell proliferation, migration and invasion in gastric cancer by targeting FBXO47. Arch. Biochem. Biophys. 690, 108467 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Han, L. et al. A 5′-tRNA halve, tiRNA-Gly promotes cell proliferation and migration via binding to RBM17 and inducing alternative splicing in papillary thyroid cancer. J. Exp. Clin. Cancer Res. 40, 222 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu, X. et al. A pro-metastatic tRNA fragment drives nucleolin oligomerization and stabilization of its bound metabolic mRNAs. Mol. Cell 82, 2604–2617.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lampson, B. L. et al. Rare codons regulate KRas oncogenesis. Curr. Biol. 23, 70–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Pershing, N. L. et al. Rare codons capacitate Kras-driven de novo tumorigenesis. J. Clin. Invest. 125, 222–233 (2015).

    Article  PubMed  Google Scholar 

  144. Li, S. & Counter, C. M. Signaling levels mold the RAS mutation tropism of urethane. eLife 10, e67172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ali, M. et al. Codon bias imposes a targetable limitation on KRAS-driven therapeutic resistance. Nat. Commun. 8, 15617 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Keller, T. L. et al. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nat. Chem. Biol. 8, 311–317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kim, Y. et al. Aminoacyl-tRNA synthetase inhibition activates a pathway that branches from the canonical amino acid response in mammalian cells. Proc. Natl Acad. Sci. USA 117, 8900–8911 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kim, S. H., Bae, S. & Song, M. Recent development of aminoacyl-tRNA synthetase inhibitors for human diseases: a future perspective. Biomolecules 10, 1625 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zuko, A. et al. tRNA overexpression rescues peripheral neuropathy caused by mutations in tRNA synthetase. Science 373, 1161–1166 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang, J. et al. AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature 604, 343–348 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Albers, S. et al. Engineered tRNAs suppress nonsense mutations in cells and in vivo. Nature 618, 842–848 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chang, J. C., Temple, G. F., Trecartin, R. F. & Kan, Y. W. Suppression of the nonsense mutation in homozygous β0 thalassaemia. Nature 281, 602–603 (1979).

    Article  CAS  PubMed  Google Scholar 

  153. Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629–651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Papadimitriou, M. A. et al. tRNA-derived fragments (tRFs) in bladder cancer: increased 5′-tRF-LysCTT results in disease early progression and patients’ poor treatment outcome. Cancers 12, 3661 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Wang, J. et al. Circulating tRNA-derived small RNAs (tsRNAs) signature for the diagnosis and prognosis of breast cancer. NPJ Breast Cancer 7, 4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang, X. et al. Identification of tRNA-derived fragments expression profile in breast cancer tissues. Curr. Genomics 20, 199–213 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sun, C. et al. tRNA-derived fragments as novel predictive biomarkers for trastuzumab-resistant breast cancer. Cell. Physiol. Biochem. 49, 419–431 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Veneziano, D. et al. Dysregulation of different classes of tRNA fragments in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 116, 24252–24258 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Nientiedt, M. et al. Identification of aberrant tRNA-halves expression patterns in clear cell renal cell carcinoma. Sci. Rep. 6, 37158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wu, Y. et al. 5′-tRF-GlyGCC: a tRNA-derived small RNA as a novel biomarker for colorectal cancer diagnosis. Genome Med. 13, 20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhu, Y. et al. Comprehensive analysis of a tRNA-derived small RNA in colorectal cancer. Front. Oncol. 11, 701440 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Shao, Y. et al. tRF-Leu-CAG promotes cell proliferation and cell cycle in non-small cell lung cancer. Chem. Biol. Drug Des. 90, 730–738 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, J., Cao, C., Fang, L. & Yu, W. Serum transfer RNA-derived fragment tRF-31-79MP9P9NH57SD acts as a novel diagnostic biomarker for non-small cell lung cancer. J. Clin. Lab. Anal. https://doi.org/10.1002/jcla.24492 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Huang, Y. et al. Elucidating the role of serum tRF-31-U5YKFN8DYDZDD as a novel diagnostic biomarker in gastric cancer (GC). Front. Oncol. 11, 723753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Panoutsopoulou, K. et al. tRNAGlyGCC-derived internal fragment (i-tRF-GlyGCC) in ovarian cancer treatment outcome and progression. Cancers 14, 24 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Olvedy, M. et al. A comprehensive repertoire of tRNA-derived fragments in prostate cancer. Oncotarget 7, 24766–24777 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Rich, A. & RajBhandary, U. L. Transfer RNA: molecular structure, sequence, and properties. Annu. Rev. Biochem. 45, 805–860 (1976).

    Article  CAS  PubMed  Google Scholar 

  168. Crothers, D. M., Seno, T. & Söll, D. G. Is there a discriminator site in transfer RNA? Proc. Natl Acad. Sci. USA 69, 3063–3067 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sprinzl, M., Horn, C., Brown, M., Ioudovitch, A. & Steinberg, S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 26, 148–153 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Shi, H. & Moore, P. B. The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution: a classic structure revisited. RNA 6, 1091–1105 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Galli, G., Hofstetter, H. & Birnstiel, M. L. Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements. Nature 294, 626–631 (1981).

    Article  CAS  PubMed  Google Scholar 

  172. Hofstetter, H., Kressmann, A. & Birnstiel, M. L. A split promoter for a eucaryotic tRNA gene. Cell 24, 573–585 (1981).

    Article  CAS  PubMed  Google Scholar 

  173. Takaku, H., Minagawa, A., Takagi, M. & Nashimoto, M. A candidate prostate cancer susceptibility gene encodes tRNA 3′ processing endoribonuclease. Nucleic Acids Res. 31, 2272–2278 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Rideout, E. J., Marshall, L. & Grewal, S. S. Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling. Proc. Natl Acad. Sci. USA 109, 1139–1144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chu, A. et al. Large-scale profiling of microRNAs for the cancer genome atlas. Nucleic Acids Res. 44, e3 (2016).

    Article  PubMed  Google Scholar 

  176. Cozen, A. E. et al. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat. Methods 12, 879–884 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zheng, G. et al. Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods 12, 835–837 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Smith, A. M., Abu-Shumays, R., Akeson, M. & Bernick, D. L. Capture, unfolding, and detection of individual tRNA molecules using a nanopore device. Front. Bioeng. Biotechnol. 3, 91 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Thomas, N. K. et al. Direct nanopore sequencing of individual full length tRNA strands. ACS Nano 15, 16642–16653 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hughes, L. A. et al. Copy number variation in tRNA isodecoder genes impairs mammalian development and balanced translation. Nat. Commun. 14, 2210 (2023). This is one of the first studies to systematically generate single and combinatorial deletions of related tRNA isodecoder genes and assess their consequences at an organismal level in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Koukuntla, R., Ramsey, W. J., Young, W. B. & Link, C. J. U6 promoter-enhanced GlnUAG suppressor tRNA has higher suppression efficacy and can be stably expressed in 293 cells. J. Gene Med. 15, 93–101 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Tavazoie laboratory for critically reading the manuscript and for their helpful suggestions and comments. The authors apologize to all the scientists whose work could not be cited owing to space limitations. S.F.T. and A.M.P. were supported by grants from the National Cancer Institute of the National Institutes of Health under award numbers R01CA257153, R35CA274446 and U54CA261701, as well as the Black Family Metastasis Center and the Breast Cancer Research Foundation. Molecular graphics were performed with UCSF ChimeraX, developed by the Resource for Biocomputing, Visualization and Informatics at the University of California, San Francisco, with support from National Institutes of Health R01-GM129325 and the Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Alexandra M. Pinzaru or Sohail F. Tavazoie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Pierre Close and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

RCSB Protein Data Bank: https://www.rcsb.org/

UCSF ChimeraX software: https://www.rbvi.ucsf.edu/chimerax

Glossary

Argonaute 2 (AGO2) cleavage assay

An in vitro assay that uses recombinant AGO2 to show specific cleavage of target oligonucleotides.

Epistatic interactions

Interactions between two or more genes that influence a particular phenotype.

Lineage-negative haematopoietic stem and progenitor cells

Immature blood cells that lack surface protein markers found on mature blood cells.

Rare codons

Codons found with the lowest frequency in genes compared with synonymous codons in the same group.

Ribosome

An essential ribonucleoprotein complex that performs protein synthesis in cells.

Ribosome profiling

A technique that provides a snapshot of all ribosome-bound messenger RNAs in cells with codon-level resolution.

RNA polymerase III

(Pol III). An RNA polymerase complex that translates short, non-coding RNAs, including transfer RNAs, 5S ribosomal RNA, U6 small nuclear RNA, vault RNA and other small RNAs.

tRNA misacylation

The charging of a transfer RNA with the wrong amino acid, not the amino acid cognate to the anticodon of the transfer RNA.

Wobble pairing

Non-Watson–Crick base pairing of the first anticodon nucleoside: inosine can pair with adenosine, uridine or cytidine; guanosine can pair with cytidine or uridine; uridine can pair with adenosine or guanosine.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinzaru, A.M., Tavazoie, S.F. Transfer RNAs as dynamic and critical regulators of cancer progression. Nat Rev Cancer 23, 746–761 (2023). https://doi.org/10.1038/s41568-023-00611-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00611-4

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer