Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenesis of cancers derived from thyroid follicular cells

Abstract

The genomic simplicity of differentiated cancers derived from thyroid follicular cells offers unique insights into how oncogenic drivers impact tumour phenotype. Essentially, the main oncoproteins in thyroid cancer activate nodes in the receptor tyrosine kinase–RAS–BRAF pathway, which constitutively induces MAPK signalling to varying degrees consistent with their specific biochemical mechanisms of action. The magnitude of the flux through the MAPK signalling pathway determines key elements of thyroid cancer biology, including differentiation state, invasive properties and the cellular composition of the tumour microenvironment. Progression of disease results from genomic lesions that drive immortalization, disrupt chromatin accessibility and cause cell cycle checkpoint dysfunction, in conjunction with a tumour microenvironment characterized by progressive immunosuppression. This Review charts the genomic trajectories of these common endocrine tumours, while connecting them to the biological states that they confer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of BRAF-like and RAS-like differentiated thyroid cancers.
Fig. 2: Interactions between MAPK and cAMP signalling in thyroid cancer cells.
Fig. 3: Mechanisms of mutant eIF1A and RAS cooperation in thyroid tumorigenesis.
Fig. 4: Epigenetic reprogramming in thyroid cancer progression and differentiation.
Fig. 5: Adaptive responses of BRAF-mutant thyroid cancers to RAF kinase inhibitors.

References

  1. IARC. Cancer Incidence in Five Continents Volume X (IARC Scientific Publication, 2014).

  2. LiVolsi, V. A. & Asa, S. L. The demise of follicular carcinoma of the thyroid gland. Thyroid 4, 233–236 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Kakudo, K., Kameyama, K., Hirokawa, M., Katoh, R. & Nakamura, H. Subclassification of follicular neoplasms recommended by the Japan thyroid association reporting system of thyroid cytology. Int. J. Endocrinol. 2015, 938305 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alevizaki, M. et al. Increasing prevalence of papillary thyroid carcinoma in recent years in Greece: the majority are incidental. Thyroid 19, 749–754 (2009).

    Article  PubMed  Google Scholar 

  5. Goffredo, P., Roman, S. A. & Sosa, J. A. Hürthle cell carcinoma: a population-level analysis of 3311 patients. Cancer 119, 504–511 (2013).

    Article  PubMed  Google Scholar 

  6. Asioli, S. et al. Poorly differentiated carcinoma of the thyroid: validation of the Turin proposal and analysis of IMP3 expression. Mod. Pathol. 23, 1269–1278 (2010).

    Article  PubMed  Google Scholar 

  7. Fagin, J. A. & Wells, S. A. Jr. Biologic and clinical perspectives on thyroid cancer 6. N. Engl. J. Med. 375, 1054–1067 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. National Cancer Institute. Surveillance, Epidemiology and End Results Program. Cancer Stat Facts: Thyroid Cancer; 2022. https://seer.cancer.gov/statfacts/html/thyro.html (2022).

  9. Xu, B. et al. Primary high-grade non-anaplastic thyroid carcinoma: a retrospective study of 364 cases. Histopathology 80, 322–337 (2022).

    Article  PubMed  Google Scholar 

  10. Baloch, Z. W. et al. Overview of the 2022 WHO classification of thyroid neoplasms. Endocr. Pathol. 33, 27–63 (2022).

    Article  PubMed  Google Scholar 

  11. Maniakas, A. et al. Evaluation of overall survival in patients with anaplastic thyroid carcinoma, 2000–2019. JAMA Oncol. 6, 1397–1404 (2020).

    Article  PubMed  Google Scholar 

  12. Subbiah, V. et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J. Clin. Oncol. 36, 7–13 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Cabanillas, M. E. et al. Neoadjuvant BRAF- and immune-directed therapy for anaplastic thyroid carcinoma. Thyroid 28, 945–951 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jaber, T., Dadu, R. & Hu, M. I. Medullary thyroid carcinoma. Curr. Opin. Endocrinol. Diabetes Obes. 28, 540–546 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Fugazzola, L. Medullary thyroid cancer — an update. Best. Pract. Res. Clin. Endocrinol. Metab. 37, 101655 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Davies, L. & Welch, H. G. Increasing incidence of thyroid cancer in the United States, 1973–2002. J. Am. Med. Assoc. 295, 2164–2167 (2006). This study shows that the steep rise in thyroid cancer incidence in the USA over the indicated period was predominantly due to the increased detection of PTCs <2 cm in size.

    Article  CAS  Google Scholar 

  17. Davies, L. & Hoang, J. K. Thyroid cancer in the USA: current trends and outstanding questions. Lancet Diabetes Endocrinol. 9, 11–12 (2021).

    Article  PubMed  Google Scholar 

  18. Roman, B. R., Morris, L. G. & Davies, L. The thyroid cancer epidemic, 2017 perspective. Curr. Opin. Endocrinol. Diabetes Obes. 24, 332–336 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nikiforov, Y. E. et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2, 1023–1029 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ito, Y. et al. An observational trial for papillary thyroid microcarcinoma in Japanese patients. World J. Surg. 34, 28–35 (2010).

    Article  PubMed  Google Scholar 

  21. Tuttle, R. M. et al. Natural history and tumor volume kinetics of papillary thyroid cancers during active surveillance. JAMA Otolaryngol. Head Neck Surg. 143, 1015–1020 (2017). Together with Ito et al. (2010), this study provides evidence that most small PTCs show minimal growth rates during active surveillance.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Song, Y. S. et al. Genomic and transcriptomic characteristics according to size of papillary thyroid microcarcinoma. Cancers https://doi.org/10.3390/cancers12051345 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bellelli, R. et al. Oncogene-induced senescence and its evasion in a mouse model of thyroid neoplasia. Mol. Cell Endocrinol. 460, 24–35 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, J. et al. Conditional expression of RET/PTC induces a weak oncogenic drive in thyroid PCCL3 cells and inhibits thyrotropin action at multiple levels. Mol. Endocrinol. 17, 1425–1436 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 13, 184–199 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cabanillas, M. E., McFadden, D. G. & Durante, C. Thyroid cancer. Lancet 388, 2783–2795 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Kunstman, J. W. et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum. Mol. Genet. 24, 2318–2329 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Landa, I. et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J. Clin. Invest. 126, 1052–1066 (2016). Genomic and transcriptomic analysis of advanced thyroid cancers that shows the major categories of lesions associated with disease progression, many of which are present in well-differentiated tumours as subclonal events.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pozdeyev, N. et al. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin. Cancer Res. 24, 3059–3068 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yoo, S. K. et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat. Commun. 10, 2764 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Saqcena, M. et al. SWI/SNF complex mutations promote thyroid tumor progression and insensitivity to redifferentiation therapies. Cancer Discov. 11, 1158–1175 (2021). This paper shows that loss-of-function mutations in genes encoding SWI/SNF complex subunits render BRAF-mutant cancers refractory to redifferentiation therapies with MAPK pathway inhibitors aimed at restoring RAI avidity.

    Article  CAS  PubMed  Google Scholar 

  32. Portulano, C., Paroder-Belenitsky, M. & Carrasco, N. The Na+/I symporter (NIS): mechanism and medical impact. Endocr. Rev. 35, 106–149 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Peiling Yang, S. & Ngeow, J. Familial non-medullary thyroid cancer: unraveling the genetic maze. Endocr. Relat. Cancer 23, R577–R595 (2016).

    Article  PubMed  Google Scholar 

  34. Gudmundsson, J. et al. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat. Genet. 41, 460–464 (2009). A genome-wide association study identifying variants, adjacent to thyroid transcription factor genes NKX2-1 and FOXE1, as risk factors for thyroid cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gudmundsson, J. et al. Discovery of common variants associated with low TSH levels and thyroid cancer risk. Nat. Genet. 44, 319–322 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Amundadottir, L. T. et al. Cancer as a complex phenotype: pattern of cancer distribution within and beyond the nuclear family. PLoS Med. 1, e65 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Landa, I. et al. The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors. PLoS Genet. 5, e1000637 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Son, H. Y. et al. Genome-wide association and expression quantitative trait loci studies identify multiple susceptibility loci for thyroid cancer. Nat. Commun. 8, 15966 (2017). This study identifies SNPs in the NRG1 gene as one of the strongest variants predisposing to PTC, which are associated with elevated NRG1 expression in thyroid tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takahashi, M. et al. The FOXE1 locus is a major genetic determinant for radiation-related thyroid carcinoma in Chernobyl. Hum. Mol. Genet. 19, 2516–2523 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Montero-Conde, C. et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov. 3, 520–533 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garcia-Rendueles, M. E. R. et al. Yap governs a lineage-specific neuregulin1 pathway-driven adaptive resistance to RAF kinase inhibitors. Mol. Cancer 21, 213 (2022). Together with Montero-Conde et al. (2013), this study demonstrates that BRAF-mutant cancers are intrinsically resistant to MAPK pathway inhibitors through increased expression and activation of genes encoding proteins in the NRG1–HER3 or HER2 pathway, an effect governed in part by the HIPPO pathway transcriptional co-activator YAP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cameselle-Teijeiro, J. M., Mete, O., Asa, S. L. & LiVolsi, V. Inherited follicular epithelial-derived thyroid carcinomas: from molecular biology to histological correlates. Endocr. Pathol. 32, 77–101 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kamani, T., Charkhchi, P., Zahedi, A. & Akbari, M. R. Genetic susceptibility to hereditary non-medullary thyroid cancer. Hered. Cancer Clin. Pract. 20, 9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang, Y. et al. Identification of rare variants predisposing to thyroid cancer. Thyroid 29, 946–955 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cardis, E. et al. Risk of thyroid cancer after exposure to 131I in childhood. J. Natl Cancer Inst. 97, 724–732 (2005).

    Article  PubMed  Google Scholar 

  46. Morton, L. M. et al. Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident. Science https://doi.org/10.1126/science.abg2538 (2021). Integrated genomic and transcriptomic characterization of post-Chernobyl thyroid cancers that shows radiation dose-dependent increases in small clonal deletions and balanced translocations bearing genomic hallmarks of the DNA repair pathway non-homologous end joining.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nikiforov, Y. E., Rowland, J. M., Bove, K. E., Monforte-Munoz, H. & Fagin, J. A. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 57, 1690–1694 (1997).

    CAS  PubMed  Google Scholar 

  48. Rabes, H. M. et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-Chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin. Cancer Res. 6, 1093–1103 (2000).

    CAS  PubMed  Google Scholar 

  49. Ricarte-Filho, J. C. et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J. Clin. Invest. 123, 4935–4944 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Efanov, A. A. et al. Investigation of the relationship between radiation dose and gene mutations and fusions in post-Chernobyl thyroid cancer. J. Natl Cancer Inst. 110, 371–378 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Mizuno, T. et al. Preferential induction of RET/PTC1 rearrangement by X-ray irradiation. Oncogene 19, 438–443 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Nikiforova, M. N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Selmansberger, M. et al. Dose-dependent expression of CLIP2 in post-Chernobyl papillary thyroid carcinomas. Carcinogenesis 36, 748–756 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Selmansberger, M. et al. CLIP2 as radiation biomarker in papillary thyroid carcinoma. Oncogene 34, 3917–3925 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Riesco-Eizaguirre, G. & Santisteban, P. Endocrine tumours: advances in the molecular pathogenesis of thyroid cancer: lessons from the cancer genome. Eur. J. Endocrinol. 175, R203–R217 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Zane, M. et al. Normal vs cancer thyroid stem cells: the road to transformation. Oncogene 35, 805–815 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Veschi, V. et al. Recapitulating thyroid cancer histotypes through engineering embryonic stem cells. Nat. Commun. 14, 1351 (2023). This paper demonstrates the greater transformation efficiency of thyroid progenitors compared with mature differentiated thyroid cells with thyroid cancer oncoproteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Network, C. G. A. R. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676–690 (2014). This paper demonstrates the genomic and transcriptomic study from the TCGA establishing the role of PTC drivers in governing the transcriptomic and phenotypic features of the disease leading to a new molecular classification of DTCs.

    Article  Google Scholar 

  59. Ghossein, R. A., Katabi, N. & Fagin, J. A. Immunohistochemical detection of mutated BRAF V600E supports the clonal origin of BRAF-induced thyroid cancers along the spectrum of disease progression. J. Clin. Endocrinol. Metab. 98, E1414–E1421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kimura, E. T. et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63, 1454–1457 (2003).

    CAS  PubMed  Google Scholar 

  61. Frattini, M. et al. Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct gene expression patterns in papillary thyroid cancer 99. Oncogene 23, 7436–7440 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Santoro, M., Moccia, M., Federico, G. & Carlomagno, F. RET gene fusions in malignancies of the thyroid and other tissues. Genes https://doi.org/10.3390/genes11040424 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Franco, A. T. et al. Fusion oncogenes are associated with increased metastatic capacity and persistent disease in pediatric thyroid cancers. J. Clin. Oncol. 40, 1081–1090 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Martinez-Jimenez, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Taylor, A. M. et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33, 676–689.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lito, P. et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22, 668–682 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Boucai, L. et al. Genomic and transcriptomic characteristics of metastatic thyroid cancers with exceptional responses to radioactive iodine therapy. Clin. Cancer Res. 29, 1620–1630 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Franco, A. T. et al. Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proc. Natl Acad. Sci. USA 108, 1615–1620 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Charles, R. P., Iezza, G., Amendola, E., Dankort, D. & McMahon, M. Mutationally activated BRAFV600E elicits papillary thyroid cancer in the adult mouse. Cancer Res. 71, 3863–3871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chakravarty, D. et al. molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J. Clin. Invest. 121, 4700–4711 (2011). This study shows that genetic or pharmacological inhibition of the MAPK pathway rescues expression of thyroid differentiation genes and RAI avidity of BRAFV600E-induced PTC in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rivera, M. et al. Encapsulated papillary thyroid carcinoma: a clinico-pathologic study of 106 cases with emphasis on its morphologic subtypes (histologic growth pattern). Thyroid 19, 119–127 (2009).

    Article  PubMed  Google Scholar 

  73. Mesa, C. Jr. et al. Conditional activation of RET/PTC3 and BRAFV600E in thyroid cells is associated with gene expression profiles that predict a preferential role of BRAF in extracellular matrix remodeling. Cancer Res. 66, 6521–6529 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Huntington, J. T. et al. Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. J. Biol. Chem. 279, 33168–33176 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Weiss, M. B. et al. TWIST1 is an ERK1/2 effector that promotes invasion and regulates MMP-1 expression in human melanoma cells. Cancer Res. 72, 6382–6392 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Santoro, M. et al. Development of thyroid papillary carcinomas secondary to tissue- specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene 12, 1821–1826 (1996).

    CAS  PubMed  Google Scholar 

  77. Russell, J. P. et al. The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene 19, 5729–5735 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Jhiang, S. M. et al. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 137, 375–378 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Raman, R. et al. Inhibition of FGF receptor blocks adaptive resistance to RET inhibition in CCDC6-RET-rearranged thyroid cancer. J. Exp. Med. https://doi.org/10.1084/jem.20210390 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Montero-Conde, C. et al. Transposon mutagenesis identifies chromatin modifiers cooperating with Ras in thyroid tumorigenesis and detects ATXN7 as a cancer gene. Proc. Natl Acad. Sci. USA 114, E4951–E4960 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zou, M. J. et al. KRASG12D-mediated oncogenic transformation of thyroid follicular cells requires long-term TSH stimulation and is regulated by SPRY1. Lab. Invest. 95, 1269–1277 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Garcia-Rendueles, M. E. et al. NF2 loss promotes oncogenic RAS-induced thyroid cancers via YAP-dependent transactivation of RAS proteins and sensitizes them to MEK inhibition2. Cancer Discov. 5, 1178–1193 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Untch, B. R. et al. Tipifarnib inhibits HRAS-driven dedifferentiated thyroid cancers. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-17-1925 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Krishnamoorthy, G. P. et al. EIF1AX and RAS mutations cooperate to drive thyroid tumorigenesis through ATF4 and c-MYC. Cancer Discov. 9, 264–281 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Morris, L. G., Shaha, A. R., Tuttle, R. M., Sikora, A. G. & Ganly, I. Tall-cell variant of papillary thyroid carcinoma: a matched-pair analysis of survival. Thyroid 20, 153–158 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tsybrovskyy, O. et al. Papillary thyroid carcinoma tall cell variant shares accumulation of mitochondria, mitochondrial DNA mutations, and loss of oxidative phosphorylation complex I integrity with oncocytic tumors. J. Pathol. Clin. Res. 8, 155–168 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Maenhaut, C. et al. in Endotext (eds Feingold, K. R. et al.) (MDText.com, 2000).

  88. Laugwitz, K. L. et al. The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families. Proc. Natl Acad. Sci. USA 93, 116–120 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Meinkoth, J. L., Goldsmith, P. K., Spiegel, A. M., Feramisco, J. R. & Burrow, G. N. Inhibition of thyrotropin-induced DNA synthesis in thyroid follicular cells by microinjection of an antibody to the stimulatory G protein of adenylate cyclase, Gs. J. Biol. Chem. 267, 13239–13245 (1992).

    Article  CAS  PubMed  Google Scholar 

  90. Parma, J. et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 365, 649–651 (1993). This paper shows that gain-of-function mutations of TSHR activate cAMP signalling and drive development of benign hyperfunctioning thyroid tumours.

    Article  CAS  PubMed  Google Scholar 

  91. Parma, J. et al. Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyperfunctioning thyroid adenomas: identification of additional mutations activating both the cyclic adenosine 3’,5’-monophosphate and inositol phosphate-Ca2+ cascades. Mol. Endocrinol. 9, 725–733 (1995).

    CAS  PubMed  Google Scholar 

  92. Parma, J. et al. Diversity and prevalence of somatic mutations in the thyrotropin receptor and Gsα genes as a cause of toxic thyroid adenomas. J. Clin. Endocrinol. Metab. 82, 2695–2701 (1997).

    CAS  PubMed  Google Scholar 

  93. Mirfakhraee, S., Mathews, D., Peng, L., Woodruff, S. & Zigman, J. M. A solitary hyperfunctioning thyroid nodule harboring thyroid carcinoma: review of the literature. Thyroid Res. 6, 7 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Nicolson, N. G. et al. Comprehensive genetic analysis of follicular thyroid carcinoma predicts prognosis independent of histology. J. Clin. Endocrinol. Metab. 103, 2640–2650 (2018).

    Article  PubMed  Google Scholar 

  95. Mon, S. Y. et al. Cancer risk and clinicopathological characteristics of thyroid nodules harboring thyroid-stimulating hormone receptor gene mutations. Diagn. Cytopathol. 46, 369–377 (2018).

    Article  PubMed  Google Scholar 

  96. Russo, D. et al. A Val 677 activating mutation of the thyrotropin receptor in a Hürthle cell thyroid carcinoma associated with thyrotoxicosis. Thyroid 9, 13–17 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Calebiro, D. et al. Recurrent EZH1 mutations are a second hit in autonomous thyroid adenomas. J. Clin. Invest. 126, 3383–3388 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kirschner, L. S. et al. Mutations of the gene encoding the protein kinase A type I-α regulatory subunit in patients with the Carney complex. Nat. Genet. 26, 89–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Pringle, D. R. et al. Thyroid-specific ablation of the Carney complex gene, PRKAR1A, results in hyperthyroidism and follicular thyroid cancer. Endocr. Relat. Cancer 19, 435–446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sandrini, F. et al. Regulatory subunit type I-α of protein kinase A (PRKAR1A): a tumor-suppressor gene for sporadic thyroid cancer. Genes Chromosom. Cancer 35, 182–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. https://doi.org/10.1126/scisignal.2004088 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mitsutake, N. et al. Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. Cancer Res. 65, 2465–2473 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Knauf, J. A., Kuroda, H., Basu, S. & Fagin, J. A. RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene 22, 4406–4412 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Liu, D. et al. Suppression of BRAF/MEK/MAP kinase pathway restores expression of iodide-metabolizing genes in thyroid cells expressing the V600E BRAF mutant. Clin. Cancer Res. 13, 1341–1349 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Nagarajah, J. et al. Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine. J. Clin. Invest. 126, 4119–4124 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ho, A. L. et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N. Engl. J. Med. 368, 623–632 (2013). Pilot clinical trial showing that inhibition of MEK promotes response to RAI therapy in RAI-refractory metastatic thyroid cancers, particularly those with RAS mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dunn, L. A. et al. Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers. J. Clin. Endocrinol. Metab. 104, 1417–1428 (2019).

    Article  PubMed  Google Scholar 

  108. Rothenberg, S. M., McFadden, D. G., Palmer, E. L., Daniels, G. H. & Wirth, L. J. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin. Cancer Res. 21, 1028–1035 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Groussin, L. et al. Redifferentiating effect of larotrectinib in NTRK-rearranged advanced radioactive-iodine refractory thyroid cancer. Thyroid https://doi.org/10.1089/thy.2021.0524 (2022).

    Article  PubMed  Google Scholar 

  110. Lee, Y. A. et al. NTRK and RET fusion-directed therapy in pediatric thyroid cancer yields a tumor response and radioiodine uptake. J. Clin. Invest. https://doi.org/10.1172/JCI144847 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Tchekmedyian, V. et al. Enhancing radioiodine incorporation in BRAF-mutant, radioiodine-refractory thyroid cancers with vemurafenib and the anti-ErbB3 monoclonal antibody CDX-3379: results of a pilot clinical trial. Thyroid 32, 273–282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Weber, M. et al. Enhancing radioiodine incorporation into radioiodine-refractory thyroid cancer with MAPK inhibition (ERRITI): a single-center prospective two-arm study. Clin. Cancer Res. 28, 4194–4202 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Colletta, G., Cirafici, A. M. & Di Carlo, A. Dual effect of transforming growth factor beta on rat thyroid cells: inhibition of thyrotropin-induced proliferation and reduction of thyroid-specific differentiation markers. Cancer Res. 49, 3457–3462 (1989).

    CAS  PubMed  Google Scholar 

  114. Riesco-Eizaguirre, G. et al. The BRAFV600E oncogene induces transforming growth factor β secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res. 69, 8317–8325 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Luckett, K. A. et al. Co-inhibition of SMAD and MAPK signaling enhances 124I uptake in BRAF-mutant thyroid cancers. Endocr. Relat. Cancer 28, 391–402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Costamagna, E., Garcia, B. & Santisteban, P. The functional interaction between the paired domain transcription factor Pax8 and Smad3 is involved in transforming growth factor-β repression of the sodium/iodide symporter gene. J. Biol. Chem. 279, 3439–3446 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Kroll, T. G. et al. PAX8-PPARγ1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289, 1357–1360 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. Dobson, M. E. et al. Pioglitazone induces a proadipogenic antitumor response in mice with PAX8–PPARγ fusion protein thyroid carcinoma. Endocrinology 152, 4455–4465 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang, Y. et al. Genomic binding of PAX8–PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer. Oncotarget 8, 5761–5773 (2017).

    Article  PubMed  Google Scholar 

  121. Giordano, T. J. et al. Pioglitazone therapy of PAX8–PPARγ fusion protein thyroid carcinoma. J. Clin. Endocrinol. Metab. 103, 1277–1281 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lui, W. O. et al. CREB3L2PPARγ fusion mutation identifies a thyroid signaling pathway regulated by intramembrane proteolysis. Cancer Res. 68, 7156–7164 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Koumarianou, P., Gomez-Lopez, G. & Santisteban, P. Pax8 controls thyroid follicular polarity through cadherin-16. J. Cell Sci. 130, 219–231 (2017). This study shows that the thyroid transcription factor PAX8 regulates thyroid cell polarity through expression of the adhesion protein cadherin 16 and by facilitating epithelial cell interactions with the extracellular matrix.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Plachov, D. et al. Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development 110, 643–651 (1990).

    Article  CAS  PubMed  Google Scholar 

  125. Raman, P. & Koenig, R. J. Pax-8–PPAR-γ fusion protein in thyroid carcinoma. Nat. Rev. Endocrinol. 10, 616–623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Karunamurthy, A. et al. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr. Relat. Cancer 23, 295–301 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Paulsson, J. O. et al. Whole-genome sequencing of follicular thyroid carcinomas reveal recurrent mutations in microRNA processing subunit DGCR8. J. Clin. Endocrinol. Metab. 106, 3265–3282 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Robertson, A. G. et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 32, 204–220 e215 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dong, W. et al. Clonal evolution analysis of paired anaplastic and well-differentiated thyroid carcinomas reveals shared common ancestor. Genes Chromosom. Cancer 57, 645–652 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Montero-Conde, C. et al. Comprehensive molecular analysis of immortalization hallmarks in thyroid cancer reveals new prognostic markers. Clin. Transl. Med. 12, e1001 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wright, W. E., Piatyszek, M. A., Rainey, W. E., Byrd, W. & Shay, J. W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet. 18, 173–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  132. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957–959 (2013). Together with Horn et al. (2013), this study first demonstrates recurrent somatic non-coding mutations driving tumorigenesis. The mutations generate de novo consensus binding sites for the ETS family of transcription factors in the TERT gene promoter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liu, X. et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr. Relat. Cancer 20, 603–610 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Landa, I. et al. Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J. Clin. Endocrinol. Metab. 98, E1562–E1566 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vinagre, J. et al. Frequency of TERT promoter mutations in human cancers. Nat. Commun. 4, 2185 (2013).

    Article  PubMed  Google Scholar 

  139. Killela, P. J. et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl Acad. Sci. USA 110, 6021–6026 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu, R., Zhang, T., Zhu, G. & Xing, M. Regulation of mutant TERT by BRAF V600E/MAP kinase pathway through FOS/GABP in human cancer. Nat. Commun. 9, 579 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Thornton, C. E. M., Hao, J., Tamarapu, P. P. & Landa, I. Multiple ETS factors participate in the transcriptional control of TERT mutant promoter in thyroid cancers. Cancers https://doi.org/10.3390/cancers14020357 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Bullock, M. et al. ETS factor ETV5 activates the mutant telomerase reverse transcriptase promoter in thyroid cancer. Thyroid 29, 1623–1633 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Song, Y. S. et al. Interaction of BRAF-induced ETS factors with mutant TERT promoter in papillary thyroid cancer. Endocr. Relat. Cancer 26, 629–641 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Lee, D. D. et al. DNA hypermethylation within TERT promoter upregulates TERT expression in cancer. J. Clin. Invest. 129, 223–229 (2019).

    Article  PubMed  Google Scholar 

  145. Rowland, T. J., Bonham, A. J. & Cech, T. R. Allele-specific proximal promoter hypomethylation of the telomerase reverse transcriptase gene (TERT) associates with TERT expression in multiple cancers. Mol. Oncol. 14, 2358–2374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. McKelvey, B. A. et al. Characterization of allele-specific regulation of telomerase reverse transcriptase in promoter mutant thyroid cancer cell lines. Thyroid 30, 1470–1481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Xing, M. Z. et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J. Clin. Oncol. 32, 2718 (2014). This paper demonstrates that concurrent BRAF and TERT promoter mutations mark PTCs with worse clinical outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Park, H. et al. Molecular classification of follicular thyroid carcinoma based on TERT promoter mutations. Mod. Pathol. 35, 186–192 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Thompson, C. A. H. & Wong, J. M. Y. Non-canonical functions of telomerase reverse transcriptase: emerging roles and biological relevance. Curr. Top. Med. Chem. 20, 498–507 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Zhang, L. et al. Novel recurrent altered genes in Chinese patients with anaplastic thyroid cancer. J. Clin. Endocrinol. Metab. 106, 988–998 (2021).

    Article  PubMed  Google Scholar 

  151. Wang, J. R. et al. Impact of somatic mutations on survival outcomes in patients with anaplastic thyroid carcinoma. JCO Precis. Oncol. 6, e2100504 (2022).

    Article  PubMed  Google Scholar 

  152. Chen, H. et al. Molecular profile of advanced thyroid carcinomas by next-generation sequencing: characterizing tumors beyond diagnosis for targeted therapy. Mol. Cancer Ther. 17, 1575–1584 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Ibrahimpasic, T. et al. Outcomes in patients with poorly differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 99, 1245–1252 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Volante, M. et al. RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J. Clin. Endocrinol. Metab. 94, 4735–4741 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. McFadden, D. G. et al. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Proc. Natl Acad. Sci. USA 111, E1600–E1609 (2014). This study shows that loss of p53 function promotes progression of BRAF mutant-induced tumours to ATCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Knauf, J. A. et al. Hgf/Met activation mediates resistance to BRAF inhibition in murine anaplastic thyroid cancers. J. Clin. Invest. https://doi.org/10.1172/JCI120966 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. La Perle, K. M., Jhiang, S. M. & Capen, C. C. Loss of p53 promotes anaplasia and local invasion in ret/PTC1-induced thyroid carcinomas. Am. J. Pathol. 157, 671–677 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Orloff, M. S. et al. Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes. Am. J. Hum. Genet. 92, 76–80 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yehia, L., Ngeow, J. & Eng, C. PTEN-opathies: from biological insights to evidence-based precision medicine. J. Clin. Invest. 129, 452–464 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Charles, R. P., Silva, J., Iezza, G., Phillips, W. A. & McMahon, M. Activating BRAF and PIK3CA mutations cooperate to promote anaplastic thyroid carcinogenesis. Mol. Cancer Res. 12, 979–986 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yeager, N., Klein-Szanto, A., Kimura, S. & Di, C. A. Pten loss in the mouse thyroid causes goiter and follicular adenomas: insights into thyroid function and Cowden disease pathogenesis. Cancer Res. 67, 959–966 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Kimura, T. et al. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr. Rev. 22, 631–656 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Tode, B. et al. Insulin-like growth factor-I: autocrine secretion by human thyroid follicular cells in primary culture. J. Clin. Endocrinol. Metab. 69, 639–647 (1989).

    Article  CAS  PubMed  Google Scholar 

  164. Pappa, T. et al. Oncogenic mutations in PI3K/AKT/mTOR pathway effectors associate with worse prognosis in BRAFV600E-driven papillary thyroid cancer patients. Clin. Cancer Res. 27, 4256–4264 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Ricarte-Filho, J. C. et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 69, 4885–4893 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Miller, K. A. et al. Oncogenic Kras requires simultaneous PI3K signaling to induce ERK activation and transform thyroid epithelial cells in vivo. Cancer Res. 69, 3689–3694 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bedard, P. L. et al. A phase Ib dose-escalation study of the oral pan-PI3K inhibitor buparlisib (BKM120) in combination with the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected advanced solid tumors. Clin. Cancer Res. 21, 730–738 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Algazi, A. P. et al. A phase I trial of BKM120 combined with vemurafenib in BRAFV600E/k mutant advanced melanoma. J. Clin. Oncol. 32, 9101–9101 (2014).

    Article  Google Scholar 

  169. Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Alessi, D. R., Sakamoto, K. & Bayascas, J. R. LKB1-dependent signaling pathways. Annu. Rev. Biochem. 75, 137–163 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Grabiner, B. C. et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 4, 554–563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wagle, N. et al. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov. 4, 546–553 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Hanna, G. J. et al. Genomic correlates of response to everolimus in aggressive radioiodine-refractory thyroid cancer: a phase II study. Clin. Cancer Res. 24, 1546–1553 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Zhu, X. G., Zhao, L., Willingham, M. C. & Cheng, S. Y. Thyroid hormone receptors are tumor suppressors in a mouse model of metastatic follicular thyroid carcinoma. Oncogene 29, 1909–1919 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sakurai, A. et al. Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor beta. Proc. Natl Acad. Sci. USA 86, 8977–8981 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lu, C., Zhao, L., Ying, H., Willingham, M. C. & Cheng, S. Y. Growth activation alone is not sufficient to cause metastatic thyroid cancer in a mouse model of follicular thyroid carcinoma. Endocrinology 151, 1929–1939 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Cao, X., Kambe, F., Moeller, L. C., Refetoff, S. & Seo, H. Thyroid hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin-p70S6K cascade through phosphatidylinositol 3-kinase in human fibroblasts. Mol. Endocrinol. 19, 102–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Furuya, F., Hanover, J. A. & Cheng, S. Y. Activation of phosphatidylinositol 3-kinase signaling by a mutant thyroid hormone β receptor. Proc. Natl Acad. Sci. USA 103, 1780–1785 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Furuya, F., Lu, C., Willingham, M. C. & Cheng, S. Y. Inhibition of phosphatidylinositol 3-kinase delays tumor progression and blocks metastatic spread in a mouse model of thyroid cancer. Carcinogenesis 28, 2451–2458 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Saji, M. et al. Akt1 deficiency delays tumor progression, vascular invasion, and distant metastasis in a murine model of thyroid cancer. Oncogene 30, 4307–4315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Saji, M. et al. Akt isoform-specific effects on thyroid cancer development and progression in a murine thyroid cancer model. Sci. Rep. 10, 18316 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Khan, S. A. et al. Unique mutation patterns in anaplastic thyroid cancer identified by comprehensive genomic profiling. Head Neck 41, 1928–1934 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Ciriello, G. et al. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 45, 1127–1133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Schvartzman, J. M., Duijf, P. H., Sotillo, R., Coker, C. & Benezra, R. Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell 19, 701–714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kastenhuber, E. R. & Lowe, S. W. Putting p53 in Context. Cell 170, 1062–1078 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Baslan, T. et al. Ordered and deterministic cancer genome evolution after p53 loss. Nature 608, 795–802 (2022). This paper shows that Trp53 loss in mouse tumours leads to a non-random sequence of disruptions characterized by Trp53 LOH, and gene deletions followed by genome doubling and copy number gains and gene amplifications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hemmer, S., Wasenius, V. M., Knuutila, S., Franssila, K. & Joensuu, H. DNA copy number changes in thyroid carcinoma. Am. J. Pathol. 154, 1539–1547 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Sarkisian, C. J. et al. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat. Cell Biol. 9, 493–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    Article  PubMed  Google Scholar 

  191. Drosten, M. et al. Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway. Proc. Natl Acad. Sci. USA 111, 15155–15160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ryder, M. et al. Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression. PLoS ONE 8, e54302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ryder, M., Ghossein, R. A., Ricarte-Filho, J. C., Knauf, J. A. & Fagin, J. A. Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr. Relat. Cancer 15, 1069–1074 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Caillou, B. et al. Tumor-associated macrophages (TAMs) form an interconnected cellular supportive network in anaplastic thyroid carcinoma. PLoS ONE 6, e22567 (2011). Together with Ryder et al. (2008), this study presents evidence that ATCs are enveloped by an interconnected network of tumour-associated macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Stenman, A. et al. Pan-genomic sequencing reveals actionable CDKN2A/2B deletions and kataegis in anaplastic thyroid carcinoma. Cancers https://doi.org/10.3390/cancers13246340 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Landa, I. et al. Comprehensive genetic characterization of human thyroid cancer cell lines: a validated panel for preclinical studies. Clin. Cancer Res. 25, 3141–3151 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Alver, B. H. et al. The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers. Nat. Commun. 8, 14648 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wang, X., Haswell, J. R. & Roberts, C. W. Molecular pathways: SWI/SNF (BAF) complexes are frequently mutated in cancer-mechanisms and potential therapeutic insights. Clin. Cancer Res. 20, 21–27 (2014).

    Article  PubMed  Google Scholar 

  200. Wilson, B. G. et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation 16. Cancer Cell 18, 316–328 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Masoodi, T. et al. Evolution and impact of subclonal mutations in papillary thyroid cancer. Am. J. Hum. Genet. 105, 959–973 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Pu, W. et al. Single-cell transcriptomic analysis of the tumor ecosystems underlying initiation and progression of papillary thyroid carcinoma. Nat. Commun. 12, 6058 (2021). This scRNA-seq study of human PTCs shows distinct transcriptional states of thyroid cells along the course of disease progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Luo, H. et al. Characterizing dedifferentiation of thyroid cancer by integrated analysis. Sci. Adv. https://doi.org/10.1126/sciadv.abf3657 (2021). This single-cell analysis of progression from PTC to ATC links CREB3L1 overexpression arising from chromosome 11 copy number gain to EMT and mTOR pathway activation.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Fan, J. et al. Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data. Genome Res. 28, 1217–1227 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hornburg, M. et al. Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell 39, 928–944.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Braun, D. A. et al. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell 39, 632–648.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Wu, P., Sun, W. & Zhang, H. An immune-related prognostic signature for thyroid carcinoma to predict survival and response to immune checkpoint inhibitors. Cancer Immunol. Immunother. 71, 747–759 (2022).

    Article  CAS  PubMed  Google Scholar 

  208. Cunha, L. L. & Ward, L. S. Translating the immune microenvironment of thyroid cancer into clinical practice. Endocr. Relat. Cancer 29, R67–R83 (2022).

    Article  CAS  PubMed  Google Scholar 

  209. Yan, T. et al. Single-cell transcriptomic analysis of ecosystems in papillary thyroid carcinoma progression. Front. Endocrinol. 12, 729565 (2021).

    Article  Google Scholar 

  210. French, J. D. et al. Programmed death-1+ T cells and regulatory T cells are enriched in tumor-involved lymph nodes and associated with aggressive features in papillary thyroid cancer. J. Clin. Endocrinol. Metab. 97, E934–E943 (2012). This study shows that specific subpopulations of tumour-infiltrating immunosuppressive cells are associated with more aggressive PTCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Cunha, L. L. et al. CD8+ tumour-infiltrating lymphocytes and COX2 expression may predict relapse in differentiated thyroid cancer. Clin. Endocrinol. 83, 246–253 |(2015).

    Article  CAS  Google Scholar 

  212. Angell, T. E. et al. BRAF V600E in papillary thyroid carcinoma is associated with increased programmed death ligand 1 expression and suppressive immune cell infiltration. Thyroid 24, 1385–1393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Moretti, S. et al. Indoleamine 2,3-dioxygenase 1 (IDO1) is up-regulated in thyroid carcinoma and drives the development of an immunosuppressant tumor microenvironment. J. Clin. Endocrinol. Metab. 99, E832–E840 (2014).

    Article  CAS  PubMed  Google Scholar 

  214. Cunha, L. L. et al. Differentiated thyroid carcinomas may elude the immune system by B7H1 upregulation. Endocr. Relat. Cancer 20, 103–110 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Giannini, R. et al. Immune profiling of thyroid carcinomas suggests the existence of two major phenotypes: an ATC-like and a PDTC-like. J. Clin. Endocrinol. Metab. 104, 3557–3575 (2019).

    PubMed  Google Scholar 

  216. Zhang, P. et al. Targeting myeloid derived suppressor cells reverts immune suppression and sensitizes BRAF-mutant papillary thyroid cancer to MAPK inhibitors. Nat. Commun. 13, 1588 (2022). This study connects BRAF-V600E with recruitment of MDSCs and points to combinatorial MAPK pathway inhibition and MDSC depletion as a therapeutic strategy for thyroid cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Bertol, B. C. et al. Lenvatinib plus anti-PD-1 combination therapy for advanced cancers: defining mechanisms of resistance in an inducible transgenic model of thyroid cancer. Thyroid 32, 153–163 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Xu, B. et al. Prolonged survival of anaplastic thyroid carcinoma is associated with resectability, low tumor-infiltrating neutrophils/myeloid-derived suppressor cells, and low peripheral neutrophil-to-lymphocyte ratio. Endocrine 76, 612–619 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Li, K. et al. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal. Transduct. Target. Ther. 6, 362 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Suzuki, S. et al. Immunosuppression involving increased myeloid-derived suppressor cell levels, systemic inflammation and hypoalbuminemia are present in patients with anaplastic thyroid cancer. Mol. Clin. Oncol. 1, 959–964 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Alspach, E., Lussier, D. M. & Schreiber, R. D. Interferon γ and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a028480 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Dhatchinamoorthy, K., Colbert, J. D. & Rock, K. L. Cancer immune evasion through loss of MHC class I antigen presentation. Front. Immunol. 12, 636568 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 21, 298–312 (2021).

    Article  CAS  PubMed  Google Scholar 

  225. Brea, E. J. et al. Kinase regulation of human MHC class I molecule expression on cancer cells. Cancer Immunol. Res. 4, 936–947 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zhi, J. et al. Inhibition of BRAF sensitizes thyroid carcinoma to immunotherapy by enhancing tsMHCII-mediated immune recognition. J. Clin. Endocrinol. Metab. 106, 91–107 (2021).

    Article  PubMed  Google Scholar 

  227. Massague, J. & Ganesh, K. Metastasis-initiating cells and ecosystems. Cancer Discov. 11, 971–994 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Gao, Y. et al. Metastasis organotropism: redefining the congenial soil. Dev. Cell 49, 375–391 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575.e11 (2022). Pan-cancer analysis of somatic mutations associated with distant metastases and metastatic tropism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Krishnamoorthy, G. P. et al. Abstract 986: RBM10 loss in thyroid cancer leads to aberrant splicing of cytoskeletal and extracellular matrix mRNAs and increased metastatic fitness. Cancer Res. 82, 986–986 (2022).

    Article  Google Scholar 

  231. Haugen, B. R. et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid 26, 1–133 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Jonklaas, J. et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid 16, 1229–1242 (2006).

    Article  PubMed  Google Scholar 

  233. Ruel, E. et al. Adjuvant radioactive iodine therapy is associated with improved survival for patients with intermediate-risk papillary thyroid cancer. J. Clin. Endocrinol. Metab. 100, 1529–1536 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Liu, J. et al. The genetic duet of BRAF V600E and TERT promoter mutations robustly predicts loss of radioiodine avidity in recurrent papillary thyroid cancer. J. Nucl. Med. 61, 177–182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Schlumberger, M. et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 372, 621–630 (2015).

    Article  PubMed  Google Scholar 

  236. Brose, M. S. et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384, 319–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Matsui, J. et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int. J. Cancer 122, 664–671 (2008).

    Article  CAS  PubMed  Google Scholar 

  238. Kumar, R. et al. Myelosuppression and kinase selectivity of multikinase angiogenesis inhibitors. Br. J. Cancer 101, 1717–1723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Tahara, M. et al. Exploratory analysis of biomarkers associated with clinical outcomes from the study of lenvatinib in differentiated cancer of the thyroid. Eur. J. Cancer 75, 213–221 (2017).

    Article  CAS  PubMed  Google Scholar 

  240. Brose, M. S. et al. Analysis of biomarkers and association with clinical outcomes in patients with differentiated thyroid cancer: subanalysis of the sorafenib phase III DECISION trial. Clin. Cancer Res. 25, 7370–7380 (2019). Together with Schlumberger et al. (2015), this clinical trial of multikinase inhibitors in thyroid cancer led to the first FDA-approved small molecule systemic therapy for the disease.

    Article  CAS  PubMed  Google Scholar 

  241. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  242. Jayson, G. C., Kerbel, R., Ellis, L. M. & Harris, A. L. Antiangiogenic therapy in oncology: current status and future directions. Lancet 388, 518–529 (2016).

    Article  CAS  PubMed  Google Scholar 

  243. Butler, J. M., Kobayashi, H. & Rafii, S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat. Rev. Cancer 10, 138–146 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Hick, A. C. et al. Reciprocal epithelial: endothelial paracrine interactions during thyroid development govern follicular organization and C-cells differentiation. Dev. Biol. 381, 227–240 (2013).

    Article  CAS  PubMed  Google Scholar 

  245. Degosserie, J. et al. Extracellular vesicles from endothelial progenitor cells promote thyroid follicle formation. J. Extracell. Vesicles 7, 1487250 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Carlomagno, F. et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 62, 7284–7290 (2002).

    CAS  PubMed  Google Scholar 

  247. Subbiah, V. et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol. https://doi.org/10.1016/S2213-8587(21)00120-0 (2021).

    Article  PubMed  Google Scholar 

  248. Wirth, L. J. et al. Efficacy of selpercatinib in RET-altered thyroid cancers. N. Engl. J. Med. 383, 825–835 (2020).

    Article  CAS  PubMed  Google Scholar 

  249. Addeo, A. et al. RET aberrant cancers and RET inhibitor therapies: current state-of-the-art and future perspectives. Pharmacol. Ther. 242, 108344 (2023).

    Article  CAS  PubMed  Google Scholar 

  250. Cocco, E., Scaltriti, M. & Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15, 731–747 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Hong, D. S. et al. KRASG12C inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med. 383, 1207–1217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Ho, A. L. et al. Tipifarnib in head and neck squamous cell carcinoma with HRAS mutations. J. Clin. Oncol. 39, 1856–1864 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  254. Sosman, J. A. et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366, 707–714 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Kopetz, S. et al. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J. Clin. Oncol. 33, 4032–4038 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Brose, M. S. et al. Vemurafenib in patients with BRAFV600E-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 17, 1272–1282 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Sherman, E. J. et al. Combination of dabrafenib and lapatinib for the treatment of BRAF-mutant thyroid cancer: a phase I study. J. Clin. Oncol. 35, 6085 (2017).

    Article  Google Scholar 

  258. Bible, K. C. et al. 2021 American Thyroid Association Guidelines for management of patients with anaplastic thyroid cancer. Thyroid 31, 337–386 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Hyman, D. M. et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 373, 726–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Subbiah, V. et al. Dabrafenib plus trametinib in patients with BRAF V600E-mutant anaplastic thyroid cancer: updated analysis from the phase II ROAR basket study. Ann. Oncol. 33, 406–415 (2022). Together with Subbiah et al. (2018), this study provides evidence that combined RAF and MEK inhibition leads to major responses and prolonged survival in patients with BRAF-mutant ATC.

    Article  CAS  PubMed  Google Scholar 

  261. Busaidy, N. L. et al. Dabrafenib versus dabrafenib + trametinib in BRAF-mutated radioactive iodine refractory differentiated thyroid cancer: results of a randomized, phase 2, open-label multicenter trial. Thyroid 32, 1184–1192 (2022).

    CAS  PubMed  Google Scholar 

  262. Capdevila, J. et al. PD-1 blockade in anaplastic thyroid carcinoma. J. Clin. Oncol. 38, 2620–2627 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Chiosea, S. et al. Molecular profiling of 50,734 Bethesda III–VI thyroid nodules by ThyroSeq v3: implications for personalized management. J. Clin. Endocrinol. Metab. https://doi.org/10.1210/clinem/dgad220 (2023).

    Article  PubMed  Google Scholar 

  264. Zafereo, M. et al. A thyroid genetic classifier correctly predicts benign nodules with indeterminate cytology: two independent, multicenter, prospective validation trials. Thyroid 30, 704–712 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Lee, M. et al. Genomic and transcriptomic correlates of thyroid carcinoma evolution after BRAF inhibitor therapy. Mol. Cancer Res. 20, 45–55 (2022).

    Article  CAS  PubMed  Google Scholar 

  266. Hofmann, M. C. et al. Molecular mechanisms of resistance to kinase inhibitors and redifferentiation in thyroid cancers. Endocr. Relat. Cancer 29, R173–R190 (2022).

    CAS  PubMed  Google Scholar 

  267. Andre, F. et al. AACR project GENIE: powering precision medicine through an international consortium. Cancer Discov. 7, 818–831 (2017).

    Article  Google Scholar 

  268. Yoo, S. K. et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 12, e1006239 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Song, E. et al. Genetic profile of advanced thyroid cancers in relation to distant metastasis. Endocr. Relat. Cancer 27, 285–293 (2020).

    Article  CAS  PubMed  Google Scholar 

  270. Lopez-Marquez, A., Carrasco-Lopez, C., Fernandez-Mendez, C. & Santisteban, P. Unraveling the complex interplay between transcription factors and signaling molecules in thyroid differentiation and function, from embryos to adults. Front. Endocrinol. 12, 654569 (2021).

    Article  Google Scholar 

  271. McFadden, D. G. & Sadow, P. M. Genetics, diagnosis, and management of Hürthle cell thyroid neoplasms. Front. Endocrinol. 12, 696386 (2021).

    Article  Google Scholar 

  272. Chindris, A. M. et al. Clinical and molecular features of Hürthle cell carcinoma of the thyroid. J. Clin. Endocrinol. Metab. 100, 55–62 (2015).

    Article  CAS  PubMed  Google Scholar 

  273. Yeh, J. J. et al. Somatic mitochondrial DNA (mtDNA) mutations in papillary thyroid carcinomas and differential mtDNA sequence variants in cases with thyroid tumours. Oncogene 19, 2060–2066 (2000).

    Article  CAS  PubMed  Google Scholar 

  274. Gasparre, G. et al. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc. Natl Acad. Sci. USA 104, 9001–9006 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. He, Y. et al. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464, 610–614 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Ganly, I. et al. Integrated genomic analysis of Hürthle cell cancer reveals oncogenic drivers, recurrent mitochondrial mutations, and unique chromosomal landscapes. Cancer Cell 34, 256–270.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Gopal, R. K. et al. Widespread chromosomal losses and mitochondrial DNA alterations as genetic drivers in Hürthle cell carcinoma. Cancer Cell 34, 242–255.e5 (2018). Together with Ganly et al. (2018), this study provides a comprehensive genomic analysis of OCs showing near haploidization of the nuclear genome coupled to mitochondrial DNA mutations of complex I subunits of the OXPHOS pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Frank, A. R. et al. Mitochondrial-encoded complex I impairment induces a targetable dependency on aerobic fermentation in Hürthle cell carcinoma of the thyroid. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-22-0982 (2023).

    Article  PubMed  Google Scholar 

  279. Ganly, I. et al. Mitonuclear genotype remodels the metabolic and microenvironmental landscape of Hürthle cell carcinoma. Sci. Adv. 8, eabn9699 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.A.F. acknowledges funding from the NIH, Cycle for Survival and from the Frank Cohen, Jaymie and Peter Flowers and Salvatore Ranieri funds. I.L. acknowledges funding from the NIH. The authors are also grateful to B. Xu and R. Ghossein for providing histological images for Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to all aspects of the article.

Corresponding author

Correspondence to James A. Fagin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Jena French, Sophie Leboulleux and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adaptive resistance

MAPK pathway oncoproteins activate downstream signalling networks, which in turn elicit negative regulatory events designed to dampen pathway output. Upon targeted inhibition of the oncoprotein with small molecules, the network adapts by relieving this negative feedback, causing intrinsic resistance to their action.

Adipogenesis

Differentiation process through which mesenchymal cells commit to preadipocytes, and these in turn differentiate into adipocytes.

Angiocrine factors

Growth factors, trophogens or membrane-bound paracrine factors supplied by endothelial cells to regulate neighbouring cell growth and homeostasis.

Capsular invasion

Invasion of tumour through the entire capsule distinguishes malignant from benign follicular-patterned thyroid neoplasms.

Cassette exon

Intervening exon between two other exons from the mature mRNA sequence that can be either included or skipped to generate two distinct protein isoforms.

Goitre

Abnormally enlarged thyroid gland.

Hyperthyroidism

Syndrome associated with excessive production of thyroid hormones by thyroid cells.

Non-homologous end joining

Pathway that repairs DNA double-stranded breaks without the need for a homologous template to ligate the break ends.

Non-synonymous somatic mutations

Mutations acquired postnatally that change the amino acid sequence of a protein.

Oncogene-induced senescence

Antiproliferative effects of oncoproteins mediated by a DNA damage response to DNA hyper-replication.

Open-label clinical trials

A type of study in which health providers and study subjects are aware of the treatment or drug being given.

Oxyphil cells

Cells with an eosinophilic cytoplasm containing abundant, abnormally large, mitochondria and large centrally located nuclei.

Radioactive iodine (RAI) therapy

Administration of iodine-131 to ablate thyroid tissue. In patients with thyroid cancer, it is used to destroy the remnants of thyroid after thyroidectomy as adjuvant therapy or to treat RAI-avid metastases.

RAI avidity

Refers to the cellular property of incorporating and retaining radioactive iodine isotopes.

Sleeping beauty (SB) transposon

Composed of a Sleeping Beauty transposase and a synthetic DNA transposon designed to integrate into the genome of vertebrates to introduce new phenotypes and identify the genes responsible for them.

SWI/SNF chromatin remodelling complexes

Multisubunit protein complexes that elicit a DNA-stimulated ATPase activity that destabilizes histone–DNA interactions to mobilize nucleosomes, which increases accessibility of transcription factors to chromatin to activate or repress gene expression.

Telomere crisis

When telomeres become critically short, they are unable to protect chromosome ends from the DNA damage response and repair pathways. Telomere shortening can enable cancer growth through telomere crisis, a state of extensive genomic instability causing translocations, amplifications and deletions.

Tetraploidy

A cell containing four homologous copies of all chromosomes.

Thyroglobulin

A glycoprotein produced by thyroid cells that is secreted into the lumen of the follicle. Tyrosine residues in thyroglobulin incorporate iodine through the action of thyroid peroxidase, which upon cleavage and coupling in lysosomes gives rise to thyroid hormones.

Thyroid follicular cells

The major cell type of the thyroid gland, derived from the endoderm, and responsible for the production and secretion of the thyroid hormones thyroxine and triiodothyronine.

Thyroid parafollicular or C cells

Neuroendocrine cells of the thyroid, which secrete calcitonin, a hormone that helps control the level of calcium in blood.

Thyroid-stimulating hormone

(TSH). Glycoprotein hormone secreted by the pituitary gland that binds to the TSH receptor on thyroid cells to stimulate cell growth and expression of iodine metabolism genes.

Thyrotrophs

Pituitary cells that secrete TSH.

Tumour microevolution

Cancer is commonly understood to develop as a microevolutionary process, whereby a mutation initially confers a cell with a growth advantage allowing it to clonally expand. Sequential acquisition of new mutations in turn provides further stepwise fitness to the emerging clones.

Uniparental disomy

(UPD). Refers to the presence of two copies of a chromosome (chromosomes) derived from a single parent. In cancer, it manifests as large blocks of homozygosity with normal copy number.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagin, J.A., Krishnamoorthy, G.P. & Landa, I. Pathogenesis of cancers derived from thyroid follicular cells. Nat Rev Cancer 23, 631–650 (2023). https://doi.org/10.1038/s41568-023-00598-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00598-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer