Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding tumour endothelial cell heterogeneity and function from single-cell omics

Abstract

Anti-angiogenic therapies (AATs) are used to treat different types of cancers. However, their success is limited owing to insufficient efficacy and resistance. Recently, single-cell omics studies of tumour endothelial cells (TECs) have provided new mechanistic insight. Here, we overview the heterogeneity of human TECs of all tumour types studied to date, at the single-cell level. Notably, most human tumour types contain varying numbers but only a small population of angiogenic TECs, the presumed targets of AATs, possibly contributing to the limited efficacy of and resistance to AATs. In general, TECs are heterogeneous within and across all tumour types, but comparing TEC phenotypes across tumours is currently challenging, owing to the lack of a uniform nomenclature for endothelial cells and consistent single-cell analysis protocols, urgently raising the need for a more consistent approach. Nonetheless, across most tumour types, universal TEC markers (ACKR1, PLVAP and IGFBP3) can be identified. Besides angiogenesis, biological processes such as immunomodulation and extracellular matrix organization are among the most commonly predicted enriched signatures of TECs across different tumour types. Although angiogenesis and extracellular matrix targets have been considered for AAT (without the hoped success), the immunomodulatory properties of TECs have not been fully considered as a novel anticancer therapeutic approach. Therefore, we also discuss progress, limitations, solutions and novel targets for AAT development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Body map of tumour endothelial cells characterized by single-cell RNA-sequencing in different cancer types.
Fig. 2: Common markers and functions of tumour-enriched endothelial cells.
Fig. 3: New technologies to delineate endothelial cell heterogeneity.

Similar content being viewed by others

Data availability

Markers and functions of TECs were extracted from the original referenced work. The summarized tables for plotting Fig. 2a and the source code used in this paper and written by Q.Z. are available as Supplementary Information.

References

  1. Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011).

    CAS  PubMed  Google Scholar 

  2. Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7, 803–815 (2007).

    CAS  PubMed  Google Scholar 

  3. Potente, M. & Mäkinen, T. Vascular heterogeneity and specialization in development and disease. Nat. Rev. Mol. Cell Biol. 18, 477–494 (2017).

    CAS  PubMed  Google Scholar 

  4. Augustin, H. G. & Koh, G. Y. Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science https://doi.org/10.1126/science.aal2379 (2017).

    Article  PubMed  Google Scholar 

  5. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    CAS  PubMed  Google Scholar 

  6. Jayson, G. C., Kerbel, R., Ellis, L. M. & Harris, A. L. Antiangiogenic therapy in oncology: current status and future directions. Lancet 388, 518–529 (2016).

    CAS  PubMed  Google Scholar 

  7. Garcia, J. et al. Bevacizumab (Avastin®) in cancer treatment: a review of 15 years of clinical experience and future outlook. Cancer Treat. Rev. 86, 102017 (2020).

    CAS  PubMed  Google Scholar 

  8. Yang, Y. et al. Anti-VEGF– and anti-VEGF receptor-induced vascular alteration in mouse healthy tissues. Proc. Natl Acad. Sci. USA 110, 12018–12023 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao, Y. VEGF-targeted cancer therapeutics — paradoxical effects in endocrine organs. Nat. Rev. Endocrinol. 10, 530–539 (2014).

    CAS  PubMed  Google Scholar 

  10. Goel, S., Wong, A. H.-K. & Jain, R. K. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a006486 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cao, Y. Off-tumor target — beneficial site for antiangiogenic cancer therapy. Nat. Rev. Clin. Oncol. 7, 604–608 (2010).

    CAS  PubMed  Google Scholar 

  12. Xue, Y. et al. Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome. Proc. Natl Acad. Sci. USA 105, 18513–18518 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8, 592–603 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gacche, R. N. & Assaraf, Y. G. Redundant angiogenic signaling and tumor drug resistance. Drug. Resist. Updat. 36, 47–76 (2018).

    PubMed  Google Scholar 

  15. Carmeliet, P., De Smet, F., Loges, S. & Mazzone, M. Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nat. Rev. Clin. Oncol. 6, 315–326 (2009).

    CAS  PubMed  Google Scholar 

  16. Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943–953 (2010).

    CAS  PubMed  Google Scholar 

  17. Croix, B. S. et al. Genes expressed in human tumor endothelium. Science 289, 1197–1202 (2000).

    Google Scholar 

  18. Bussolati, B., Deambrosis, I., Russo, S., Deregibus, M. C. & Camussi, G. Altered angiogenesis and survival in human tumor-derived endothelial cells. FASEB J. 17, 1159–1161 (2003).

    CAS  PubMed  Google Scholar 

  19. Ohga, N. et al. Heterogeneity of tumor endothelial cells: comparison between tumor endothelial cells isolated from high- and low-metastatic tumors. Am. J. Pathol. 180, 1294–1307 (2012).

    CAS  PubMed  Google Scholar 

  20. Kikuchi, H. et al. Chemotherapy-induced IL8 upregulates MDR1/ABCB1 in tumor blood vessels and results in unfavorable outcome. Cancer Res. 80, 2996–3008 (2020).

    CAS  PubMed  Google Scholar 

  21. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779.e20 (2020). This work pioneers an atlas of EC heterogeneity in the whole body of healthy mice.

    CAS  PubMed  Google Scholar 

  22. Paik, D. T. et al. Single-cell RNA sequencing unveils unique transcriptomic signatures of organ-specific endothelial cells. Circulation 142, 1848–1862 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jones, R. C. et al. The tabula sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    CAS  PubMed  Google Scholar 

  24. Wang, F. et al. Endothelial cell heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level. Nat. Commun. 13, 3620 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Goveia, J. et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell 37, 21–36.e13 (2020). This work for the first time characterizes ECs in depth specifically in lung cancer and validates bioinformatic findings by integrated approaches.

    CAS  PubMed  Google Scholar 

  26. Geldhof, V. et al. Single cell atlas identifies lipid-processing and immunomodulatory endothelial cells in healthy and malignant breast. Nat. Commun. 13, 5511 (2022). This work for the first time systematically analyses EC heterogeneity at single-cell resolution in breast cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schupp, J. C. et al. Integrated single-cell atlas of endothelial cells of the human lung. Circulation 144, 286–302 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Apte, R. S., Chen, D. S. & Ferrara, N. VEGF in signaling and disease: beyond discovery and development. Cell 176, 1248–1264 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Becker, L. M. et al. Deciphering endothelial heterogeneity in health and disease at single cell resolution: progress and perspectives. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvac018 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cavalli, M. et al. A multi-omics approach to liver diseases: integration of single nuclei transcriptomics with proteomics and HiCap bulk data in human liver. OMICS 24, 180–194 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, H. et al. Integrative single-cell transcriptome analysis reveals a subpopulation of fibroblasts associated with favorable prognosis of liver cancer patients. Transl. Oncol. 14, 100981 (2021).

    CAS  PubMed  Google Scholar 

  33. Zhang, Y. et al. Single-cell transcriptome analysis reveals tumor immune microenvironment heterogenicity and granulocytes enrichment in colorectal cancer liver metastases. Cancer Lett. 470, 84–94 (2020).

    CAS  PubMed  Google Scholar 

  34. Zhao, Q. et al. Heterogeneity and chimerism of endothelial cells revealed by single-cell transcriptome in orthotopic liver tumors. Angiogenesis 23, 581–597 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sharma, A. et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell 183, 377–394.e21 (2020). This work identifies a conserved EC population in liver cancer and the fetal liver and demonstrates its important role in contributing to the immunosuppressive TME.

    CAS  PubMed  Google Scholar 

  36. Massalha, H. et al. A single cell atlas of the human liver tumor microenvironment. Mol. Syst. Biol. 16, e9682 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Xue, R. et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 612, 141–147 (2022).

    CAS  PubMed  Google Scholar 

  39. Xing, X. & Song, J. Identification of the different gene expression characteristics from liver cirrhosis to hepatocellular carcinoma using single-cell sequencing analyses. J. Immunol. Res. 2021, 6619302 (2021).

    PubMed  PubMed Central  Google Scholar 

  40. Ioannidou, S. et al. An in vitro assay reveals a role for the diaphragm protein PV-1 in endothelial fenestra morphogenesis. Proc. Natl Acad. Sci. USA 103, 16770–16775 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Stan, R. V. et al. The diaphragms of fenestrated endothelia: gatekeepers of vascular permeability and blood composition. Dev. Cell 23, 1203–1218 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jones, J. H., Friedrich, E., Hong, Z., Minshall, R. D. & Malik, A. B. PV1 in caveolae controls lung endothelial permeability. Am. J. Respir. Cell Mol. Biol. 63, 531–539 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rantakari, P. et al. The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes. Nat. Immunol. 16, 386–396 (2015).

    CAS  PubMed  Google Scholar 

  44. Keuschnigg, J. et al. The prototype endothelial marker PAL-E is a leukocyte trafficking molecule. Blood 114, 478–484 (2009).

    CAS  PubMed  Google Scholar 

  45. Strickland, L. A. et al. Plasmalemmal vesicle-associated protein (PLVAP) is expressed by tumour endothelium and is upregulated by vascular endothelial growth factor-A (VEGF). J. Pathol. 206, 466–475 (2005).

    CAS  PubMed  Google Scholar 

  46. Li, Z. et al. Single-cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident endothelial cells following myocardial infarction. Eur. Heart J. 40, 2507–2520 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, Y. et al. Plasmalemma vesicle-associated protein promotes angiogenesis in cholangiocarcinoma via the DKK1/CKAP4/PI3K signaling pathway. Oncogene 40, 4324–4337 (2021).

    CAS  PubMed  Google Scholar 

  48. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    CAS  PubMed  Google Scholar 

  49. Wang, Y.-H. et al. Plasmalemmal vesicle associated protein (PLVAP) as a therapeutic target for treatment of hepatocellular carcinoma. BMC Cancer 14, 815 (2014).

    PubMed  PubMed Central  Google Scholar 

  50. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/ct2/show/NCT04601428 (2020).

  51. Poisson, J. et al. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J. Hepatol. 66, 212–227 (2017).

    CAS  PubMed  Google Scholar 

  52. Thomann, S. et al. YAP orchestrates heterotypic endothelial cell communication via HGF/c-MET signaling in liver tumorigenesis. Cancer Res. 80, 5502–5514 (2020).

    CAS  PubMed  Google Scholar 

  53. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    CAS  PubMed  Google Scholar 

  54. Wang, B. et al. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4, 19–29 (2003).

    PubMed  Google Scholar 

  55. Raza, A., Franklin, M. J. & Dudek, A. Z. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am. J. Hematol. 85, 593–598 (2010).

    CAS  PubMed  Google Scholar 

  56. Pitulescu, M. E. et al. Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat. Cell Biol. 19, 915–927 (2017).

    CAS  PubMed  Google Scholar 

  57. Lee, H. O. et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat. Genet. 52, 594–603 (2020).

    CAS  PubMed  Google Scholar 

  58. Qian, J. et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 30, 745–762 (2020). This work is an ‘antetype’ of a human tumour EC atlas and compares ECs from three different types of cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rohlenova, K. et al. Single-cell RNA sequencing maps endothelial metabolic plasticity in pathological angiogenesis. Cell Metab. 31, 862–877.e14 (2020).

    CAS  PubMed  Google Scholar 

  60. Thiriot, A. et al. Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues. BMC Biol. 15, 45 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752.e20 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Che, L.-H. et al. A single-cell atlas of liver metastases of colorectal cancer reveals reprogramming of the tumor microenvironment in response to preoperative chemotherapy. Cell Discov. 7, 80 (2021).

    PubMed  PubMed Central  Google Scholar 

  63. Li, X., Kumar, A. & Carmeliet, P. Metabolic pathways fueling the endothelial cell drive. Annu. Rev. Physiol. 81, 483–503 (2019).

    CAS  PubMed  Google Scholar 

  64. Kuipers, E. J. et al. Colorectal cancer. Nat. Rev. Dis. Prim. 1, 15065 (2015).

    PubMed  Google Scholar 

  65. Lin, W. et al. Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions. Genome Med. 12, 80 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, X. et al. Single-cell RNA-seq reveals the genesis and heterogeneity of tumor microenvironment in pancreatic undifferentiated carcinoma with osteoclast-like giant-cells. Mol. Cancer 21, 133 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Peng, J. et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 29, 725–738 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, K. et al. Single-cell RNA-seq reveals dynamic change in tumor microenvironment during pancreatic ductal adenocarcinoma malignant progression. eBioMedicine https://doi.org/10.1016/j.ebiom.2021.103315 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhou, Y. et al. Single-cell RNA sequencing reveals spatiotemporal heterogeneity and malignant progression in pancreatic neuroendocrine tumor. Int. J. Biol. Sci. 17, 3760–3775 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, K. et al. Hypoxic pancreatic cancer derived exosomal miR-30b-5p promotes tumor angiogenesis by inhibiting GJA1 expression. Int. J. Biol. Sci. 18, 1220–1237 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Shiau, C. et al. Treatment-associated remodeling of the pancreatic cancer endothelium at single-cell resolution. Front. Oncol. https://doi.org/10.3389/fonc.2022.929950 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Abdel-Wahab, R. et al. Randomized, phase I/II study of gemcitabine plus IGF-1R antagonist (MK-0646) versus gemcitabine plus erlotinib with and without MK-0646 for advanced pancreatic adenocarcinoma. J. Hematol. Oncol. 11, 71 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. Mutgan, A. C. et al. Insulin/IGF-driven cancer cell-stroma crosstalk as a novel therapeutic target in pancreatic cancer. Mol. Cancer 17, 66 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Baxter, R. C. IGF binding proteins in cancer: mechanistic and clinical insights. Nat. Rev. Cancer 14, 329–341 (2014).

    CAS  PubMed  Google Scholar 

  75. Kundranda, M. et al. Randomized, double-blind, placebo-controlled phase II study of istiratumab (MM-141) plus nab-paclitaxel and gemcitabine versus nab-paclitaxel and gemcitabine in front-line metastatic pancreatic cancer (CARRIE). Ann. Oncol. 31, 79–87 (2020).

    CAS  PubMed  Google Scholar 

  76. Fuchs, C. S. et al. A phase 3 randomized, double-blind, placebo-controlled trial of ganitumab or placebo in combination with gemcitabine as first-line therapy for metastatic adenocarcinoma of the pancreas: the GAMMA trial†. Ann. Oncol. 26, 921–927 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Choi, K. J., Nam, J.-K., Kim, J.-H., Choi, S.-H. & Lee, Y.-J. Endothelial-to-mesenchymal transition in anticancer therapy and normal tissue damage. Exp. Mol. Med. 52, 781–792 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Choi, S.-H. et al. Tumour-vasculature development via endothelial-to-mesenchymal transition after radiotherapy controls CD44v6 + cancer cell and macrophage polarization. Nat. Commun. 9, 5108 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. Schlesinger, Y. et al. Single-cell transcriptomes of pancreatic preinvasive lesions and cancer reveal acinar metaplastic cells’ heterogeneity. Nat. Commun. 11, 4516 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hosein, A. N., Brekken, R. A. & Maitra, A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat. Rev. Gastroenterol. Hepatol. 17, 487–505 (2020).

    PubMed  PubMed Central  Google Scholar 

  81. Fox, J. G. & Wang, T. C. Inflammation, atrophy, and gastric cancer. J. Clin. Invest. 117, 60–69 (2007).

    CAS  PubMed  Google Scholar 

  82. Yin, H. et al. A dynamic transcriptome map of different tissue microenvironment cells identified during gastric cancer development using single-cell RNA sequencing. Front. Immunol. https://doi.org/10.3389/fimmu.2021.728169 (2021). This work is a good example of how one could take advantage of publicly available data and gain insights into the dynamic changes of ECs during cancer development.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jiang, H. et al. Revealing the transcriptional heterogeneity of organ-specific metastasis in human gastric cancer using single-cell RNA Sequencing. Clin. Transl. Med. 12, e730 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jeong, H. Y. et al. Spatially distinct reprogramming of the tumor microenvironment based on tumor invasion in diffuse-type gastric cancers. Clin. Cancer Res. 27, 6529–6542 (2021).

    CAS  PubMed  Google Scholar 

  85. Li, Y. et al. Single-cell landscape reveals active cell subtypes and their interaction in the tumor microenvironment of gastric cancer. Theranostics 12, 3818–3833 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sun, K. et al. scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory. Nat. Commun. 13, 4943 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, X. et al. Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics 12, 620–638 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Yu, X. et al. Tumor vessel normalization and immunotherapy in gastric cancer. Ther. Adv. Med. Oncol. 14, 17588359221110176 (2022).

    PubMed  PubMed Central  Google Scholar 

  89. Zhang, X. et al. Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis. Nat. Commun. 12, 5291 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nagl, L., Horvath, L., Pircher, A. & Wolf, D. Tumor endothelial cells (TECs) as potential immune directors of the tumor microenvironment — new findings and future perspectives. Front. Cell Dev. Biol. 8, 766–766 (2020).

    PubMed  PubMed Central  Google Scholar 

  91. Amersfoort, J., Eelen, G. & Carmeliet, P. Immunomodulation by endothelial cells — partnering up with the immune system? Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00694-4 (2022). This review article comprehensively revisits the immunomodulatory function of ECs in different organs and diseases.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Saharinen, P., Eklund, L. & Alitalo, K. Therapeutic targeting of the angiopoietin–TIE pathway. Nat. Rev. Drug Discov. 16, 635–661 (2017).

    CAS  PubMed  Google Scholar 

  93. Chen, Y. T. et al. Platelet-derived growth factor receptor signaling activates pericyte–myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int. 80, 1170–1181 (2011).

    CAS  PubMed  Google Scholar 

  94. US National Library of Medicine. ClinicalTrials.gov, http://www.clinicaltrials.gov/ct2/show/NCT04879368 (2021).

  95. Chen, Z. et al. Dissecting the single-cell transcriptome network in patients with esophageal squamous cell carcinoma receiving operative paclitaxel plus platinum chemotherapy. Oncogenesis 10, 71–71 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Huinen, Z. R., Huijbers, E. J. M., van Beijnum, J. R., Nowak-Sliwinska, P. & Griffioen, A. W. Anti-angiogenic agents — overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/s41571-021-00496-y (2021). This is a comprehensive review article of the clinical applications of AAT and immunotherapy combinations.

    Article  PubMed  Google Scholar 

  97. Ma, J. & Waxman, D. J. Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol. Cancer Ther. 7, 3670–3684 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kapoor, H., Lohani, K. R., Lee, T. H., Agrawal, D. K. & Mittal, S. K. Animal models of Barrett’s esophagus and esophageal adenocarcinoma — past, present, and future. Clin. Transl. Sci. 8, 841–847 (2015).

    PubMed  PubMed Central  Google Scholar 

  99. Nowicki-Osuch, K. et al. Molecular phenotyping reveals the identity of Barrett’s esophagus and its malignant transition. Science 373, 760–767 (2021).

    CAS  PubMed  Google Scholar 

  100. Arvanitis, C. D., Ferraro, G. B. & Jain, R. K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020).

    CAS  PubMed  Google Scholar 

  101. Peleli, M., Moustakas, A. & Papapetropoulos, A. Endothelial–tumor cell interaction in brain and CNS malignancies. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21197371 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Xie, Y. et al. Key molecular alterations in endothelial cells in human glioblastoma uncovered through single-cell RNA sequencing. JCI Insight https://doi.org/10.1172/jci.insight.150861 (2021). This work comprehensively characterizes EC heterogeneity in glioblastoma and demonstrates distinct TEC phenotypes in the tumour core.

    Article  PubMed  PubMed Central  Google Scholar 

  103. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT05496595 (2022).

  104. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT04396717 (2022).

  105. Bosma, E. K., van Noorden, C. J. F., Schlingemann, R. O. & Klaassen, I. The role of plasmalemma vesicle-associated protein in pathological breakdown of blood–brain and blood–retinal barriers: potential novel therapeutic target for cerebral edema and diabetic macular edema. Fluids Barriers CNS 15, 24 (2018).

    PubMed  PubMed Central  Google Scholar 

  106. Soda, Y. et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc. Natl Acad. Sci. USA 108, 4274–4280 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wei, X. et al. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol. Cancer 20, 7 (2021).

    PubMed  PubMed Central  Google Scholar 

  108. Wälchli, T. et al. Shaping the brain vasculature in development and disease in the single-cell era. Nat. Rev. Neurosci. 24, 271–298 (2023).

    PubMed  PubMed Central  Google Scholar 

  109. Jain, S., Chalif, E. J. & Aghi, M. K. Interactions between anti-angiogenic therapy and immunotherapy in Glioblastoma. Front. Oncol. https://doi.org/10.3389/fonc.2021.812916 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhang, M. et al. Anti-vascular endothelial growth factor therapy in breast cancer: molecular pathway, potential targets, and current treatment strategies. Cancer Lett. 520, 422–433 (2021).

    CAS  PubMed  Google Scholar 

  111. Cejuela, M., Martin-Castillo, B., Menendez, J. A. & Pernas, S. Metformin and breast cancer: where are we now? Int. J. Mol. Sci. 23, 2705 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Sun, Z. et al. Single-cell RNA sequencing reveals gene expression signatures of breast cancer-associated endothelial cells. Oncotarget 9, 10945–10961 (2018).

    PubMed  Google Scholar 

  113. Wang, W., Wang, L., She, J. & Zhu, J. Examining heterogeneity of stromal cells in tumor microenvironment based on pan-cancer single-cell RNA sequencing data. Cancer Biol. Med. 19, 30–42 (2021).

    PubMed  Google Scholar 

  114. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hua, Y. et al. Cancer immunotherapies transition endothelial cells into HEVs that generate TCF1 + T lymphocyte niches through a feed-forward loop. Cancer Cell https://doi.org/10.1016/j.ccell.2022.11.002 (2022).

    Article  PubMed  Google Scholar 

  116. Li, Q. et al. Low-dose anti-angiogenic therapy sensitizes breast cancer to PD1 blockade. Clin. Cancer Res. 26, 1712–1724 (2020).

    CAS  PubMed  Google Scholar 

  117. Heidegger, I. et al. Comprehensive characterization of the prostate tumor microenvironment identifies CXCR4/CXCL12 crosstalk as a novel antiangiogenic therapeutic target in prostate cancer. Mol. Cancer 21, 132 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT05465590 (2022).

  119. Chen, S. et al. Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression. Nat. Cell Biol. 23, 87–98 (2021).

    CAS  PubMed  Google Scholar 

  120. Ioannidou, E. et al. Angiogenesis and anti-angiogenic treatment in prostate cancer: mechanisms of action and molecular targets. Int. J. Mol. Sci. 22, 9926 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kelly, W. K. et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J. Clin. Oncol. 30, 1534–1540 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT05000294 (2021).

  123. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT05489211 (2022).

  124. Kim, N. et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 11, 2285 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).

    CAS  PubMed  Google Scholar 

  126. Lu, T. et al. Single-cell transcriptome atlas of lung adenocarcinoma featured with ground glass nodules. Cell Discov. 6, 69 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ma, K. Y. et al. Single-cell RNA sequencing of lung adenocarcinoma reveals heterogeneity of immune response-related genes. JCI Insight https://doi.org/10.1172/jci.insight.121387 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zhang, F. et al. Dynamics of peripheral T cell clones during PD-1 blockade in non-small cell lung cancer. Cancer Immunol. Immunother. 69, 2599–2611 (2020).

    CAS  PubMed  Google Scholar 

  129. Zhong, R. et al. Immune cell infiltration features and related marker genes in lung cancer based on single-cell RNA-seq. Clin. Transl. Oncol. 23, 405–417 (2021).

    CAS  PubMed  Google Scholar 

  130. Raemer, P. C. et al. Endothelial progenitor cells possess monocyte-like antigen-presenting and T-cell-co-stimulatory capacity. Transplantation 87, 340–349 (2009).

    CAS  PubMed  Google Scholar 

  131. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01332721 (2011).

  132. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/ct2/show/NCT03780010 (2018).

  133. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/ct2/show/NCT03181308 (2017).

  134. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/ct2/show/NCT05401110 (2022).

  135. Girard, J.-P. & Springer, T. A. High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol. Today 16, 449–457 (1995).

    CAS  PubMed  Google Scholar 

  136. Bischoff, P. et al. Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in lung adenocarcinoma. Oncogene 40, 6748–6758 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Moran, T. et al. Activity of dalotuzumab, a selective anti-IGF1R antibody, in combination with erlotinib in unselected patients with non-small-cell lung cancer: a phase I/II randomized trial. Exp. Hematol. Oncol. 3, 1 (2014).

    PubMed  PubMed Central  Google Scholar 

  138. Huang, C. H. et al. Impact study: MK-0646 (dalotuzumab), insulin growth factor 1 receptor antibody combined with pemetrexed and cisplatin in stage IV metastatic non-squamous lung cancer. Front. Oncol. https://doi.org/10.3389/fonc.2015.00301 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Langer, C. J. et al. Randomized, phase III trial of first-line figitumumab in combination with paclitaxel and carboplatin versus paclitaxel and carboplatin alone in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 32, 2059–2066 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Molema, G., Zijlstra, J. G., van Meurs, M. & Kamps, J. A. A. M. Renal microvascular endothelial cell responses in sepsis-induced acute kidney injury. Nat. Rev. Nephrol. 18, 95–112 (2022).

    CAS  PubMed  Google Scholar 

  141. Dumas, S. J. et al. Single-cell RNA sequencing reveals renal endothelium heterogeneity and metabolic adaptation to water deprivation. J. Am. Soc. Nephrol. 31, 118–138 (2020).

    CAS  PubMed  Google Scholar 

  142. Zhang, Y. et al. Single-cell analyses of renal cell cancers reveal insights into tumor microenvironment, cell of origin, and therapy response. Proc. Natl Acad. Sci. USA 118, e2103240118 (2021). This work adopts ambitious strategies combining scRNA-seq data of RCC and patient survival and response to an immunotherapy to discover the prognostic and predictive values of PLVAP+ EC signatures.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/ct2/show/NCT04205227 (2019).

  145. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    CAS  PubMed  Google Scholar 

  146. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Shi, Y. et al. Decoding the multicellular ecosystem of vena caval tumor thrombus in clear cell renal cell carcinoma by single-cell RNA sequencing. Genome Biol. 23, 87 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997.e24 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Li, J. et al. Single-cell characterization of the cellular landscape of acral melanoma identifies novel targets for immunotherapy. Clin. Cancer Res. 28, 2131–2146 (2022).

    PubMed  PubMed Central  Google Scholar 

  151. Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 182, 497–514.e22 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Durante, M. A. et al. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat. Commun. 11, 496 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Liu, X. et al. Single-cell RNA-sequencing reveals lineage-specific regulatory changes of fibroblasts and vascular endothelial cells in keloids. J. Invest. Dermatol. 142, 124–135.e111 (2022).

    CAS  PubMed  Google Scholar 

  154. Brosseau, J. P. et al. Human cutaneous neurofibroma matrisome revealed by single-cell RNA sequencing. Acta Neuropathol. Commun. 9, 11 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Miao, Y. et al. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell 177, 1172–1186.e1114 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen, G. S. et al. CXC chemokine receptor CXCR4 expression enhances tumorigenesis and angiogenesis of basal cell carcinoma. Br. J. Dermatol. 154, 910–918 (2006).

    CAS  PubMed  Google Scholar 

  157. Saxena, R., Wang, Y. & Mier, J. W. CXCR4 inhibition modulates the tumor microenvironment and retards the growth of B16-OVA melanoma and Renca tumors. Melanoma Res. 30, 14–25 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/ct2/show/NCT02823405 (2016).

  159. Andtbacka, R. H. I. et al. Mavorixafor, an orally bioavailable CXCR4 antagonist, increases immune cell infiltration and inflammatory status of tumor microenvironment in patients with melanoma. Cancer Res. Commun. 2, 904–913 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Pu, W. et al. Single-cell transcriptomic analysis of the tumor ecosystems underlying initiation and progression of papillary thyroid carcinoma. Nat. Commun. 12, 6058 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Melaccio, A. et al. Prognostic and therapeutic role of angiogenic microenvironment in thyroid cancer. Cancers 13, 2775 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Pan, J. et al. Papillary thyroid carcinoma landscape and its immunological link with hashimoto thyroiditis at single-cell resolution. Front. Cell Dev. Biol. 9, 758339 (2021).

    PubMed  PubMed Central  Google Scholar 

  163. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Yang, Z. et al. A new risk factor indicator for papillary thyroid cancer based on immune infiltration. Cell Death Dis. 12, 51 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Lee, Y. H. et al. Is male gender a prognostic factor for papillary thyroid microcarcinoma. Ann. Surg. Oncol. 24, 1958–1964 (2017).

    PubMed  Google Scholar 

  166. Peng, M. et al. Single‐cell transcriptomic landscape reveals the differences in cell differentiation and immune microenvironment of papillary thyroid carcinoma between genders. Cell Biosci. 11, 39 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Greten, F. R. & Grivennikov, S. I. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51, 27–41 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. GRANATA, R. et al. Insulin-like growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms. J. Thromb. Haemost. 5, 835–845 (2007).

    CAS  PubMed  Google Scholar 

  169. Kim, J.-H. et al. Antiangiogenic antitumor activities of IGFBP-3 are mediated by IGF-independent suppression of Erk1/2 activation and Egr-1-mediated transcriptional events. Blood 118, 2622–2631 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Dallinga, M. G. et al. IGF-binding proteins 3 and 4 are regulators of sprouting angiogenesis. Mol. Biol. Rep. 47, 2561–2572 (2020).

    CAS  PubMed  Google Scholar 

  171. Anwar, A., Zahid, A. A., Scheidegger, K. J., Brink, M. & Delafontaine, P. Tumor necrosis factor-α regulates insulin-like growth factor-1 and insulin-like growth factor binding protein-3 expression in vascular smooth muscle. Circulation 105, 1220–1225 (2002).

    CAS  PubMed  Google Scholar 

  172. Horton, L. W., Yu, Y., Zaja-Milatovic, S., Strieter, R. M. & Richmond, A. Opposing roles of murine duffy antigen receptor for chemokine and murine CXC chemokine receptor-2 receptors in murine melanoma tumor growth. Cancer Res. 67, 9791–9799 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Jenkins, B. D. et al. Atypical chemokine receptor 1 (DARC/ACKR1) in breast tumors is associated with survival, circulating chemokines, tumor-infiltrating immune cells, and African ancestry. Cancer Epidemiol. Biomark. Prev. 28, 690–700 (2019).

    CAS  Google Scholar 

  174. Massara, M., Bonavita, O., Mantovani, A., Locati, M. & Bonecchi, R. Atypical chemokine receptors in cancer: friends or foes? J. Leukoc. Biol. 99, 927–933 (2016).

    CAS  PubMed  Google Scholar 

  175. Cox, T. R. The matrix in cancer. Nat. Rev. Cancer 21, 217–238 (2021).

    CAS  PubMed  Google Scholar 

  176. Jiang, Y. et al. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J. Hematol. Oncol. 15, 34 (2022).

    PubMed  PubMed Central  Google Scholar 

  177. Luo, H. et al. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nat. Commun. 13, 6619 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Emmerich, C. H. et al. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat. Rev. Drug Discov. 20, 64–81 (2021). This work systematically assesses the processes of translational research and provides helpful insights.

    CAS  PubMed  Google Scholar 

  179. Su, Y. et al. Multi-omic single-cell snapshots reveal multiple independent trajectories to drug tolerance in a melanoma cell line. Nat. Commun. 11, 2345 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Ding, J., Sharon, N. & Bar-Joseph, Z. Temporal modelling using single-cell transcriptomics. Nat. Rev. Genet. 23, 355–368 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Bassez, A. et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat. Med. 27, 820–832 (2021).

    CAS  PubMed  Google Scholar 

  182. Miao, Z., Humphreys, B. D., McMahon, A. P. & Kim, J. Multi-omics integration in the age of million single-cell data. Nat. Rev. Nephrol. 17, 710–724 (2021).

    PubMed  PubMed Central  Google Scholar 

  183. Erhard, F. et al. scSLAM-seq reveals core features of transcription dynamics in single cells. Nature 571, 419–423 (2019).

    CAS  PubMed  Google Scholar 

  184. Hendriks, G. J. et al. NASC-seq monitors RNA synthesis in single cells. Nat. Commun. 10, 3138 (2019).

    PubMed  PubMed Central  Google Scholar 

  185. Qiu, Q. et al. Massively parallel and time-resolved RNA sequencing in single cells with scNT-seq. Nat. Methods 17, 991–1001 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Chen, W. et al. Live-seq enables temporal transcriptomic recording of single cells. Nature 608, 733–740 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).

    CAS  PubMed  Google Scholar 

  188. Liu, B., Li, Y. & Zhang, L. Analysis and visualization of spatial transcriptomic data. Front. Genet. https://doi.org/10.3389/fgene.2021.785290 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl Acad. Sci. USA 116, 19490–19499 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Eng, C. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).

    CAS  PubMed  Google Scholar 

  193. Atta, L. & Fan, J. Computational challenges and opportunities in spatially resolved transcriptomic data analysis. Nat. Commun. 12, 5283 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).

    CAS  PubMed  Google Scholar 

  196. Katzenelenbogen, Y. et al. Coupled scRNA-Seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 182, 872–885.e19 (2020).

    CAS  PubMed  Google Scholar 

  197. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681.e18 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Ma, A., McDermaid, A., Xu, J., Chang, Y. & Ma, Q. Integrative methods and practical challenges for single-cell multi-omics. Trends Biotechnol. 38, 1007–1022 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Ginhoux, F., Yalin, A., Dutertre, C. A. & Amit, I. Single-cell immunology: past, present, and future. Immunity 55, 393–404 (2022).

    CAS  PubMed  Google Scholar 

  200. Gault, J. et al. Combining native and ‘omics’ mass spectrometry to identify endogenous ligands bound to membrane proteins. Nat. Methods 17, 505–508 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Specht, H. et al. Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome Biol. 22, 50 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Touat-Hamici, Z. et al. Role of lipid phosphate phosphatase 3 in human aortic endothelial cell function. Cardiovasc. Res. 112, 702–713 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Luo, X., Chen, X., Wang, L., Yang, B. & Cai, S. Metformin adjunct with antineoplastic agents for the treatment of lung cancer: a meta-analysis of randomized controlled trials and observational cohort studies. Front. Pharmacol. https://doi.org/10.3389/fphar.2021.639016 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Su, C. et al. Single-cell RNA sequencing in multiple pathologic types of renal cell carcinoma revealed novel potential tumor-specific markers. Front. Oncol. 11, 719564 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H. UpSet: visualization of intersecting sets. IEEE Trans. Vis. Comput. Graph. 20, 1983–1992 (2014).

    PubMed  PubMed Central  Google Scholar 

  206. Swanson, E. et al. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. eLife 10, e63632 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Chen, G., Ning, B. & Shi, T. Single-cell RNA-seq technologies and related computational data analysis. Front. Genet. https://doi.org/10.3389/fgene.2019.00317 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 9, 75 (2017).

    PubMed  PubMed Central  Google Scholar 

  210. Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 50, 1–14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Mereu, E. et al. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat. Biotechnol. 38, 747–755 (2020).

    CAS  PubMed  Google Scholar 

  212. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

    CAS  PubMed  Google Scholar 

  213. Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    CAS  PubMed  Google Scholar 

  215. De Palma, M., Biziato, D. & Petrova, T. V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 17, 457–474 (2017).

    PubMed  Google Scholar 

  216. Ubezio, B. et al. Synchronization of endothelial Dll4-Notch dynamics switch blood vessels from branching to expansion. eLife 5, e12167 (2016).

    PubMed  PubMed Central  Google Scholar 

  217. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Lin, C. & Bar-Joseph, Z. Continuous-state HMMs for modeling time-series single-cell RNA-Seq data. Bioinformatics 35, 4707–4715 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Trimm, E. & Red-Horse, K. Vascular endothelial cell development and diversity. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-022-00770-1 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Vanlandewijck, M. & Betsholtz, C. in Lymphangiogenesis: Methods and Protocols (eds Guillermo, O. & Mark, L. K.) 309–324 (Springer, 2018).

  222. Sauler, M. et al. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nat. Commun. 13, 494 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Vila Ellis, L. et al. Epithelial Vegfa specifies a distinct endothelial population in the mouse lung. Dev. Cell 52, 617–630.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Gillich, A. et al. Capillary cell-type specialization in the alveolus. Nature 586, 785–789 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Vidal, R. et al. Transcriptional heterogeneity of fibroblasts is a hallmark of the aging heart. JCI Insight https://doi.org/10.1172/jci.insight.131092 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Davies, P., Jones, M., Liu, J. & Hebenstreit, D. Anti-bias training for (sc)RNA-seq: experimental and computational approaches to improve precision. Brief. Bioinform. https://doi.org/10.1093/bib/bbab148 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Kim, J. K., Kolodziejczyk, A. A., Ilicic, T., Teichmann, S. A. & Marioni, J. C. Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat. Commun. 6, 8687 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740–742 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 21, 12 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20, 273–282 (2019).

    CAS  PubMed  Google Scholar 

  231. Zhang, M. et al. Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J. Hepatol. 73, 1118–1130 (2020).

    CAS  PubMed  Google Scholar 

  232. Maynard, A. et al. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell 182, 1232–1251.e22 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Ilicic, T. et al. Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 17, 29 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work is supported by the Biomedical Science Discovery Program between the KU Leuven Institution and Khalifa University (Project code: 8434000456).

Author information

Authors and Affiliations

Authors

Contributions

Q.Z., L.F., M.M., H.A., A.S.N. and F.Y.A. researched data for the article. Q.Z., L.F., M.M., H.A., A.S.N., F.Y.A., H.A.S. and P.C. contributed substantially to discussion of the content and wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Habiba Al Safar or Peter Carmeliet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Yihai Cao, Ankur Sharma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Carmeliet laboratory: https://carmelietlab.sites.vib.be/en/software-tools/

UpSetR software: https://gehlenborglab.shinyapps.io/upsetr/

Supplementary information

Glossary

Angiocrine signalling

The paracrine or juxtacrine signalling between endothelial cells and the neighbouring cells to regulate tissue growth and repair.

Angiogenesis

The formation of new blood vessels from existing ones.

Batch effects

Systematic variations in experimental measurements that are not caused by the biological factors, but rather by technical factors such as differences in experimental conditions, instruments, reagents or equipment.

Chromium single-cell-fixed RNA profiling

A high-throughput single-cell gene expression profiling technique that uses oligonucleotide-conjugated antibodies to capture and barcode individual cells in fixed tissue samples.

Cytometry by time of flight

(CyTOF). A single-cell analysis technique that combines flow cytometry with mass spectrometry and differentiates the metal isotype-labelled antibodies by the time of flight.

Doublet cells

Two or more aggregated cells that are encapsulated into one reaction volume and tagged by the same barcode during a single-cell RNA sequencing experiment.

Duplex RNA in situ hybridization

A technique used to detect and visualize two RNA molecules simultaneously within a single sample.

Fenestral diaphragms

A thin protein barrier anchored in the fenestrae that is found in endothelial cells containing multiple small circular openings.

Gene set variation analysis

A computational method to calculate the gene enrichment score of a pathway in samples.

Genome-scale metabolic models

A mathematical modelling approach that predicts the metabolic network reconstructions, metabolic pathways and metabolite production rates of an organism.

Hierarchical clustering

A computational method to group similar cells and form a hierarchy of clusters.

In silico lineage tracing

A computational method to determine cell lineage and fate of individual cells on the basis of their gene expression profiles and/or epigenetic markers.

Kupffer cells

Specialized liver macrophages involved in maintaining liver homeostasis.

Mural cell

Specialized cells found in the walls of blood vessels, including vascular smooth muscle cells and pericytes.

RNA velocity

A computational method used to predict the direction and speed of cell differentiation by analysing the spliced and unspliced RNA molecules.

Shear stress

The parallel force applied on the endothelial surface of the blood vessel by flowing blood.

Vesicular transcytosis

The transportation of macromolecules from one side of an epithelial or endothelial cell to the other side through vesicles.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Mousa, M., Nadukkandy, A.S. et al. Understanding tumour endothelial cell heterogeneity and function from single-cell omics. Nat Rev Cancer 23, 544–564 (2023). https://doi.org/10.1038/s41568-023-00591-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00591-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer