Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insights into recent findings and clinical application of YAP and TAZ in cancer

Abstract

Decades of research have mapped out the basic mechanics of the Hippo pathway. The paralogues Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), as the central transcription control module of the Hippo pathway, have long been implicated in the progression of various human cancers. The current literature regarding oncogenic YAP and TAZ activities consists mostly of context-specific mechanisms and treatments of human cancers. Furthermore, a growing number of studies demonstrate tumour-suppressor functions of YAP and TAZ. In this Review we aim to synthesize an integrated perspective of the many disparate findings regarding YAP and TAZ in cancer. We then conclude with the various strategies for targeting and treating YAP- and TAZ-dependent cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: YAP and TAZ regulation through canonical Hippo signalling and other pathways.
Fig. 2: Common modes of YAP and TAZ regulation.
Fig. 3: Rare fusions of YAP and TAZ in cancers.
Fig. 4: Therapeutically targeting YAP through TEAD.

Similar content being viewed by others

References

  1. Ma, S., Meng, Z., Chen, R. & Guan, K. L. The Hippo pathway: biology and pathophysiology. Annu. Rev. Biochem. 88, 577–604 (2019).

    CAS  PubMed  Google Scholar 

  2. Meng, Z., Moroishi, T. & Guan, K. L. Mechanisms of Hippo pathway regulation. Genes Dev. 30, 1–17 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Shreberk-Shaked, M. et al. A division of labor between YAP and TAZ in non-small cell lung cancer. Cancer Res. 80, 4145–4157 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Plouffe, S. W. et al. The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell. J. Biol. Chem. 293, 11230–11240 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Piccolo, S., Dupont, S. & Cordenonsi, M. The biology of YAP/TAZ: Hippo signaling and beyond. Physiol. Rev. 94, 1287–1312 (2014).

    CAS  PubMed  Google Scholar 

  6. Zanconato, F., Cordenonsi, M. & Piccolo, S. YAP/TAZ at the roots of cancer. Cancer Cell 29, 783–803 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao, B., Li, L., Tumaneng, K., Wang, C. Y. & Guan, K. L. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 24, 72–85 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hong, A. W. et al. Osmotic stress‐induced phosphorylation by NLK at Ser128 activates YAP. EMBO Rep. 18, 72–86 (2017).

    CAS  PubMed  Google Scholar 

  11. Li, Y. W. et al. Phosphorylation of Tyr188 in the WW domain of YAP1 plays an essential role in YAP1-induced cellular transformation. Cell Cycle 15, 2497 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosenbluh, J. et al. β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151, 1457–1473 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stein, C. et al. YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLoS Genet. 11, e1005465 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Zanconato, F. et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17, 1218–1227 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Galli, G. G. et al. YAP Drives growth by controlling transcriptional pause release from dynamic enhancers. Mol. Cell 60, 328–337 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, M., Kim, T., Johnson, R. L. & Lim, D. S. Transcriptional co-repressor function of the hippo pathway transducers YAP and TAZ. Cell Rep. 11, 270–282 (2015).

    CAS  PubMed  Google Scholar 

  17. Nishioka, N. et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410 (2009).

    CAS  PubMed  Google Scholar 

  18. Zheng, Y. & Pan, D. The Hippo signaling pathway in development and disease. Dev. Cell 50, 264–282 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo, M. et al. Heat stress activates YAP/TAZ to induce the heat shock transcriptome. Nat. Cell Biol. 22, 1447–1459 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu, F. X. et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780–791 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mo, J. S. et al. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat. Cell Biol. 17, 500–510 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, W. et al. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat. Cell Biol. 17, 490–499 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kulkarni, A., Chang, M. T., Vissers, J. H. A., Dey, A. & Harvey, K. F. The Hippo pathway as a driver of select human cancers. Trends Cancer 6, 781–796 (2020).

    CAS  PubMed  Google Scholar 

  24. Dey, A., Varelas, X. & Guan, K. L. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat. Rev. Drug Discov. 19, 480–494 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Moya, I. M. & Halder, G. Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat. Rev. Mol. Cell Biol. 20, 211–226 (2018).

    Google Scholar 

  26. Lin, K. C., Park, H. W. & Guan, K. L. Regulation of the Hippo pathway transcription factor TEAD. Trends Biochem. Sci. 42, 862 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. McPherson, J. P. et al. Lats2/Kpm is required for embryonic development, proliferation control and genomic integrity. EMBO J. 23, 3677–3688 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Morin-Kensicki, E. M. et al. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol. Cell Biol. 26, 77–87 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kowalczyk, W. et al. Hippo signaling instructs ectopic but not normal organ growth. Science 378, eabg3679 (2022).

    CAS  PubMed  Google Scholar 

  30. Heng, B. C. et al. Role of YAP/TAZ in cell lineage fate determination and related signaling pathways. Front. Cell Dev. Biol. 8, 735 (2020).

    PubMed  PubMed Central  Google Scholar 

  31. Varelas, X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141, 1614–1626 (2014).

    CAS  PubMed  Google Scholar 

  32. Davis, J. R. & Tapon, N. Hippo signalling during development. Development 146, dev167106 (2019).

    CAS  PubMed  Google Scholar 

  33. Pan, D. The Hippo signaling pathway in development and cancer. Dev. Cell 19, 491–505 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou, D. et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress the development of hepatocellular carcinoma through inactivation of the Yap1 oncogene. Cancer Cell 16, 425–438 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, Y. et al. Comprehensive molecular characterization of the Hippo signaling pathway in cancer. Cell Rep. 25, 1304–1317.e5 (2018). This pan-cancer analysis using TCGA data set identifies a 22-gene signature of YAP and TAZ activity that is useful for prognosis prediction.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. He, Z., Li, R. & Jiang, H. Mutations and copy number abnormalities of Hippo pathway components in human cancers. Front. Cell Dev. Biol. 9, 1123 (2021).

    Google Scholar 

  37. Zhu, M. et al. P4HA2-induced prolyl hydroxylation suppresses YAP1-mediated prostate cancer cell migration, invasion, and metastasis. Oncogene 40, 6049–6056 (2021). Zhu et al. identify a previously unknown suppressive post-translational modification on YAP1, demonstrating its potential role in prostate cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheng, S. et al. The expression of YAP1 is increased in high-grade prostatic adenocarcinoma but is reduced in neuroendocrine prostate cancer. Prostate Cancer Prostatic Dis. 23, 661–669 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pearson, J. D., Huang, K., Wrana, J. L., Goodrich, D. W. & Bremner, R. Binary pan-cancer classes with distinct vulnerabilities defined by pro-or anti-cancer YAP/ TEAD activity. Cancer Cell 39, 1115–1134 (2021). This article proposes binarization of all cancers based on YAP and TAZ activity; therapeutic resistance may be caused by phenotype switching between YAPon and YAPoff cell states.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cottini, F. et al. Rescue of Hippo coactivator YAP1 triggers DNA damage–induced apoptosis in hematological cancers. Nat. Med. 20, 599–606 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma, S. et al. Hippo signalling maintains ER expression and ER+ breast cancer growth. Nature 591, E1–E10 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, X. et al. YAP inhibits ERα and ER+ breast cancer growth by disrupting a TEAD-ERα signaling axis. Nat. Commun. 13, 3075 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, S. et al. Transcriptional repression of estrogen receptor alpha by YAP reveals the Hippo pathway as therapeutic target for ER+ breast cancer. Nat. Commun. 13, 1061 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cunningham, R. & Hansen, C. G. The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin. Sci. 136, 197–222 (2022).

    CAS  Google Scholar 

  45. Jiang, L., Li, J., Zhang, C., Shang, Y. & Lin, J. YAP-mediated crosstalk between the Wnt and Hippo signaling pathways (Review). Mol. Med. Rep. 22, 4101–4106 (2020).

    PubMed  Google Scholar 

  46. Pan, Z., Tian, Y., Cao, C. & Niu, G. The emerging role of YAP/TAZ in tumor immunity. Mol. Cancer Res. 17, 1777–1786 (2019).

    CAS  PubMed  Google Scholar 

  47. Fresques, T. & LaBarge, M. A. Contributions of Yap and Taz dysfunction to breast cancer initiation, progression, and aging-related susceptibility. Aging Cancer 1, 5–18 (2020).

    PubMed  PubMed Central  Google Scholar 

  48. Faraji, F., Ramirez, S. I., Quiroz, P. Y. A., Molina-Mendez, A. N. & Gutkind, J. S. Genomic Hippo pathway alterations and persistent YAP/TAZ activation: new hallmarks in head and neck cancer. Cells 11, 1370 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mouillet-Richard, S. & Laurent-Puig, P. YAP/TAZ signalling in colorectal cancer: lessons from consensus molecular subtypes. Cancers 12, 3160 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamaguchi, H. & Taouk, G. M. A potential role of YAP/TAZ in the interplay between metastasis and metabolic alterations. Front. Oncol. 10, 928 (2020).

    PubMed  PubMed Central  Google Scholar 

  51. Guo, X. et al. Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev. 31, 247–259 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, X. et al. Somatic hypermutation of the YAP oncogene in a human cutaneous melanoma. Mol. Cancer Res. 17, 1435–1449 (2019). The first and only identification of a patient carrying multiple activating mutations of YAP.

    CAS  PubMed  Google Scholar 

  53. Chen, Q. et al. Homeostatic control of Hippo signaling activity revealed by an endogenous activating mutation in YAP. Genes Dev. 29, 1285 (2015). Chen et al. found that mice carrying constitutively active, endogenous Yap alleles (YapS112A/S112A) developed normally.

    PubMed  PubMed Central  Google Scholar 

  54. Moon, H. et al. Activated TAZ induces liver cancer in collaboration with EGFR/HER2 signaling pathways. BMC Cancer 22, 423 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, W. et al. YAP promotes malignant progression of Lkb1-deficient lung adenocarcinoma through downstream regulation of survivin. Cancer Res. 75, 4450–4457 (2015).

    CAS  PubMed  Google Scholar 

  56. Chen, Q. et al. A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev. 28, 432–437 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Barry, E. R. et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493, 106–110 (2013).

    PubMed  Google Scholar 

  58. Bhat, K. P. L. et al. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev. 25, 2594–2609 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Carter, P. et al. Deletion of Lats1/2 in adult kidney epithelia leads to renal cell carcinoma. J. Clin. Invest. 131, e144108 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Thompson, B. J. YAP/TAZ: drivers of tumor growth, metastasis, and resistance to therapy. BioEssays 42, 1900162 (2020).

    Google Scholar 

  61. Lamar, J. M. et al. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc. Natl Acad. Sci. USA 109, E2441–E2450 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Moroishi, T. et al. A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes Dev. 29, 1271–1284 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, P. et al. Activation of Aurora A kinase increases YAP stability via blockage of autophagy. Cell Death Dis. 10, 432 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. Seo, J. et al. Molecular cell biology MK5 regulates YAP stability and is a molecular target in YAP-driven cancers. Cancer Res. 79, 6139–6152 (2019).

    CAS  PubMed  Google Scholar 

  65. Lim, S. K. et al. Wnt signaling promotes breast cancer by blocking ITCH-mediated degradation of YAP/TAZ transcriptional coactivator WBP2. Cancer Res. 76, 6278–6289 (2016).

    CAS  PubMed  Google Scholar 

  66. Chen, R., Xie, R., Meng, Z., Ma, S. & Guan, K. L. STRIPAK integrates upstream signals to initiate the Hippo kinase cascade. Nat. Cell Biol. 21, 1565–1577 (2019).

    CAS  PubMed  Google Scholar 

  67. Koo, J. H. et al. Induction of AP-1 by YAP/TAZ contributes to cell proliferation and organ growth. Genes Dev. 34, 72–86 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu, B.-K., Mei, S.-C., Chen, E. H., Zheng, Y. & Pan, D. YAP induces an oncogenic transcriptional program through TET1-mediated epigenetic remodeling in liver growth and tumorigenesis. Nat. Genet. 54, 1202–1213 (2022). Wu et al. demonstrate that interactions between YAP–TEAD and TET1 lead to DNA demethylation and subsequent activation of YAP and TAZ target genes.

    PubMed  PubMed Central  Google Scholar 

  69. Zhang, W. et al. Isoform switch of TET1 regulates DNA demethylation and mouse development. Mol. Cell 64, 1062–1073 (2016).

    CAS  PubMed  Google Scholar 

  70. Shen, S. et al. A miR-130a-YAP positive feedback loop promotes organ size and tumorigenesis. Cell Res. 25, 997–1012 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nardone, G. et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 8, 15321 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Girard, C. A. et al. A feed-forward mechanosignaling loop confers resistance to therapies targeting the MAPK pathway in BRAF-mutant melanoma. Cancer Res. 80, 1927–1941 (2020).

    CAS  PubMed  Google Scholar 

  73. Gill, M. K. et al. A feed forward loop enforces YAP/TAZ signaling during tumorigenesis. Nat. Commun. 9, 3510 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Yuan, W. C. et al. NUAK2 is a critical YAP target in liver cancer. Nat. Commun. 9, 4834 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Fu, T. G., Wang, L., Li, W., Li, J. Z. & Li, J. MiR-143 inhibits oncogenic traits by degrading NUAK2 in glioblastoma. Int. J. Mol. Med. 37, 1627–1635 (2016).

    CAS  PubMed  Google Scholar 

  76. Tang, L. et al. Expression of NUAK2 in gastric cancer tissue and its effects on the proliferation of gastric cancer cells. Exp. Ther. Med. 13, 676 (2017).

    CAS  PubMed  Google Scholar 

  77. Fu, W. et al. NUAK family kinase 2 is a novel therapeutic target for prostate cancer. Mol. Carcinog. 61, 334–345 (2022).

    CAS  PubMed  Google Scholar 

  78. Li, Y., Song, X., Liu, L. & Yue, L. NUAK2 silencing inhibits the proliferation, migration and epithelial-to-mesenchymal transition of cervical cancer cells via upregulating CYFIP2. Mol. Med. Rep. 24, 817 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. He, C. et al. YAP forms autocrine loops with the ERBB pathway to regulate ovarian cancer initiation and progression. Oncogene 34, 6040–6054 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Qu, L. et al. A feed-forward loop between lncARSR and YAP activity promotes expansion of renal tumour-initiating cells. Nat. Commun. 7, 12692 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Taniguchi, K. et al. YAP-IL-6ST autoregulatory loop activated on APC loss controls colonic tumorigenesis. Proc. Natl Acad. Sci. USA 114, 1643–1648 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim, H. B. et al. Prostaglandin E2 Activates YAP and a positive-signaling loop to promote colon regeneration following colitis but also carcinogenesis in mice. Gastroenterology 152, 616 (2017).

    CAS  PubMed  Google Scholar 

  83. Serrano, I., McDonald, P. C., Lock, F., Muller, W. J. & Dedhar, S. Inactivation of the Hippo tumour suppressor pathway by integrin-linked kinase. Nat. Commun. 4, 2976 (2013).

    PubMed  Google Scholar 

  84. Totaro, A., Castellan, M., di Biagio, D. & Piccolo, S. Crosstalk between YAP/TAZ and Notch signaling. Trends Cell Biol. 28, 560–573 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Rozengurt, E. & Eibl, G. Crosstalk between KRAS, SRC and YAP signaling in pancreatic cancer: interactions leading to aggressive disease and drug resistance. Cancers 13, 5126 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Xia, H. et al. EGFR-PI3K-PDK1 pathway regulates YAP signaling in hepatocellular carcinoma: the mechanism and its implications in targeted therapy. Cell Death Dis. 9, 269 (2018).

    PubMed  PubMed Central  Google Scholar 

  87. Fan, R., Kim, N. G. & Gumbiner, B. M. Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc. Natl Acad. Sci. USA 110, 2569–2574 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Boopathy, G. T. K. & Hong, W. Role of Hippo pathway-YAP/TAZ signaling in angiogenesis. Front. Cell Dev. Biol. 7, 49 (2019).

    PubMed  PubMed Central  Google Scholar 

  89. Ibar, C. & Irvine, K. D. Integration of Hippo-YAP signaling with metabolism. Dev. Cell 54, 256–267 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu, X. et al. Tead and AP1 coordinate transcription and motility. Cell Rep. 14, 1169–1180 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Yu, F. X. et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25, 822 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Murakami, H. et al. LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res. 71, 873–883 (2011).

    CAS  PubMed  Google Scholar 

  93. Murakami, S. et al. A Yap-Myc-Sox2-p53 regulatory network dictates metabolic homeostasis and differentiation in Kras-driven pancreatic ductal adenocarcinomas. Dev. Cell 51, 113–128.e9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, W. et al. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci. Signal. 7, ra42 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Ortega, Á. et al. The YAP/TAZ signaling pathway in the tumor microenvironment and carcinogenesis: current knowledge and therapeutic promises. Int. J. Mol. Sci. 23, 430 (2021).

    PubMed  PubMed Central  Google Scholar 

  96. Varelas, X. et al. The Hippo pathway regulates Wnt/β-catenin signaling. Dev. Cell 18, 579–591 (2010).

    CAS  PubMed  Google Scholar 

  97. Park, H. W. et al. Alternative Wnt signaling activates YAP/TAZ. Cell 162, 780–794 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, Y. et al. β-Catenin sustains and is required for YES-associated protein oncogenic activity in cholangiocarcinoma. Gastroenterology 163, 481–494 (2022).

    CAS  PubMed  Google Scholar 

  99. Zhang, S. et al. Pan-mTOR inhibitor MLN0128 is effective against intrahepatic cholangiocarcinoma in mice. J. Hepatol. 67, 1194–1203 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hu, S. et al. NOTCH-YAP1/TEAD-DNMT1 axis drives hepatocyte reprogramming into intrahepatic cholangiocarcinoma. Gastroenterology 163, 449–465 (2022).

    CAS  PubMed  Google Scholar 

  101. Quinn, H. M. et al. YAP and β-catenin cooperate to drive oncogenesis in basal breast cancer. Cancer Res. 81, 2116–2127 (2021).

    CAS  PubMed  Google Scholar 

  102. Vittoria, M. A. et al. Inactivation of the Hippo tumor suppressor pathway promotes melanoma. Nat. Commun. 13, 3732 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Chandler, R. L. et al. Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat. Commun. 6, 6118 (2015).

    CAS  PubMed  Google Scholar 

  104. Fukunaga, Y. et al. Loss of Arid1a and Pten in pancreatic ductal cells induces intraductal tubulopapillary neoplasm via the YAP/TAZ pathway. Gastroenterology 163, 466–480.e6 (2022).

    CAS  PubMed  Google Scholar 

  105. Chang, L. et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature 563, 265–269 (2018). Chang et al. show that the ARID1A component of the SWI/SNF nucleosome remodeling complex binds directly to YAP or TAZ, to inhibit their association with TEAD and downstream activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Petrilli, A. M. & Fernández-Valle, C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 35, 537–548 (2016).

    CAS  PubMed  Google Scholar 

  107. Matsuura, K. et al. Downregulation of SAV1 plays a role in pathogenesis of high-grade clear cell renal cell carcinoma. BMC Cancer 11, 523 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Furth, N. & Aylon, Y. The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway. Cell Death Differ. 24, 1488–1501 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Vichas, A. et al. Integrative oncogene-dependency mapping identifies RIT1 vulnerabilities and synergies in lung cancer. Nat. Commun. 12, 4789 (2021). This study outlines the frequent synergy of EGFR–RAS and YAP–TAZ activation in lung cancer, highlighting the possibility of multiple targeted therapies for treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Martin, D. et al. Assembly and activation of the Hippo signalome by FAT1 tumor suppressor. Nat. Commun. 9, 2372 (2018).

    PubMed  PubMed Central  Google Scholar 

  111. Pastushenko, I. et al. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature 589, 448–455 (2020).

    PubMed  PubMed Central  Google Scholar 

  112. Sanchez-Vega, F. et al. Oncogenic signaling pathways in The Cancer Genome Atlas. Cell 173, 321–337.e10 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Merritt, N. et al. TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex. eLife 10, e62857 (2021). This study investigates the mechanisms that cause transcriptional reprogramming through YAP and TAZ fusions to drive rare cancers.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Szulzewsky, F., Holland, E. C. & Vasioukhin, V. YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev. Biol. 475, 205–221 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Driskill, J. H. et al. WWTR1(TAZ)-CAMTA1 reprograms endothelial cells to drive epithelioid hemangioendothelioma. Genes Dev. 35, 495–511 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Strano, S. et al. Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J. Biol. Chem. 276, 15164–15173 (2001).

    CAS  PubMed  Google Scholar 

  117. Howell, M., Borchers, C. & Milgram, S. L. Heterogeneous nuclear ribonuclear protein U associates with YAP and regulates its co-activation of Bax transcription. J. Biol. Chem. 279, 26300–26306 (2004).

    CAS  PubMed  Google Scholar 

  118. Moya, I. M. et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science 366, 1029–1034 (2019).

    CAS  PubMed  Google Scholar 

  119. Donato, E. et al. YAP and TAZ are dispensable for physiological and malignant haematopoiesis. Leukemia 32, 2037–2040 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Fan, H. et al. ASB13 inhibits breast cancer metastasis through promoting SNAI2 degradation and relieving its transcriptional repression of YAP. Genes Dev. 34, 1359–1372 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. White, S. M., Murakami, S. & Yi, C. The complex entanglement of Hippo-Yap/Taz signaling in tumor immunity. Oncogene 38, 2899 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ni, X. et al. YAP is essential for Treg-mediated suppression of antitumor immunity. Cancer Discov. 8, 1026–1043 (2018). In this study, YAP is identified as a direct driver of Treg cell activities, facilitating immune evasion in tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Han, Y., Liu, D. & Li, L. PD-1/PD-L1 pathway: current researches in cancer. Am. J. Cancer Res. 10, 727 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Janse van Rensburg, H. J. et al. The Hippo pathway component TAZ promotes immune evasion in human cancer through PD-L1. Cancer Res. 78, 1457–1470 (2018). Janse van Rensburg et al. demonstrate that TAZ activity drives PDL1 expression in human cancer cells, promoting tumour immune evasion.

    CAS  PubMed  Google Scholar 

  125. Tung, J.-N. et al. PD-L1 confers resistance to EGFR mutation-independent tyrosine kinase inhibitors in non-small cell lung cancer via upregulation of YAP1 expression. Oncotarget 9, 4637–4646 (2017).

    PubMed  PubMed Central  Google Scholar 

  126. Xu, C. et al. SIRPγ-expressing cancer stem-like cells promote immune escape of lung cancer via Hippo signaling. J. Clin. Invest. 132, e141797 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, Q. et al. Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade. Nat. Cell Biol. 19, 362–374 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Meng, F. et al. Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity. Mol. Cell 81, 4147–4164.e7 (2021). The innate immune response to cytosolic DNA is impaired by NF2 mutants found in human cancer, demonstrating a novel mechanism by which the Hippo pathway regulates antitumour immunity through loss-of-function mutations that cause NF2 phase separation.

    CAS  PubMed  Google Scholar 

  129. Li, W. et al. Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4 DCAF1 in the nucleus. Cell 40, 477–490 (2010).

    Google Scholar 

  130. Pan, J. et al. Lentivirus-mediated RNA interference targeting WWTR1 in human colorectal cancer cells inhibits cell proliferation in vitro and tumor growth in vivo. Oncol. Rep. 28, 179–185 (2012).

    CAS  PubMed  Google Scholar 

  131. Azzolin, L. et al. Role of TAZ as mediator of Wnt signaling. Cell 151, 1443–1456 (2012).

    CAS  PubMed  Google Scholar 

  132. Bartucci, M. et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene 34, 681–690 (2014).

    PubMed  Google Scholar 

  133. Lau, A. N. et al. Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis. EMBO J. 33, 468–481 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Crooke, S. T., Baker, B. F., Crooke, R. M. & Liang, X. H. Antisense technology: an overview and prospectus. Nat. Rev. Drug Discov. 20, 427–453 (2021).

    CAS  PubMed  Google Scholar 

  135. Macleod, A. R. Abstract ND11: The discovery and characterization of ION-537: a next generation antisense oligonucleotide inhibitor of YAP1 in preclinical cancer models. Cancer Res. 81 (Suppl. 13), ND11 (2021).

    Google Scholar 

  136. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04659096 (2022).

  137. Nguyen, C. D. K. & Yi, C. YAP/TAZ signaling and resistance to cancer therapy. Trends Cancer 5, 283 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Nilsson, M. B. et al. A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components. Sci. Transl. Med. 12, eaaz4589 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Chaib, I. et al. Co-activation of STAT3 and YES-associated protein 1 (YAP1) pathway in EGFR-mutant NSCLC. J. Natl Cancer Inst. 109, djx014 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. Kurppa, K. J. et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell 37, 104–122.e12 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Li, Y. et al. FGFR-inhibitor-mediated dismissal of SWI/SNF complexes from YAP-dependent enhancers induces adaptive therapeutic resistance. Nat. Cell Biol. 23, 1187–1198 (2021). Li et al. discover that prolonged FGFR inhibition causes derepression of YAP-bound enhancers and treatment resistance.

    CAS  PubMed  Google Scholar 

  142. Radaeva, M., Ton, A. T., Hsing, M., Ban, F. & Cherkasov, A. Drugging the ‘undruggable’. Therapeutic targeting of protein–DNA interactions with the use of computer-aided drug discovery methods. Drug Discov. Today 26, 2660–2679 (2021).

    CAS  PubMed  Google Scholar 

  143. Noland, C. L. et al. Palmitoylation of TEAD transcription factors is required for their stability and function in Hippo pathway signaling. Structure 24, 179–186 (2016).

    CAS  PubMed  Google Scholar 

  144. Chan, P. et al. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat. Chem. Biol. 12, 282–289 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Zinatizadeh, M. R. et al. The Hippo tumor suppressor pathway (YAP/TAZ/TEAD/MST/LATS) and EGFR-RAS-RAF-MEK in cancer metastasis. Genes Dis. 8, 48–60 (2021).

    CAS  PubMed  Google Scholar 

  146. Liu-Chittenden, Y. et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 26, 1300–1305 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang, H. et al. Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1. Sci. Signal. 8, ra98 (2015).

    PubMed  PubMed Central  Google Scholar 

  148. Dasari, V. R. et al. Verteporfin exhibits YAP-independent anti-proliferative and cytotoxic effects in endometrial cancer cells. Oncotarget 8, 28628–28640 (2017).

    PubMed  PubMed Central  Google Scholar 

  149. Sun, J. et al. A tightly controlled Src-YAP signaling axis determines therapeutic response to dasatinib in renal cell carcinoma. Theranostics 8, 3256–3267 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Hao, F. et al. Lipophilic statins inhibit YAP nuclear localization, co-activator activity and colony formation in pancreatic cancer cells and prevent the initial stages of pancreatic ductal adenocarcinoma in KrasG12D mice. PLoS ONE 14, e0216603 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhao, W., Liu, H., Wang, J., Wang, M. & Shao, R. Cyclizing-berberine A35 induces G2/M arrest and apoptosis by activating YAP phosphorylation (Ser127). J. Exp. Clin. Cancer Res. 37, 98 (2018).

    PubMed  PubMed Central  Google Scholar 

  152. Pobbati, A. V. et al. Targeting the central pocket in human transcription factor TEAD as a potential cancer therapeutic strategy. Structure 23, 2076–2086 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ko, P.-J. & Dixon, S. J. Protein palmitoylation and cancer. EMBO Rep. 19, e46666 (2018).

    PubMed  PubMed Central  Google Scholar 

  154. Bum-Erdene, K. et al. Small-molecule covalent modification of conserved cysteine leads to allosteric inhibition of the TEADYap protein-protein interaction. Cell Chem. Biol. 26, 378–389.e13 (2019).

    CAS  PubMed  Google Scholar 

  155. Lu, W. et al. Discovery and biological evaluation of vinylsulfonamide derivatives as highly potent, covalent TEAD autopalmitoylation inhibitors. Eur. J. Med. Chem. 184, 111767 (2019).

    CAS  PubMed  Google Scholar 

  156. Li, Q. et al. Lats1/2 sustain intestinal stem cells and Wnt activation through TEAD-dependent and independent transcription. Cell Stem Cell 26, 675–692.e8 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Holden, J. K. et al. Small molecule dysregulation of TEAD lipidation induces a dominant-negative inhibition of Hippo pathway signaling. Cell Rep. 31, 107809 (2020).

    CAS  PubMed  Google Scholar 

  158. Tang, T. T. et al. Small molecule inhibitors of TEAD auto-palmitoylation selectively inhibit proliferation and tumor growth of NF2-deficient mesothelioma. Mol. Cancer Ther. 20, 986–998 (2021).

    CAS  PubMed  Google Scholar 

  159. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04665206 (2021).

  160. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT05228015 (2023).

  161. Yap, T. A et al. First-in-class, first-in-human phase 1 trial of VT3989, an inhibitor of yes-associated protein (YAP)/transcriptional enhancer activator domain (TEAD), in patients (pts) with advanced solid tumors enriched for malignant mesothelioma and other tumors with neurofibromatosis 2 (NF2) mutations) [abstract CT006]. In Proc. 114th Annual Meeting of the American Association for Cancer Research (AACR, 2023).

  162. The ASCO Post Staff. VT3989 may be safe, effective in patients with advanced mesothelioma and NF2-mutant solid tumors. The ASCO Post https://ascopost.com/news/april-2023/vt3989-may-be-safe-effective-in-patients-with-advanced-mesothelioma-and-nf2-mutant-solid-tumors/ (2023).

  163. Jiao, S. et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25, 166–180 (2014).

    CAS  PubMed  Google Scholar 

  164. Jiao, S. et al. VGLL4 targets a TCF4–TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer. Nat. Commun. 8, 14058 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang, Z. et al. Structure-based design and synthesis of potent cyclic peptides inhibiting the YAP-TEAD protein-protein interaction. ACS Med. Chem. Lett. 5, 993–998 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Wei, X. et al. Targeting YAP suppresses ovarian cancer progression through regulation of the PI3K/Akt/mTOR pathway. Oncol. Rep. 42, 2768–2776 (2019).

    CAS  PubMed  Google Scholar 

  167. Che, K. et al. Aurintricarboxylic acid is a canonical disruptor of the TAZ-TEAD transcriptional complex. PLoS ONE 17, e0266143 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Moroishi, T., Hansen, C. G. & Guan, K.-L. The emerging roles of YAP and TAZ in cancer. Nat. Rev. Cancer 15, 73–79 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wang, L. et al. Multiphase coalescence mediates Hippo pathway activation. Cell 185, 4376–4393.e18 (2022). Wang et al. show that protein liquid–liquid phase separation of AMOT, KIBRA and SLMAP serves a key role in Hippo kinase regulation by modulating MST and MAP4K oligomerization and interaction with the negative regulator protein phosphatase STRIPAK.

    CAS  PubMed  Google Scholar 

  170. Lian, I. et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 24, 1106 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Karaman, R. & Halder, G. Cell junctions in Hippo signaling. Cold Spring Harb. Perspect. Biol. 10, a028753 (2018).

    PubMed  PubMed Central  Google Scholar 

  172. Hong, A. W. et al. Critical roles of phosphoinositides and NF2 in Hippo pathway regulation. Genes Dev. 34, 511–525 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Liu, Q. et al. Glycogen accumulation and phase separation drives liver tumor initiation. Cell 184, 5559–5576.e19 (2021).

    CAS  PubMed  Google Scholar 

  174. Sedov, E. et al. THY1-mediated mechanisms converge to drive YAP activation in skin homeostasis and repair. Nat. Cell Biol. 24, 1049–1063 (2022).

    CAS  PubMed  Google Scholar 

  175. Kim, N. G. & Gumbiner, B. M. Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J. Cell Biol. 210, 503–515 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    CAS  PubMed  Google Scholar 

  177. Meng, Z. et al. RAP2 mediates mechanoresponses of the Hippo pathway. Nature 550, 655–660 (2018).

    Google Scholar 

  178. Paul, A. et al. Cell adhesion molecule KIRREL1 is a feedback regulator of Hippo signaling recruiting SAV1 to cell-cell contact sites. Nat. Commun. 13, 930 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang, C. et al. Integrated screens uncover a cell surface tumor suppressor gene KIRREL involved in Hippo pathway. Proc. Natl Acad. Sci. USA 119, e2121779119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Gu, Y. et al. Transmembrane protein KIRREL1 regulates Hippo signaling via a feedback loop and represents a potential therapeutic target in YAP/TAZ-active cancers. Preprint at bioRxiv https://doi.org/10.1101/2022.02.28.482264 (2022).

    Article  Google Scholar 

  181. Schieffer, K. M. et al. YAP1-FAM118B fusion defines a rare subset of childhood and young adulthood meningiomas. Am. J. Surg. Pathol. 45, 329–340 (2021).

    PubMed  Google Scholar 

  182. Kao, Y. C. et al. Recurrent YAP1 and KMT2A gene rearrangements in a subset of MUC4-negative sclerosing epithelioid fibrosarcoma. Am. J. Surg. Pathol. 44, 368–377 (2020).

    PubMed  PubMed Central  Google Scholar 

  183. Puls, F. et al. Recurrent fusions between YAP1 and KMT2A in morphologically distinct neoplasms within the spectrum of low-grade fibromyxoid sarcoma and sclerosing epithelioid fibrosarcoma. Am. J. Surg. Pathol. 44, 594–606 (2020).

    PubMed  Google Scholar 

  184. Sekine, S. et al. Recurrent YAP1-MAML2 and YAP1-NUTM1 fusions in poroma and porocarcinoma. J. Clin. Invest. 129, 3827–3832 (2019).

    PubMed  PubMed Central  Google Scholar 

  185. Picco, G. et al. Functional linkage of gene fusions to cancer cell fitness assessed by pharmacological and CRISPR-Cas9 screening. Nat. Commun. 10, 2198 (2019).

    PubMed  PubMed Central  Google Scholar 

  186. Pajtler, K. W. et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27, 728–743 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Tolcher, A. W. et al. A phase 1, first-in-human study of IK-930, an oral TEAD inhibitor targeting the Hippo pathway in subjects with advanced solid tumors [abstract]. J. Clin. Oncol. 40 (Suppl. 16), TPS3168 (2022).

    Google Scholar 

Download references

Acknowledgements

This work is supported by NIH grants GM51586 and CA268179 (K.-L.G.) and NIH/NCI T32 CA009523 (J.M.F.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. J.M.F. and K.-L.G. contributed substantially to discussion of the content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Kun-Liang Guan.

Ethics declarations

Competing interests

K.-L.G. is a co-founder of and has equity interest in Vivace Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks George Halder and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antisense technology

A method using engineered, non-coding oligonucleotides specific to an RNA to block downstream protein synthesis.

BRAF-V600E

A serine/threonine-protein kinase, part of the RAS–RAF–MEK–ERK signalling cascade; it is commonly mutated, such that the valine 600 is replaced by glutamic acid (V600E) to drive oncogenesis in many cancers.

cGAS–STING pathway

A component of the innate immune system responding to cytosolic DNA, composed of cyclic GMP–AMP (cGAMP) synthase and its downstream receptor stimulator of interferon genes (STING) to induce an inflammatory gene response.

Hepatomegaly

An overgrowth of liver that was found to be particularly sensitive to YAP activation.

NOTCH pathway

A signalling pathway that regulates cell-fate decisions and tissue homeostasis through interaction of transmembrane Notch receptors (NOTCH1–4) on one cell and the ligands of the Delta-like and Jagged families on the opposing neighbouring cell.

Palmitoylation

A post-translational modification whereby palmitic acid is covalently bonded to a cysteine residue or, less frequently, a serine or threonine residue.

Programmed cell death 1 ligand 1

(PDL1). A transmembrane protein expressed on cancer cells to supress the immune response by binding to its receptor PD1, commonly expressed on T cells; it is a major target of current cancer immunotherapies.

WNT pathway

A developmental signalling pathway consisting of the WNT family of extracellular ligands, the Frizzled and lipoprotein receptor-related protein (LRP) family of cell surface receptors, the cytosol localized Dishevelled family and nuclear mediator β-catenin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franklin, J.M., Wu, Z. & Guan, KL. Insights into recent findings and clinical application of YAP and TAZ in cancer. Nat Rev Cancer 23, 512–525 (2023). https://doi.org/10.1038/s41568-023-00579-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00579-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer