Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

YAP/TAZ as master regulators in cancer: modulation, function and therapeutic approaches

Abstract

Our understanding of the function of the transcriptional regulators YAP and TAZ (YAP/TAZ) in cancer is advancing. In this Review, we provide an update on recent progress in YAP/TAZ biology, their regulation by Hippo signaling and mechanotransduction and highlight open questions. YAP/TAZ signaling is an addiction shared by multiple tumor types and their microenvironments, providing many malignant attributes. As such, it represents an important vulnerability that may offer a broad window of therapeutic efficacy, and here we give an overview of the current treatment strategies and pioneering clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: YAP/TAZ regulation inside and outside the nucleus.
Fig. 2: Synergistic effects of oncogenes and mechanosignaling on YAP/TAZ activation in cancer.
Fig. 3: The hallmarks of YAP/TAZ activity in cancer.
Fig. 4: Targeting YAP/TAZ in cancer.

Similar content being viewed by others

References

  1. Battilana, G., Zanconato, F. & Piccolo, S. Mechanisms of YAP/TAZ transcriptional control. Cell Stress 5, 167–172 (2021).

    Article  CAS  Google Scholar 

  2. Zanconato, F. et al. Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nat. Med. 24, 1599–1610 (2018).

    Article  CAS  Google Scholar 

  3. Wu, B. K., Mei, S. C., Chen, E. H., Zheng, Y. & Pan, D. YAP induces an oncogenic transcriptional program through TET1-mediated epigenetic remodeling in liver growth and tumorigenesis. Nat. Genet. 54, 1202–1213 (2022).

  4. Zheng, Y. & Pan, D. The Hippo signaling pathway in development and disease. Dev. Cell 50, 264–282 (2019).

    Article  CAS  Google Scholar 

  5. Chen, Q. et al. Homeostatic control of Hippo signaling activity revealed by an endogenous activating mutation in YAP. Genes Dev. 29, 1285–1297 (2015).

    Article  Google Scholar 

  6. Chen, Q. et al. A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev. 28, 432–437 (2014).

    Article  CAS  Google Scholar 

  7. George, N. M., Day, C. E., Boerner, B. P., Johnson, R. L. & Sarvetnick, N. E. Hippo signaling regulates pancreas development through inactivation of Yap. Mol. Cell. Biol. 32, 5116–5128 (2012).

    Article  CAS  Google Scholar 

  8. Schlegelmilch, K. et al. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144, 782–795 (2011).

    Article  CAS  Google Scholar 

  9. Lange, A. W. et al. Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung. J. Mol. Cell Biol. 7, 35–47 (2015).

    Article  CAS  Google Scholar 

  10. Li, Q. et al. Lats1/2 sustain intestinal stem cells and Wnt activation through TEAD-dependent and independent transcription. Cell Stem Cell 26, 675–692 (2020).

    Article  CAS  Google Scholar 

  11. Chung, C. et al. Hippo–Foxa2 signaling pathway plays a role in peripheral lung maturation and surfactant homeostasis. Proc. Natl Acad. Sci. USA 110, 7732–7737 (2013).

    Article  CAS  Google Scholar 

  12. Moroishi, T. et al. The Hippo pathway kinases LATS1/2 suppress cancer immunity. Cell 167, 1525–1539 (2016).

    Article  CAS  Google Scholar 

  13. Aylon, Y. et al. The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation. Genes Dev. 30, 786–797 (2016).

    Article  CAS  Google Scholar 

  14. Furth, N. & Aylon, Y. The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway. Cell Death Differ. 24, 1488–1501 (2017).

    Article  CAS  Google Scholar 

  15. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  Google Scholar 

  16. Panciera, T., Azzolin, L., Cordenonsi, M. & Piccolo, S. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 18, 758–770 (2017).

    Article  CAS  Google Scholar 

  17. Brusatin, G., Panciera, T., Gandin, A., Citron, A. & Piccolo, S. Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. Nat. Mater. 17, 1063–1075 (2018).

    Article  CAS  Google Scholar 

  18. Wolfenson, H., Yang, B. & Sheetz, M. P. Steps in mechanotransduction pathways that control cell morphology. Annu. Rev. Physiol. 81, 585–605 (2019).

    Article  CAS  Google Scholar 

  19. Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122 (2009).

    Article  CAS  Google Scholar 

  20. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410 (2017).

    Article  CAS  Google Scholar 

  21. Chang, L. et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature 563, 265–269 (2018).

    Article  CAS  Google Scholar 

  22. Codelia, V. A., Sun, G. & Irvine, K. D. Regulation of YAP by mechanical strain through Jnk and Hippo signaling. Curr. Biol. 24, 2012–2017 (2014).

    Article  CAS  Google Scholar 

  23. Yu, F. X. et al. Regulation of the Hippo–YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780–791 (2012).

    Article  CAS  Google Scholar 

  24. Meng, Z. et al. RAP2 mediates mechanoresponses of the Hippo pathway. Nature 560, 655–660 (2018).

    Article  CAS  Google Scholar 

  25. Das, A., Fischer, R. S., Pan, D. & Waterman, C. M. YAP nuclear localization in the absence of cell–cell contact is mediated by a filamentous actin-dependent, myosin II- and phospho-YAP-independent pathway during extracellular matrix mechanosensing. J. Biol. Chem. 291, 6096–6110 (2016).

    Article  CAS  Google Scholar 

  26. Feng, X. et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated Rho GTPase signaling circuitry. Cancer Cell 25, 831–845 (2014).

    Article  CAS  Google Scholar 

  27. Panciera, T. et al. Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nat. Mater. 19, 797–806 (2020).

    Article  CAS  Google Scholar 

  28. Reginensi, A. et al. Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet. 9, e1003380 (2013).

    Article  CAS  Google Scholar 

  29. Silvis, M. R. et al. α-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci. Signal. 4, ra33 (2011).

    Article  Google Scholar 

  30. Sorrentino, G. et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 16, 357–366 (2014).

    Article  CAS  Google Scholar 

  31. Taniguchi, K. et al. A gp130–Src–YAP module links inflammation to epithelial regeneration. Nature 519, 57–62 (2015).

    Article  CAS  Google Scholar 

  32. Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013).

    Article  CAS  Google Scholar 

  33. Wada, K., Itoga, K., Okano, T., Yonemura, S. & Sasaki, H. Hippo pathway regulation by cell morphology and stress fibers. Development 138, 3907–3914 (2011).

    Article  CAS  Google Scholar 

  34. Esposito, D. et al. ROCK1 mechano-signaling dependency of human malignancies driven by TEAD/YAP activation. Nat. Commun. 13, 703 (2022).

    Article  CAS  Google Scholar 

  35. Lucas, E. P. et al. The Hippo pathway polarizes the actin cytoskeleton during collective migration of Drosophila border cells. J. Cell Biol. 201, 875–885 (2013).

    Article  CAS  Google Scholar 

  36. Adler, J. J. et al. Serum deprivation inhibits the transcriptional co-activator YAP and cell growth via phosphorylation of the 130-kDa isoform of angiomotin by the LATS1/2 protein kinases. Proc. Natl Acad. Sci. USA 110, 17368–17373 (2013).

    Article  CAS  Google Scholar 

  37. Chan, S. W. et al. Actin-binding and cell proliferation activities of angiomotin family members are regulated by Hippo pathway-mediated phosphorylation. J. Biol. Chem. 288, 37296–37307 (2013).

    Article  CAS  Google Scholar 

  38. Dai, X. et al. Phosphorylation of angiomotin by Lats1/2 kinases inhibits F-actin binding, cell migration, and angiogenesis. J. Biol. Chem. 288, 34041–34051 (2013).

    Article  CAS  Google Scholar 

  39. Mana-Capelli, S., Paramasivam, M., Dutta, S. & McCollum, D. Angiomotins link F-actin architecture to Hippo pathway signaling. Mol. Biol. Cell 25, 1676–1685 (2014).

    Article  Google Scholar 

  40. Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013).

    Article  CAS  Google Scholar 

  41. Moya, I. M. & Halder, G. Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat. Rev. Mol. Cell Biol. 20, 211–226 (2019).

    Article  CAS  Google Scholar 

  42. Zanconato, F., Cordenonsi, M. & Piccolo, S. YAP/TAZ at the roots of cancer. Cancer Cell 29, 783–803 (2016).

    Article  CAS  Google Scholar 

  43. Zanconato, F., Cordenonsi, M. & Piccolo, S. YAP and TAZ: a signalling hub of the tumour microenvironment. Nat. Rev. Cancer 19, 454–464 (2019).

    Article  CAS  Google Scholar 

  44. Northey, J. J., Przybyla, L. & Weaver, V. M. Tissue force programs cell fate and tumor aggression. Cancer Discov. 7, 1224–1237 (2017).

    Article  CAS  Google Scholar 

  45. Feng, X. et al. A platform of synthetic lethal gene interaction networks reveals that the GNAQ uveal melanoma oncogene controls the Hippo pathway through FAK. Cancer Cell 35, 457–472 (2019).

    Article  CAS  Google Scholar 

  46. Yu, F. X. et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25, 822–830 (2014).

    Article  CAS  Google Scholar 

  47. Roulis, M. et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature 580, 524–529 (2020).

    Article  CAS  Google Scholar 

  48. Lupo, B. et al. Colorectal cancer residual disease at maximal response to EGFR blockade displays a druggable Paneth cell-like phenotype. Sci. Transl. Med. 12, eaax8313 (2020).

  49. Moon, S. H. et al. p53 represses the mevalonate pathway to mediate tumor suppression. Cell 176, 564–580 (2019).

    Article  CAS  Google Scholar 

  50. Almagro, J., Messal, H. A., Elosegui-Artola, A., van Rheenen, J. & Behrens, A. Tissue architecture in tumor initiation and progression. Trends Cancer 8, 494–505 (2022).

  51. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).

    Article  CAS  Google Scholar 

  52. Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    Article  CAS  Google Scholar 

  53. Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019).

    Article  CAS  Google Scholar 

  54. Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).

    Article  Google Scholar 

  55. Li, Y. et al. FGFR-inhibitor-mediated dismissal of SWI/SNF complexes from YAP-dependent enhancers induces adaptive therapeutic resistance. Nat. Cell Biol. 23, 1187–1198 (2021).

    Article  CAS  Google Scholar 

  56. Lambert, A. W. & Weinberg, R. A. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat. Rev. Cancer 21, 325–338 (2021).

    Article  CAS  Google Scholar 

  57. Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759–772 (2011).

    Article  CAS  Google Scholar 

  58. Mohseni, M. et al. A genetic screen identifies an LKB1–MARK signalling axis controlling the Hippo–YAP pathway. Nat. Cell Biol. 16, 108–117 (2014).

    Article  CAS  Google Scholar 

  59. Zhang, W. et al. YAP promotes malignant progression of Lkb1-deficient lung adenocarcinoma through downstream regulation of survivin. Cancer Res. 75, 4450–4457 (2015).

    Article  CAS  Google Scholar 

  60. Martin, D. et al. Assembly and activation of the Hippo signalome by FAT1 tumor suppressor. Nat. Commun. 9, 2372 (2018).

    Article  Google Scholar 

  61. Pastushenko, I. et al. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature 589, 448–455 (2021).

    Article  CAS  Google Scholar 

  62. Azzolin, L. et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 158, 157–170 (2014).

    Article  CAS  Google Scholar 

  63. Cai, J., Maitra, A., Anders, R. A., Taketo, M. M. & Pan, D. β-catenin destruction complex-independent regulation of Hippo–YAP signaling by APC in intestinal tumorigenesis. Genes Dev. 29, 1493–1506 (2015).

    Article  CAS  Google Scholar 

  64. Imajo, M., Miyatake, K., Iimura, A., Miyamoto, A. & Nishida, E. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling. EMBO J. 31, 1109–1122 (2012).

    Article  CAS  Google Scholar 

  65. Heallen, T. et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458–461 (2011).

    Article  CAS  Google Scholar 

  66. Nowell, C. S. et al. Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nat. Cell Biol. 18, 168–180 (2016).

    Article  CAS  Google Scholar 

  67. Park, H. W. et al. Alternative Wnt signaling activates YAP/TAZ. Cell 162, 780–794 (2015).

    Article  CAS  Google Scholar 

  68. Serrano, I., McDonald, P. C., Lock, F., Muller, W. J. & Dedhar, S. Inactivation of the Hippo tumour suppressor pathway by integrin-linked kinase. Nat. Commun. 4, 2976 (2013).

    Article  Google Scholar 

  69. Gregorieff, A., Liu, Y., Inanlou, M. R., Khomchuk, Y. & Wrana, J. L. Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. Nature 526, 715–718 (2015).

    Article  CAS  Google Scholar 

  70. Camargo, F. D. et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol. 17, 2054–2060 (2007).

    Article  CAS  Google Scholar 

  71. He, C. et al. The Hippo/YAP pathway interacts with EGFR signaling and HPV oncoproteins to regulate cervical cancer progression. EMBO Mol. Med. 7, 1426–1449 (2015).

    Article  CAS  Google Scholar 

  72. Messa, L. et al. The dimeric form of HPV16 E6 is crucial to drive YAP/TAZ upregulation through the targeting of hScrib. Cancers 13, 4083 (2021).

  73. Matarrese, P., Vona, R., Ascione, B., Paggi, M. G. & Mileo, A. M. Physical interaction between HPV16E7 and the actin-binding protein gelsolin regulates epithelial–mesenchymal transition via HIPPO–YAP axis. Cancers 13, 353 (2021).

  74. Liu, G. et al. Kaposi sarcoma-associated herpesvirus promotes tumorigenesis by modulating the Hippo pathway. Oncogene 34, 3536–3546 (2015).

    Article  CAS  Google Scholar 

  75. Sanchez-Vega, F. et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 173, 321–337 (2018).

    Article  CAS  Google Scholar 

  76. Szulzewsky, F., Holland, E. C. & Vasioukhin, V. YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev. Biol. 475, 205–221 (2021).

    Article  CAS  Google Scholar 

  77. Seavey, C. N. et al. WWTR1(TAZ)-CAMTA1 gene fusion is sufficient to dysregulate YAP/TAZ signaling and drive epithelioid hemangioendothelioma tumorigenesis. Genes Dev. 35, 512–527 (2021).

    Article  CAS  Google Scholar 

  78. Driskill, J. H. et al. WWTR1(TAZ)-CAMTA1 reprograms endothelial cells to drive epithelioid hemangioendothelioma. Genes Dev. 35, 495–511 (2021).

    Article  CAS  Google Scholar 

  79. Szulzewsky, F. et al. Comparison of tumor-associated YAP1 fusions identifies a recurrent set of functions critical for oncogenesis. Genes Dev. 34, 1051–1064 (2020).

    Article  CAS  Google Scholar 

  80. Ben, C. et al. Alternative splicing reverses the cell-intrinsic and cell-extrinsic pro-oncogenic potentials of YAP1. J. Biol. Chem. 295, 13965–13980 (2020).

    Article  CAS  Google Scholar 

  81. Vrbsky, J. et al. Evidence for discrete modes of YAP1 signaling via mRNA splice isoforms in development and diseases. Genomics 113, 1349–1365 (2021).

    Article  CAS  Google Scholar 

  82. Pearson, J. D. et al. Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity. Cancer Cell 39, 1115–1134 (2021).

    Article  CAS  Google Scholar 

  83. Cottini, F. et al. Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat. Med. 20, 599–606 (2014).

    Article  CAS  Google Scholar 

  84. Zheng, B. et al. Integrated transcriptomic analysis reveals a distinctive role of YAP1 in extramedullary invasion and therapeutic sensitivity of multiple myeloma. Front. Oncol. 11, 787814 (2021).

    Article  Google Scholar 

  85. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  Google Scholar 

  86. Panciera, T. et al. Induction of expandable tissue-specific stem/progenitor cells through transient expression of YAP/TAZ. Cell Stem Cell 19, 725–737 (2016).

    Article  CAS  Google Scholar 

  87. Bai, H. et al. Yes-associated protein regulates the hepatic response after bile duct ligation. Hepatology 56, 1097–1107 (2012).

    Article  CAS  Google Scholar 

  88. Cai, J. et al. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev. 24, 2383–2388 (2010).

    Article  CAS  Google Scholar 

  89. Lee, M. J., Byun, M. R., Furutani-Seiki, M., Hong, J. H. & Jung, H. S. YAP and TAZ regulate skin wound healing. J. Invest. Dermatol. 134, 518–525 (2014).

    Article  CAS  Google Scholar 

  90. Su, T. et al. Two-signal requirement for growth-promoting function of Yap in hepatocytes. eLife 4, e02948 (2015).

    Article  Google Scholar 

  91. Zanconato, F. et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17, 1218–1227 (2015).

    Article  CAS  Google Scholar 

  92. Yui, S. et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22, 35–49 (2018).

    Article  CAS  Google Scholar 

  93. Serra, D. et al. Self-organization and symmetry breaking in intestinal organoid development. Nature 569, 66–72 (2019).

    Article  CAS  Google Scholar 

  94. Ohara, T. E., Colonna, M. & Stappenbeck, T. S. Adaptive differentiation promotes intestinal villus recovery. Dev. Cell 57, 166–179 (2022).

    Article  CAS  Google Scholar 

  95. Heuberger, J. et al. High Yap and Mll1 promote a persistent regenerative cell state induced by Notch signaling and loss of p53. Proc. Natl Acad. Sci. USA 118, e2019699118 (2021).

  96. Planas-Paz, L. et al. YAP, but not RSPO–LGR4/5, signaling in biliary epithelial cells promotes a ductular reaction in response to liver injury. Cell Stem Cell 25, 39–53 (2019).

    Article  CAS  Google Scholar 

  97. Yimlamai, D. et al. Hippo pathway activity influences liver cell fate. Cell 157, 1324–1338 (2014).

    Article  CAS  Google Scholar 

  98. Robledinos-Anton, N., Escoll, M., Guan, K. L. & Cuadrado, A. TAZ represses the neuronal commitment of neural stem cells. Cells 9, 2230 (2020).

  99. Talwar, S., Kant, A., Xu, T., Shenoy, V. B. & Assoian, R. K. Mechanosensitive smooth muscle cell phenotypic plasticity emerging from a null state and the balance between Rac and Rho. Cell Rep. 35, 109019 (2021).

    Article  CAS  Google Scholar 

  100. Xu, Z., Orkwis, J. A. & Harris, G. M. Cell shape and matrix stiffness impact Schwann cell plasticity via YAP/TAZ and Rho GTPases. Int. J. Mol. Sci. 22, 4821 (2021).

  101. Castellan, M. et al. Single-cell analyses reveal YAP/TAZ as regulators of stemness and cell plasticity in glioblastoma. Nat. Cancer 2, 174–188 (2021).

    Article  CAS  Google Scholar 

  102. Totaro, A., Panciera, T. & Piccolo, S. YAP/TAZ upstream signals and downstream responses. Nat. Cell Biol. 20, 888–899 (2018).

    Article  CAS  Google Scholar 

  103. Jang, W., Kim, T., Koo, J. S., Kim, S. K. & Lim, D. S. Mechanical cue-induced YAP instructs Skp2-dependent cell cycle exit and oncogenic signaling. EMBO J. 36, 2510–2528 (2017).

    Article  CAS  Google Scholar 

  104. Kapoor, A. et al. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158, 185–197 (2014).

    Article  CAS  Google Scholar 

  105. Mizuno, T. et al. YAP induces malignant mesothelioma cell proliferation by upregulating transcription of cell cycle-promoting genes. Oncogene 31, 5117–5122 (2012).

    Article  CAS  Google Scholar 

  106. Baia, G. S. et al. Yes-associated protein 1 is activated and functions as an oncogene in meningiomas. Mol. Cancer Res. 10, 904–913 (2012).

    Article  CAS  Google Scholar 

  107. Bartucci, M. et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene 34, 681–690 (2015).

    Article  CAS  Google Scholar 

  108. Ciamporcero, E. et al. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene 35, 1541–1553 (2016).

    Article  CAS  Google Scholar 

  109. Fernandez, L. A. et al. Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Oncogene 31, 1923–1937 (2012).

    Article  Google Scholar 

  110. Hall, C. A. et al. Hippo pathway effector Yap is an ovarian cancer oncogene. Cancer Res. 70, 8517–8525 (2010).

    Article  CAS  Google Scholar 

  111. Kim, H. et al. YAP, CTGF and Cyr61 are overexpressed in tamoxifen-resistant breast cancer and induce transcriptional repression of ERα. J. Cell Sci. 134, jcs256503 (2021).

  112. Kim, M. H. et al. Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J. 35, 462–478 (2016).

    Article  CAS  Google Scholar 

  113. Lin, C. H. et al. Microenvironment rigidity modulates responses to the HER2 receptor tyrosine kinase inhibitor lapatinib via YAP and TAZ transcription factors. Mol. Biol. Cell 26, 3946–3953 (2015).

    Article  CAS  Google Scholar 

  114. Lin, L. et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat. Genet. 47, 250–256 (2015).

    Article  CAS  Google Scholar 

  115. Mao, B. et al. SIRT1 regulates YAP2-mediated cell proliferation and chemoresistance in hepatocellular carcinoma. Oncogene 33, 1468–1474 (2014).

    Article  CAS  Google Scholar 

  116. Cheng, H. et al. Functional genomics screen identifies YAP1 as a key determinant to enhance treatment sensitivity in lung cancer cells. Oncotarget 7, 28976–28988 (2016).

    Article  Google Scholar 

  117. Ercan, D. et al. Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors. Cancer Discov. 2, 934–947 (2012).

    Article  CAS  Google Scholar 

  118. Kurppa, K. J. et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell 37, 104–122 (2020).

    Article  CAS  Google Scholar 

  119. Ohta, Y. et al. Cell–matrix interface regulates dormancy in human colon cancer stem cells. Nature 608, 784–794 (2022).

  120. Gao, R. et al. YAP/TAZ and ATF4 drive resistance to sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol. Med. 13, e14351 (2021).

    Article  CAS  Google Scholar 

  121. Warren, J. S. A., Xiao, Y. & Lamar, J. M. YAP/TAZ activation as a target for treating metastatic cancer. Cancers 10, 115 (2018).

  122. Lamar, J. M. et al. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc. Natl Acad. Sci. USA 109, E2441–E2450 (2012).

    Article  CAS  Google Scholar 

  123. Nallet-Staub, F. et al. Pro-invasive activity of the Hippo pathway effectors YAP and TAZ in cutaneous melanoma. J. Invest. Dermatol. 134, 123–132 (2014).

    Article  CAS  Google Scholar 

  124. Liu, J. et al. Synaptopodin-2 suppresses metastasis of triple-negative breast cancer via inhibition of YAP/TAZ activity. J. Pathol. 244, 71–83 (2018).

    Article  CAS  Google Scholar 

  125. Lee, C. K. et al. Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation. Science 363, 644–649 (2019).

    Article  CAS  Google Scholar 

  126. Mason, D. E. et al. YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. J. Cell Biol. 218, 1369–1389 (2019).

    Article  CAS  Google Scholar 

  127. Haemmerle, M. et al. Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat. Commun. 8, 310 (2017).

    Article  Google Scholar 

  128. Sharif, G. M. et al. Cell growth density modulates cancer cell vascular invasion via Hippo pathway activity and CXCR2 signaling. Oncogene 34, 5879–5889 (2015).

    Article  CAS  Google Scholar 

  129. Huang, J. L., Urtatiz, O. & Van Raamsdonk, C. D. Oncogenic G protein GNAQ induces uveal melanoma and intravasation in mice. Cancer Res. 75, 3384–3397 (2015).

    Article  CAS  Google Scholar 

  130. Gu, J. J. et al. Inactivation of ABL kinases suppresses non-small cell lung cancer metastasis. JCI Insight 1, e89647 (2016).

    Article  Google Scholar 

  131. Er, E. E. et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat. Cell Biol. 20, 966–978 (2018).

    Article  CAS  Google Scholar 

  132. Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018).

  133. Papalazarou, V. et al. The creatine–phosphagen system is mechanoresponsive in pancreatic adenocarcinoma and fuels invasion and metastasis. Nat. Metab. 2, 62–80 (2020).

    Article  CAS  Google Scholar 

  134. Gensbittel, V. et al. Mechanical adaptability of tumor cells in metastasis. Dev. Cell 56, 164–179 (2021).

    Article  CAS  Google Scholar 

  135. Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).

    Article  CAS  Google Scholar 

  136. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

    Article  CAS  Google Scholar 

  137. Sladitschek-Martens, H. L. et al. YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS–STING. Nature 607, 790–798 (2022).

    Article  CAS  Google Scholar 

  138. Qiao, Y. et al. YAP regulates actin dynamics through ARHGAP29 and promotes metastasis. Cell Rep. 19, 1495–1502 (2017).

    Article  CAS  Google Scholar 

  139. Kidiyoor, G. R. et al. ATR is essential for preservation of cell mechanics and nuclear integrity during interstitial migration. Nat. Commun. 11, 4828 (2020).

    Article  CAS  Google Scholar 

  140. Chen, C. L., Schroeder, M. C., Kango-Singh, M., Tao, C. & Halder, G. Tumor suppression by cell competition through regulation of the Hippo pathway. Proc. Natl Acad. Sci. USA 109, 484–489 (2012).

    Article  CAS  Google Scholar 

  141. Norman, M. et al. Loss of Scribble causes cell competition in mammalian cells. J. Cell Sci. 125, 59–66 (2012).

    Article  CAS  Google Scholar 

  142. Baker, N. E. Emerging mechanisms of cell competition. Nat. Rev. Genet. 21, 683–697 (2020).

    Article  CAS  Google Scholar 

  143. Moya, I. M. et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science 366, 1029–1034 (2019).

    Article  CAS  Google Scholar 

  144. Liu, Z. et al. Differential YAP expression in glioma cells induces cell competition and promotes tumorigenesis. J. Cell Sci. 132, jcs225714 (2019).

  145. Cheung, P. et al. Regenerative reprogramming of the intestinal stem cell state via Hippo signaling suppresses metastatic colorectal cancer. Cell Stem Cell 27, 590–604 (2020).

    Article  CAS  Google Scholar 

  146. Konsavage, W. M. Jr., Kyler, S. L., Rennoll, S. A., Jin, G. & Yochum, G. S. Wnt/β-catenin signaling regulates yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J. Biol. Chem. 287, 11730–11739 (2012).

    Article  CAS  Google Scholar 

  147. Rosenbluh, J. et al. β-catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151, 1457–1473 (2012).

    Article  CAS  Google Scholar 

  148. Zhou, D. et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of yes-associated protein (Yap) overabundance. Proc. Natl Acad. Sci. USA 108, E1312–E1320 (2011).

    Article  CAS  Google Scholar 

  149. Boopathy, G. T. K. & Hong, W. Role of Hippo pathway–YAP/TAZ signaling in angiogenesis. Front. Cell Dev. Biol. 7, 49 (2019).

    Article  Google Scholar 

  150. He, J. et al. Yes-associated protein promotes angiogenesis via signal transducer and activator of transcription 3 in endothelial cells. Circ. Res. 122, 591–605 (2018).

    Article  CAS  Google Scholar 

  151. Yan, Y., Song, Q., Yao, L., Zhao, L. & Cai, H. YAP overexpression in breast cancer cells promotes angiogenesis through activating Yap signaling in vascular endothelial cells. Anal. Cell Pathol. 2022, 5942379 (2022).

    Article  Google Scholar 

  152. Marti, P. et al. YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors. Hepatology 62, 1497–1510 (2015).

    Article  CAS  Google Scholar 

  153. Xu, S., Zhang, H., Chong, Y., Guan, B. & Guo, P. YAP promotes VEGFA expression and tumor angiogenesis though Gli2 in human renal cell carcinoma. Arch. Med. Res. 50, 225–233 (2019).

    Article  CAS  Google Scholar 

  154. Wang, X. et al. YAP/TAZ orchestrate VEGF signaling during developmental angiogenesis. Dev. Cell 42, 462–478 (2017).

    Article  CAS  Google Scholar 

  155. Tocci, P., Blandino, G. & Bagnato, A. YAP and endothelin-1 signaling: an emerging alliance in cancer. J. Exp. Clin. Cancer Res. 40, 27 (2021).

    Article  CAS  Google Scholar 

  156. Shen, Y. et al. Reduction of liver metastasis stiffness improves response to bevacizumab in metastatic colorectal cancer. Cancer Cell 37, 800–817 (2020).

    Article  CAS  Google Scholar 

  157. Weis, S. M. & Cheresh, D. A. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437, 497–504 (2005).

    Article  CAS  Google Scholar 

  158. Wang, K. C. et al. Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. Proc. Natl Acad. Sci. USA 113, 11525–11530 (2016).

    Article  CAS  Google Scholar 

  159. Wang, L. et al. Integrin–YAP/TAZ–JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540, 579–582 (2016).

    Article  CAS  Google Scholar 

  160. Shen, Y. W., Zhou, Y. D., Luan, X. & Zhang, W. D. Blocking CTGF-mediated tumor–stroma interplay in pancreatic cancer. Trends Mol. Med. 26, 1064–1067 (2020).

    Article  CAS  Google Scholar 

  161. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  Google Scholar 

  162. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    Article  Google Scholar 

  163. Guo, X. et al. Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev. 31, 247–259 (2017).

    Article  CAS  Google Scholar 

  164. Kim, W. et al. Hepatic Hippo signaling inhibits protumoural microenvironment to suppress hepatocellular carcinoma. Gut 67, 1692–1703 (2018).

    Article  CAS  Google Scholar 

  165. Wang, X. et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab. 24, 848–862 (2016).

    Article  CAS  Google Scholar 

  166. Murakami, S. et al. Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma. Oncogene 36, 1232–1244 (2017).

    Article  CAS  Google Scholar 

  167. Wang, G. et al. Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov. 6, 80–95 (2016).

    Article  Google Scholar 

  168. Marigo, I. et al. Disabled homolog 2 controls prometastatic activity of tumor-associated macrophages. Cancer Discov. 10, 1758–1773 (2020).

    Article  CAS  Google Scholar 

  169. Ni, X. et al. YAP is essential for Treg-mediated suppression of antitumor immunity. Cancer Discov. 8, 1026–1043 (2018).

    Article  CAS  Google Scholar 

  170. Geng, J. et al. The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells. Nat. Immunol. 18, 800–812 (2017).

    Article  CAS  Google Scholar 

  171. Lebid, A., Chung, L., Pardoll, D. M. & Pan, F. YAP attenuates CD8 T cell-mediated anti-tumor response. Front. Immunol. 11, 580 (2020).

    Article  CAS  Google Scholar 

  172. Stampouloglou, E. et al. Yap suppresses T-cell function and infiltration in the tumor microenvironment. PLoS Biol. 18, e3000591 (2020).

    Article  Google Scholar 

  173. Meng, K. P., Majedi, F. S., Thauland, T. J. & Butte, M. J. Mechanosensing through YAP controls T cell activation and metabolism. J. Exp. Med. 217, e20200053 (2020).

    Article  Google Scholar 

  174. Barry, E. R., Simov, V., Valtingojer, I. & Venier, O. Recent therapeutic approaches to modulate the Hippo pathway in oncology and regenerative medicine. Cells 10, 2715 (2021).

  175. Liu-Chittenden, Y. et al. Genetic and pharmacological disruption of the TEAD–YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 26, 1300–1305 (2012).

    Article  CAS  Google Scholar 

  176. Dasari, V. R. et al. Verteporfin exhibits YAP-independent anti-proliferative and cytotoxic effects in endometrial cancer cells. Oncotarget 8, 28628–28640 (2017).

    Article  Google Scholar 

  177. Zhang, H. et al. Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1. Sci. Signal. 8, ra98 (2015).

    Article  Google Scholar 

  178. Chan, P. et al. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat. Chem. Biol. 12, 282–289 (2016).

    Article  CAS  Google Scholar 

  179. Pobbati, A. V. et al. Targeting the central pocket in human transcription factor TEAD as a potential cancer therapeutic strategy. Structure 23, 2076–2086 (2015).

    Article  CAS  Google Scholar 

  180. Kaneda, A. et al. The novel potent TEAD inhibitor, K-975, inhibits YAP1/TAZ–TEAD protein–protein interactions and exerts an anti-tumor effect on malignant pleural mesothelioma. Am. J. Cancer Res. 10, 4399–4415 (2020).

    CAS  Google Scholar 

  181. Tang, T. T. et al. Small molecule inhibitors of TEAD auto-palmitoylation selectively inhibit proliferation and tumor growth of NF2-deficient mesothelioma. Mol. Cancer Ther. 20, 986–998 (2021).

    Article  CAS  Google Scholar 

  182. Shorstova, T., Foulkes, W. D. & Witcher, M. Achieving clinical success with BET inhibitors as anti-cancer agents. Br. J. Cancer 124, 1478–1490 (2021).

    Article  CAS  Google Scholar 

  183. Jiang, W., Hu, J. W., He, X. R., Jin, W. L. & He, X. Y. Statins: a repurposed drug to fight cancer. J. Exp. Clin. Cancer Res. 40, 241 (2021).

    Article  CAS  Google Scholar 

  184. Kim, S., Kim, S. A., Han, J. & Kim, I. S. Rho-kinase as a target for cancer therapy and its immunotherapeutic potential. Int. J. Mol. Sci. 22, 12916 (2021).

  185. Martellucci, S. et al. Src family kinases as therapeutic targets in advanced solid tumors: what we have learned so far. Cancers 12, 1448 (2020).

  186. Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    Article  CAS  Google Scholar 

  187. Lee, Y. et al. Common and unique transcription signatures of YAP and TAZ in gastric cancer cells. Cancers 12, 3667 (2020).

  188. Li, Z. et al. Structural insights into the YAP and TEAD complex. Genes Dev. 24, 235–240 (2010).

    Article  CAS  Google Scholar 

  189. Sehnal, D. et al. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 49, W431–W437 (2021).

    Article  CAS  Google Scholar 

  190. Noland, C. L. et al. Palmitoylation of TEAD transcription factors is required for their stability and function in Hippo pathway signaling. Structure 24, 179–186 (2016).

    Article  CAS  Google Scholar 

  191. Mouillet-Richard, S. & Laurent-Puig, P. YAP/TAZ signalling in colorectal cancer: lessons from consensus molecular subtypes. Cancers 12, 3160 (2020).

  192. Zhou, Z. et al. siRNA targeting YAP gene inhibits gastric carcinoma growth and tumor metastasis in SCID mice. Oncol. Lett. 11, 2806–2814 (2016).

    Article  CAS  Google Scholar 

  193. Wang, X., Wu, B. & Zhong, Z. Downregulation of YAP inhibits proliferation, invasion and increases cisplatin sensitivity in human hepatocellular carcinoma cells. Oncol. Lett. 16, 585–593 (2018).

    Google Scholar 

  194. Jiang, Z. et al. Inhibiting YAP expression suppresses pancreatic cancer progression by disrupting tumor–stromal interactions. J. Exp. Clin. Cancer Res. 37, 69 (2018).

    Article  Google Scholar 

  195. Lin, M. et al. TAZ is overexpressed in prostate cancers and regulates the proliferation, migration and apoptosis of prostate cancer PC3 cells. Oncol. Rep. 44, 747–756 (2020).

    Article  CAS  Google Scholar 

  196. Marx, A. et al. Up regulation of the Hippo signalling effector YAP1 is linked to early biochemical recurrence in prostate cancers. Sci. Rep. 10, 8916 (2020).

    Article  CAS  Google Scholar 

  197. Debaugnies, M. et al. YAP and TAZ are essential for basal and squamous cell carcinoma initiation. EMBO Rep. 19, e45809 (2018).

  198. Jia, J. et al. Yes-associated protein contributes to the development of human cutaneous squamous cell carcinoma via activation of RAS. J. Invest. Dermatol. 136, 1267–1277 (2016).

    Article  CAS  Google Scholar 

  199. Maglic, D. et al. YAP–TEAD signaling promotes basal cell carcinoma development via a c-JUN/AP1 axis. EMBO J. 37, e98642 (2018).

    Article  Google Scholar 

  200. Zhang, X. et al. Somatic hypermutation of the YAP oncogene in a human cutaneous melanoma. Mol. Cancer Res. 17, 1435–1449 (2019).

    Article  CAS  Google Scholar 

  201. Zucchini, C. et al. ROCK2 deprivation leads to the inhibition of tumor growth and metastatic potential in osteosarcoma cells through the modulation of YAP activity. J. Exp. Clin. Cancer Res. 38, 503 (2019).

    Article  CAS  Google Scholar 

  202. Isfort, I. et al. Prevalence of the Hippo effectors YAP1/TAZ in tumors of soft tissue and bone. Sci. Rep. 9, 19704 (2019).

    Article  CAS  Google Scholar 

  203. Zhang, W. Q. et al. Targeting YAP in malignant pleural mesothelioma. J. Cell. Mol. Med. 21, 2663–2676 (2017).

    Article  CAS  Google Scholar 

  204. Jongsma, J. et al. A conditional mouse model for malignant mesothelioma. Cancer Cell 13, 261–271 (2008).

    Article  CAS  Google Scholar 

  205. Altomare, D. A. et al. A mouse model recapitulating molecular features of human mesothelioma. Cancer Res. 65, 8090–8095 (2005).

    Article  CAS  Google Scholar 

  206. Coy, S., Rashid, R., Stemmer-Rachamimov, A. & Santagata, S. An update on the CNS manifestations of neurofibromatosis type 2. Acta Neuropathol. 139, 643–665 (2020).

    Article  Google Scholar 

  207. Kalamarides, M. et al. Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev. 16, 1060–1065 (2002).

    Article  CAS  Google Scholar 

  208. Giovannini, M. et al. Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev. 14, 1617–1630 (2000).

    Article  CAS  Google Scholar 

  209. Eder, N. et al. YAP1/TAZ drives ependymoma-like tumour formation in mice. Nat. Commun. 11, 2380 (2020).

    Article  CAS  Google Scholar 

  210. Malouf, G. G. et al. Molecular characterization of sarcomatoid clear cell renal cell carcinoma unveils new candidate oncogenic drivers. Sci. Rep. 10, 701 (2020).

    Article  CAS  Google Scholar 

  211. Mehra, R. et al. Biallelic alteration and dysregulation of the Hippo pathway in mucinous tubular and spindle cell carcinoma of the kidney. Cancer Discov. 6, 1258–1266 (2016).

    Article  CAS  Google Scholar 

  212. Morris, Z. S. & McClatchey, A. I. Aberrant epithelial morphology and persistent epidermal growth factor receptor signaling in a mouse model of renal carcinoma. Proc. Natl Acad. Sci. USA 106, 9767–9772 (2009).

    Article  CAS  Google Scholar 

  213. Carter, P. et al. Deletion of Lats1/2 in adult kidney epithelia leads to renal cell carcinoma. J. Clin. Invest. 131, e144108 (2021).

  214. Sugiura, K. et al. The expression of yes-associated protein (YAP) maintains putative cancer stemness and is associated with poor prognosis in intrahepatic cholangiocarcinoma. Am. J. Pathol. 189, 1863–1877 (2019).

    Article  CAS  Google Scholar 

  215. He, C. et al. A human papillomavirus-independent cervical cancer animal model reveals unconventional mechanisms of cervical carcinogenesis. Cell Rep. 26, 2636–2650 (2019).

    Article  CAS  Google Scholar 

  216. Chai, A. W. Y. et al. Genome-wide CRISPR screens of oral squamous cell carcinoma reveal fitness genes in the Hippo pathway. eLife 9, e57761 (2020).

    Article  CAS  Google Scholar 

  217. Cho, S. Y. et al. Expression of yes-associated protein 1 and its clinical significance in ovarian serous cystadenocarcinoma. Oncol. Rep. 37, 2620–2632 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the S.P. laboratory for critical reading of the manuscript and inputs for its inception. Work in S.P.’s laboratory is funded by the Fondazione AIRC under 5 per mille 2019, ID 22759 program, principal investigator S.P.; Fondazione AIRC, IG 2019, ID 23307 project, principal investigator S.P.; PRIN-MIUR to S.P. and T.P. (2017HWTP2K and 2017L8FWY8) and Bando Ricerca Scientifica di Eccellenza 2018 Fondazione Cariparo no. 52008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Piccolo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cancer thanks J. Silvio Gutkind, Georg Halder and Marius Sudol for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccolo, S., Panciera, T., Contessotto, P. et al. YAP/TAZ as master regulators in cancer: modulation, function and therapeutic approaches. Nat Cancer 4, 9–26 (2023). https://doi.org/10.1038/s43018-022-00473-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-022-00473-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer