Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Innate lymphoid cells and innate-like T cells in cancer — at the crossroads of innate and adaptive immunity

Abstract

Immunotherapies targeting conventional T cells have revolutionized systemic treatment for many cancers, yet only a subset of patients benefit from these approaches. A better understanding of the complex immune microenvironment of tumours is needed to design the next generation of immunotherapeutics. Innate lymphoid cells (ILCs) and innate-like T cells (ILTCs) are abundant, tissue-resident lymphocytes that have recently been shown to have critical roles in many types of cancers. ILCs and ILTCs rapidly respond to changes in their surrounding environment and act as the first responders to bridge innate and adaptive immunity. This places ILCs and ILTCs as pivotal orchestrators of the final antitumour immune response. In this Review, we outline hallmarks of ILCs and ILTCs and discuss their emerging role in antitumour immunity, as well as the pathophysiological adaptations leading to their pro-tumorigenic function. We explore the pleiotropic, in parts redundant and sometimes opposing, mechanisms that underlie the delicate interplay between the different subsets of ILCs and ILTCs. Finally, we highlight their role in amplifying and complementing conventional T cell functions and summarize immunotherapeutic strategies for targeting ILCs and ILTCs in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Subsets of innate lymphoid cells and innate-like T cells in the tumour microenvironment.
Fig. 2: Parallel and shared pathways prime pro-tumoural and antitumoural functions of innate lymphoid and innate-like T cells.
Fig. 3: The role of innate lymphoid and innate-like T cells in bridging adaptive and innate immunity in cancer.
Fig. 4: Strategies to harness innate lymphoid and innate-like T cells for cancer immunotherapy.

Similar content being viewed by others

References

  1. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharma, P. et al. The next decade of immune checkpoint therapy. Cancer Discov. 11, 838–857 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Jacquelot, N., Seillet, C., Vivier, E. & Belz, G. T. Innate lymphoid cells and cancer. Nat. Immunol. 23, 371–379 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Crosby, C. M. & Kronenberg, M. Tissue-specific functions of invariant natural killer T cells. Nat. Rev. Immunol. 18, 559–574 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Godfrey, D. I., Koay, H. F., McCluskey, J. & Gherardin, N. A. The biology and functional importance of MAIT cells. Nat. Immunol. 20, 1110–1128 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Silva-Santos, B., Mensurado, S. & Coffelt, S. B. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat. Rev. Cancer 19, 392–404 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Cozar, B. et al. Tumor-infiltrating natural killer cells. Cancer Discov. 11, 34–44 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Karre, K., Ljunggren, H. & Piontek, G. K. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defense strategy. Nature 319, 675 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Chiossone, L., Dumas, P. Y., Vienne, M. & Vivier, E. Natural killer cells and other innate lymphoid cells in cancer. Nat. Rev. Immunol. 18, 671–688 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Gutierrez-Arcelus, M. et al. Lymphocyte innateness defined by transcriptional states reflects a balance between proliferation and effector functions. Nat. Commun. 10, 687 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Constantinides, M. G. & Belkaid, Y. Early-life imprinting of unconventional T cells and tissue homeostasis. Science 374, eabf0095 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mayassi, T., Barreiro, L. B., Rossjohn, J. & Jabri, B. A multilayered immune system through the lens of unconventional T cells. Nature 595, 501–510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes. Science 268, 863–865 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Pellicci, D. G., Koay, H. F. & Berzins, S. P. Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat. Rev. Immunol. 20, 756–770 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Matsuda, J. L. et al. Natural killer T cells reactive to a single glycolipid exhibit a highly diverse T cell receptor β repertoire and small clone size. Proc. Natl Acad. Sci. USA 98, 12636–12641 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8-T cells in mice and humans. J. Exp. Med. 180, 1097–1106 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Singh, A. K., Tripathi, P. & Cardell, S. L. Type II NKT cells: an elusive population with immunoregulatory properties. Front. Immunol. 9, 1969 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Georgiev, H., Ravens, I., Benarafa, C., Forster, R. & Bernhardt, G. Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nat. Commun. 7, 13116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, Y. J. et al. Lineage-specific effector signatures of invariant NKT cells are shared amongst γδ T, innate lymphoid, and Th cells. J. Immunol. 197, 1460–1470 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Cui, G. et al. A circulating subset of iNKT cells mediates antitumor and antiviral immunity. Sci. Immunol. 7, eabj8760 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, Y. J. et al. Tissue-specific distribution of iNKT cells impacts their cytokine response. Immunity 43, 566–578 (2015). This article demonstrates how anatomic localization and systemic distribution of iNKT1, iNKT2 and iNKT17 cells imprint their responsiveness to stimuli and cytokine production.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heymann, F. & Tacke, F. Immunology in the liver — from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol. 13, 88–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Corbett, A. J. et al. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509, 361–365 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Eckle, S. B. et al. Recognition of vitamin B precursors and byproducts by mucosal associated invariant T cells. J. Biol. Chem. 290, 30204–30211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reantragoon, R. et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 210, 2305–2320 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tilloy, F. et al. An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted α/β T cell subpopulation in mammals. J. Exp. Med. 189, 1907–1921 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Crowther, M. D. et al. Genome-wide CRISPR-Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nat. Immunol. 21, 178–185 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tao, H. et al. Differential controls of MAIT cell effector polarization by mTORC1/mTORC2 via integrating cytokine and costimulatory signals. Nat. Commun. 12, 2029 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chua, W. J. et al. Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection. Infect. Immun. 80, 3256–3267 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rahimpour, A. et al. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J. Exp. Med. 212, 1095–1108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hinks, T. S. C. et al. Activation and in vivo evolution of the MAIT cell transcriptome in mice and humans reveals tissue repair functionality. Cell Rep. 28, 3249–3262.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leng, T. et al. TCR and inflammatory signals tune human MAIT cells to exert specific tissue repair and effector functions. Cell Rep. 28, 3077–3091.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gherardin, N. A. et al. Human blood MAIT cell subsets defined using MR1 tetramers. Immunol. Cell Biol. 96, 507–525 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kurioka, A., Walker, L. J., Klenerman, P. & Willberg, C. B. MAIT cells: new guardians of the liver. Clin. Transl. Immunol. 5, e98 (2016).

    Article  Google Scholar 

  37. Cui, Y. et al. Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation. J. Clin. Invest. 125, 4171–4185 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Goodman, T. & Lefrancois, L. Expression of the γδ T-cell receptor on intestinal CD8+ intraepithelial lymphocytes. Nature 333, 855–858 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Parker, C. M. et al. Evidence for extrathymic changes in the T cell receptor γ/δ repertoire. J. Exp. Med. 171, 1597–1612 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Vasudev, A. et al. γ/δ T cell subsets in human aging using the classical α/β T cell model. J. Leukoc. Biol. 96, 647–655 (2014).

    Article  PubMed  Google Scholar 

  41. Vantourout, P. & Hayday, A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat. Rev. Immunol. 13, 88–100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Willcox, B. E. & Willcox, C. R. γδ TCR ligands: the quest to solve a 500-million-year-old mystery. Nat. Immunol. 20, 121–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Deseke, M. & Prinz, I. Ligand recognition by the γδ TCR and discrimination between homeostasis and stress conditions. Cell Mol. Immunol. 17, 914–924 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Adams, E. J., Gu, S. & Luoma, A. M. Human γδ T cells: evolution and ligand recognition. Cell. Immunol. 296, 31–40 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Uldrich, A. P., Rigau, M. & Godfrey, D. I. Immune recognition of phosphoantigen-butyrophilin molecular complexes by γδ T cells. Immunol. Rev. 298, 74–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Wesch, D., Glatzel, A. & Kabelitz, D. Differentiation of resting human peripheral blood γδ T cells toward Th1- or Th2-phenotype. Cell. Immunol. 212, 110–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Caccamo, N. et al. Differentiation, phenotype, and function of interleukin-17-producing human Vγ9Vδ2 T cells. Blood 118, 129–138 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Peters, C., Hasler, R., Wesch, D. & Kabelitz, D. Human Vδ2 T cells are a major source of interleukin-9. Proc. Natl Acad. Sci. USA 113, 12520–12525 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weizman, O. E. et al. ILC1 confer early host protection at initial sites of viral infection. Cell 171, 795–808.e12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Klose, C. S. & Artis, D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 17, 765–774 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Dogra, P. et al. Tissue determinants of human NK cell development, function, and residence. Cell 180, 749–763.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Spits, H., Bernink, J. H. & Lanier, L. NK cells and type 1 innate lymphoid cells: partners in host defense. Nat. Immunol. 17, 758–764 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Perona-Wright, G. et al. Systemic but not local infections elicit immunosuppressive IL-10 production by natural killer cells. Cell Host Microbe 6, 503–512 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Neo, S. Y. et al. CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J. Clin. Invest. 130, 1185–1198 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Klose, C. S. N. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Abt, M. C. et al. Innate immune defenses mediated by two ILC subsets are critical for protection against acute Clostridium difficile infection. Cell Host Microbe 18, 27–37 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 14, 221–229 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gao, Y. et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 18, 1004–1015 (2017). This article describes novel mechanisms of tumor immune escape driven by TGFβ in the TME.

    Article  CAS  PubMed  Google Scholar 

  61. Nussbaum, K. et al. Tissue microenvironment dictates the fate and tumor-suppressive function of type 3 ILCs. J. Exp. Med. 214, 2331–2347 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Meininger, I. et al. Tissue-specific features of innate lymphoid cells. Trends Immunol. 41, 902–917 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Diefenbach, A., Colonna, M. & Koyasu, S. Development, differentiation, and diversity of innate lymphoid cells. Immunity 41, 354–365 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dadi, S. et al. Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell 164, 365–377 (2016). This article shows that type 1-polarized ILTCs and type 1-like ILCs share common gene expression programmes and engage in early-stage tumour-elicited immunosurveillance in an IL-15-dependent manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nixon, B. G. et al. Cytotoxic granzyme C-expressing ILC1s contribute to antitumor immunity and neonatal autoimmunity. Sci. Immunol. 7, eabi8642 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moreno-Nieves, U. Y. et al. Landscape of innate lymphoid cells in human head and neck cancer reveals divergent NK cell states in the tumor microenvironment. Proc. Natl Acad. Sci. USA 118, e2101169118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mjosberg, J. et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37, 649–659 (2012).

    Article  PubMed  Google Scholar 

  68. Mazzurana, L. et al. Tissue-specific transcriptional imprinting and heterogeneity in human innate lymphoid cells revealed by full-length single-cell RNA-sequencing. Cell Res. 31, 554–568 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Spits, H. & Mjosberg, J. Heterogeneity of type 2 innate lymphoid cells. Nat. Rev. Immunol. 22, 701–712 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Serafini, N. et al. Trained ILC3 responses promote intestinal defense. Science 375, 859–863 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Sonnenberg, G. F. & Artis, D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat. Med. 21, 698–708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Krabbendam, L., Heesters, B. A., Kradolfer, C. M. A., Spits, H. & Bernink, J. H. Identification of human cytotoxic ILC3s. Eur. J. Immunol. 51, 811–823 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fridman, W. H., Zitvogel, L., Sautes-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Hiam-Galvez, K. J., Allen, B. M. & Spitzer, M. H. Systemic immunity in cancer. Nat. Rev. Cancer 21, 345–359 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Maskalenko, N. A., Zhigarev, D. & Campbell, K. S. Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat. Rev. Drug Discov. 21, 559–577 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Smyth, M. J., Crowe, N. Y. & Godfrey, D. I. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int. Immunol. 13, 459–463 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Glasner, A. et al. NKp46 receptor-mediated interferon-γ production by natural killer cells increases fibronectin 1 to alter tumor architecture and control metastasis. Immunity 48, 107–119.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Eckl, J. et al. Transcript signature predicts tissue NK cell content and defines renal cell carcinoma subgroups independent of TNM staging. J. Mol. Med. 90, 55–66 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Myers, J. A. & Miller, J. S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 85–100 (2021).

    Article  PubMed  Google Scholar 

  83. Hudspeth, K., Silva-Santos, B. & Mavilio, D. Natural cytotoxicity receptors: broader expression patterns and functions in innate and adaptive immune cells. Front. Immunol. 4, 69 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Correia, D. V., Lopes, A. & Silva-Santos, B. Tumor cell recognition by γδ T lymphocytes: T-cell receptor vs. NK-cell receptors. Oncoimmunology 2, e22892 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kawano, T. et al. Antitumor cytotoxicity mediated by ligand-activated human Vα24 NKT cells. Cancer Res. 59, 5102–5105 (1999).

    CAS  PubMed  Google Scholar 

  86. Petley, E. V. et al. MAIT cells regulate NK cell-mediated tumor immunity. Nat. Commun. 12, 4746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ruf, B. et al. Activating mucosal-associated invariant T cells induces a broad antitumor response. Cancer Immunol. Res. 9, 1024–1034 (2021). Together with Petley et al. (2021), these papers provide the first in vivo evidence that MAIT cells can be targeted for cancer immunotherapy using riboflavin derivative 5-OP-RU.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wilhelm, M. et al. γδ T cells for immune therapy of patients with lymphoid malignancies. Blood 102, 200–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Kawano, T. et al. Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Vα14 NKT cells. Proc. Natl Acad. Sci. USA 95, 5690–5693 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc. Natl Acad. Sci. USA 96, 6879–6884 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Orange, J. S. Formation and function of the lytic NK-cell immunological synapse. Nat. Rev. Immunol. 8, 713–725 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Gherardin, N. A. et al. Enumeration, functional responses and cytotoxic capacity of MAIT cells in newly diagnosed and relapsed multiple myeloma. Sci. Rep. 8, 4159 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Prager, I. et al. NK cells switch from granzyme B to death receptor-mediated cytotoxicity during serial killing. J. Exp. Med. 216, 2113–2127 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Siegler, J. J. et al. Human ILC3 exert TRAIL-mediated cytotoxicity towards cancer cells. Front. Immunol. 13, 742571 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cardoso Alves, L., Corazza, N., Micheau, O. & Krebs, P. The multifaceted role of TRAIL signaling in cancer and immunity. FEBS J. 288, 5530–5554 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Dokouhaki, P. et al. NKG2D regulates production of soluble TRAIL by ex vivo expanded human γδ T cells. Eur. J. Immunol. 43, 3175–3182 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Wingender, G., Krebs, P., Beutler, B. & Kronenberg, M. Antigen-specific cytotoxicity by invariant NKT cells in vivo is CD95/CD178-dependent and is correlated with antigenic potency. J. Immunol. 185, 2721–2729 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Vivier, E., Ugolini, S., Blaise, D., Chabannon, C. & Brossay, L. Targeting natural killer cells and natural killer T cells in cancer. Nat. Rev. Immunol. 12, 239–252 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bryceson, Y. T., March, M. E., Ljunggren, H. G. & Long, E. O. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol. Rev. 214, 73–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Couzi, L. et al. Antibody-dependent anti-cytomegalovirus activity of human γδ T cells expressing CD16 (FcγRIIIa). Blood 119, 1418–1427 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Brozova, J., Karlova, I. & Novak, J. Analysis of the phenotype and function of the subpopulations of mucosal-associated invariant T cells. Scand. J. Immunol. 84, 245–251 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Lo Nigro, C. et al. NK-mediated antibody-dependent cell-mediated cytotoxicity in solid tumors: biological evidence and clinical perspectives. Ann. Transl. Med. 7, 105 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ivashkiv, L. B. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 18, 545–558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. O’Sullivan, T. et al. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J. Exp. Med. 209, 1869–1882 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Martin-Fontecha, A. et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat. Immunol. 5, 1260–1265 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Gao, Y. et al. γδ T cells provide an early source of interferon-γ in tumor immunity. J. Exp. Med. 198, 433–442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gocher, A. M., Workman, C. J. & Vignali, D. A. A. Interferon-γ: teammate or opponent in the tumour microenvironment? Nat. Rev. Immunol. 22, 158–172 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Smyth, M. J. et al. Sequential production of interferon-γ by NK1.1+ T cells and natural killer cells is essential for the antimetastatic effect of α-galactosylceramide. Blood 99, 1259–1266 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wang, S. et al. Transdifferentiation of tumor infiltrating innate lymphoid cells during progression of colorectal cancer. Cell Res. 30, 610–622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Briukhovetska, D. et al. Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer 21, 481–499 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. van Wilgenburg, B. et al. MAIT cells are activated during human viral infections. Nat. Commun. 7, 11653 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Li, W. et al. Effect of IL-18 on expansion of γδ T cells stimulated by zoledronate and IL-2. J. Immunother. 33, 287–296 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Kitamura, H. et al. The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med. 189, 1121–1128 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Klose, C. S. et al. A T-bet gradient controls the fate and function of CCR6RORγt+ innate lymphoid cells. Nature 494, 261–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, Y. et al. The IL-15-AKT-XBP1s signaling pathway contributes to effector functions and survival in human NK cells. Nat. Immunol. 20, 10–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Townsend, M. J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity 20, 477–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Van Acker, H. H. et al. Interleukin-15-cultured dendritic cells enhance anti-tumor γδ T cell functions through IL-15 secretion. Front. Immunol. 9, 658 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Sattler, A., Dang-Heine, C., Reinke, P. & Babel, N. IL-15 dependent induction of IL-18 secretion as a feedback mechanism controlling human MAIT-cell effector functions. Eur. J. Immunol. 45, 2286–2298 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Yamaguchi, T. et al. Interleukin-15 effectively potentiates the in vitro tumor-specific activity and proliferation of peripheral blood γδ T cells isolated from glioblastoma patients. Cancer Immunol. Immunother. 47, 97–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Fan, X. & Rudensky, A. Y. Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity 33, 736–751 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bernink, J. H. et al. Interleukin-12 and -23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43, 146–160 (2015). This study is one of the first to show plasticity of ILCs and differentiation of ILC3 to ILC1 in inflammatory disease in humans.

    Article  CAS  PubMed  Google Scholar 

  125. Cella, M. et al. Subsets of ILC3-ILC1-like cells generate a diversity spectrum of innate lymphoid cells in human mucosal tissues. Nat. Immunol. 20, 980–991 (2019). This study describes the intermediate subsets of cells in the differentiation of ILC3 to ILC1 in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Teng, M. W. et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 21, 719–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Park, S. H., Kyin, T., Bendelac, A. & Carnaud, C. The contribution of NKT cells, NK cells, and other γ-chain-dependent non-T non-B cells to IL-12-mediated rejection of tumors. J. Immunol. 170, 1197–1201 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Ohs, I. et al. Restoration of natural killer cell antimetastatic activity by IL12 and checkpoint blockade. Cancer Res. 77, 7059–7071 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Kansler, E. R. et al. Cytotoxic innate lymphoid cells sense cancer cell-expressed interleukin-15 to suppress human and murine malignancies. Nat. Immunol. 23, 904–915 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Punt, S. et al. The correlations between IL-17 vs. Th17 cells and cancer patient survival: a systematic review. Oncoimmunology 4, e984547 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ma, S. et al. IL-17A produced by γδ T cells promotes tumor growth in hepatocellular carcinoma. Cancer Res. 74, 1969–1982 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jin, C. et al. Commensal microbiota promote lung cancer development via γδ T cells. Cell 176, 998–1013.e16 (2019). This article provides evidence on how mouse γδ T cells integrate environmental cues from malignant tumour cells and microbiota, to promote lung inflammation and tumour cell proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chung, L. et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 23, 203–214.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhao, J., Chen, X., Herjan, T. & Li, X. The role of interleukin-17 in tumor development and progression. J. Exp. Med. 217, e20190297 (2020).

    Article  PubMed  Google Scholar 

  136. Lo Presti, E. et al. Squamous cell tumors recruit γδ T cells producing either IL17 or IFNγ depending on the tumor stage. Cancer Immunol. Res. 5, 397–407 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Wu, Y. et al. An innate-like Vδ1+ γδ T cell compartment in the human breast is associated with remission in triple-negative breast cancer. Sci. Transl Med. 11, eaax9364 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wu, Y. et al. A local human Vδ1 T cell population is associated with survival in non-small-cell lung cancer. Nat. Cancer 3, 696–709 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. McAllister, F. et al. Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell 25, 621–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wakita, D. et al. Tumor-infiltrating IL-17-producing γδ T cells support the progression of tumor by promoting angiogenesis. Eur. J. Immunol. 40, 1927–1937 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Van Hede, D. et al. Human papillomavirus oncoproteins induce a reorganization of epithelial-associated γδ T cells promoting tumor formation. Proc. Natl Acad. Sci. USA 114, E9056–E9065 (2017).

    PubMed  Google Scholar 

  142. Yan, J. et al. MAIT cells promote tumor initiation, growth, and metastases via tumor MR1. Cancer Discov. 10, 124–141 (2020). This paper demonstrates a tumour-promoting role for MAIT cells in mouse models of MR1-expressing tumours through IL-17A-dependent inhibition of NK cells.

    Article  CAS  PubMed  Google Scholar 

  143. Koh, J. et al. IL23-producing human lung cancer cells promote tumor growth via conversion of innate lymphoid cell 1 (ILC1) into ILC3. Clin. Cancer Res. 25, 4026–4037 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Liu, Y. et al. NCR group 3 innate lymphoid cells orchestrate IL-23/IL-17 axis to promote hepatocellular carcinoma development. EBioMedicine 41, 333–344 (2019).

    Google Scholar 

  145. Bernink, J. H. et al. c-Kit-positive ILC2s exhibit an ILC3-like signature that may contribute to IL-17-mediated pathologies. Nat. Immunol. 20, 992–1003 (2019). This study reports the plasticity between ILC2s and IL-17-producing ILC3-like cells in human skin inflammation.

    Article  CAS  PubMed  Google Scholar 

  146. Hernandez, P., Gronke, K. & Diefenbach, A. A catch-22: interleukin-22 and cancer. Eur. J. Immunol. 48, 15–31 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Vitiello, G. A. & Miller, G. Targeting the interleukin-17 immune axis for cancer immunotherapy. J. Exp. Med. 217, e2019045 (2020).

    Article  Google Scholar 

  148. Kirchberger, S. et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 210, 917–931 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kryczek, I. et al. IL-22+CD4+ T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 40, 772–784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kelly, A., Houston, S. A., Sherwood, E., Casulli, J. & Travis, M. A. Regulation of innate and adaptive immunity by TGFβ. Adv. Immunol. 134, 137–233 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Batlle, E. & Massague, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 50, 924–940 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Laouar, Y., Sutterwala, F. S., Gorelik, L. & Flavell, R. A. Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ. Nat. Immunol. 6, 600–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Yu, J. et al. Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-γ production by human natural killer cells. Immunity 24, 575–590 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Heinrich, B. et al. The tumour microenvironment shapes innate lymphoid cells in patients with hepatocellular carcinoma. Gut 71, 1161–1175 (2022). This study shows how ILC composition and plasticity is regulated by the cytokines in the TME of patients with HCC.

    Article  CAS  PubMed  Google Scholar 

  155. Havenar-Daughton, C., Li, S., Benlagha, K. & Marie, J. C. Development and function of murine RORγt+ iNKT cells are under TGF-β signaling control. Blood 119, 3486–3494 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Seo, N., Tokura, Y., Takigawa, M. & Egawa, K. Depletion of IL-10- and TGF-β-producing regulatory γδ T cells by administering a daunomycin-conjugated specific monoclonal antibody in early tumor lesions augments the activity of CTLs and NK Cells. J. Immunol. 163, 242–249 (1999).

    Article  CAS  PubMed  Google Scholar 

  157. Sakai, S. et al. MAIT cell-directed therapy of Mycobacterium tuberculosis infection. Mucosal Immunol. 14, 199–208 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Yu, H. et al. Artificially induced MAIT cells inhibit M. bovis BCG but not M. tuberculosis during in vivo pulmonary infection. Sci. Rep. 10, 13579 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hammad, H., Debeuf, N., Aegerter, H., Brown, A. S. & Lambrecht, B. N. Emerging paradigms in type 2 immunity. Annu. Rev. Immunol. 40, 443–467 (2022).

    Article  PubMed  Google Scholar 

  160. Suzuki, A., Leland, P., Joshi, B. H. & Puri, R. K. Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 75, 79–88 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Bando, J. K., Nussbaum, J. C., Liang, H. E. & Locksley, R. M. Type 2 innate lymphoid cells constitutively express arginase-I in the naive and inflamed lung. J. Leukoc. Biol. 94, 877–884 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Terabe, M. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R–STAT6 pathway. Nat. Immunol. 1, 515–520 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Kelly, J. et al. Chronically stimulated human MAIT cells are unexpectedly potent IL-13 producers. Immunol. Cell Biol. 97, 689–699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Dalessandri, T., Crawford, G., Hayes, M., Castro Seoane, R. & Strid, J. IL-13 from intraepithelial lymphocytes regulates tissue homeostasis and protects against carcinogenesis in the skin. Nat. Commun. 7, 12080 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hao, J. et al. Regulatory role of Vγ1 γδ T cells in tumor immunity through IL-4 production. J. Immunol. 187, 4979–4986 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Terabe, M. et al. A nonclassical non-Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J. Exp. Med. 202, 1627–1633 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ambrosino, E. et al. Cross-regulation between type I and type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J. Immunol. 179, 5126–5136 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Gasteiger, G. & Rudensky, A. Y. Interactions between innate and adaptive lymphocytes. Nat. Rev. Immunol. 14, 631–639 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Chang, Y. J. et al. Potent immune-modulating and anticancer effects of NKT cell stimulatory glycolipids. Proc. Natl Acad. Sci. USA 104, 10299–10304 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Van Acker, H. H. et al. Interleukin-15 enhances the proliferation, stimulatory phenotype, and antitumor effector functions of human γδ T cells. J. Hematol. Oncol. 9, 101 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Kroemer, G., Galassi, C., Zitvogel, L. & Galluzzi, L. Immunogenic cell stress and death. Nat. Immunol. 23, 487–500 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Harly, C., Robert, J., Legoux, F. & Lantz, O. γδ T, NKT, and MAIT cells during evolution: redundancy or specialized functions? J. Immunol. 209, 217–225 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Fehniger, T. A. et al. Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: implications for the innate immune response. J. Immunol. 162, 4511–4520 (1999).

    Article  CAS  PubMed  Google Scholar 

  174. Baxevanis, C. N., Gritzapis, A. D. & Papamichail, M. In vivo antitumor activity of NKT cells activated by the combination of IL-12 and IL-18. J. Immunol. 171, 2953–2959 (2003).

    Article  CAS  PubMed  Google Scholar 

  175. Lamichhane, R. et al. TCR- or cytokine-activated CD8+ mucosal-associated invariant T cells are rapid polyfunctional effectors that can coordinate immune responses. Cell Rep. 28, 3061–3076.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Hegde, S. et al. NKT cells direct monocytes into a DC differentiation pathway. J. Leukoc. Biol. 81, 1224–1235 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Medina, B. D. et al. Oncogenic kinase inhibition limits Batf3-dependent dendritic cell development and antitumor immunity. J. Exp. Med. 216, 1359–1376 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Barry, K. C. et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med. 24, 1178–1191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Maniar, A. et al. Human γδ T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood 116, 1726–1733 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hayakawa, Y. et al. Critical contribution of IFN-γ and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic effect of α-galactosylceramide. Eur. J. Immunol. 31, 1720–1727 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Altvater, B. et al. Activated human γδ T cells induce peptide-specific CD8+ T-cell responses to tumor-associated self-antigens. Cancer Immunol. Immunother. 61, 385–396 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Barral, P. et al. B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proc. Natl Acad. Sci. USA 105, 8345–8350 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Rezende, R. M. et al. γδ T cells control humoral immune response by inducing T follicular helper cell differentiation. Nat. Commun. 9, 3151 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Galli, G. et al. CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J. Exp. Med. 197, 1051–1057 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Magri, G. et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat. Immunol. 15, 354–364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ikutani, M. et al. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J. Immunol. 188, 703–713 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Jacquelot, N. et al. Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nat. Immunol. 22, 851–864 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Moral, J. A. et al. ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature 579, 130–135 (2020). This study shows the role of tumour-infiltrating ILC2s in the context of antibody-mediated PD1 blockade to reverse PD1 inhibition and to promote antitumour T cell responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Meierovics, A. I. & Cowley, S. C. MAIT cells promote inflammatory monocyte differentiation into dendritic cells during pulmonary intracellular infection. J. Exp. Med. 213, 2793–2809 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Gillessen, S. et al. CD1d-restricted T cells regulate dendritic cell function and antitumor immunity in a granulocyte-macrophage colony-stimulating factor-dependent fashion. Proc. Natl Acad. Sci. USA 100, 8874–8879 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hepworth, M. R. et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498, 113–117 (2013). This article is the first to show the direct regulation of adaptive immune response by ILC3s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hepworth, M. R. et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science 348, 1031–1035 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. von Burg, N. et al. Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses. Proc. Natl Acad. Sci. USA 111, 12835–12840 (2014).

    Article  Google Scholar 

  195. Rao, A. et al. Cytokines regulate the antigen-presenting characteristics of human circulating and tissue-resident intestinal ILCs. Nat. Commun. 11, 2049 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Akagbosu, B. et al. Novel antigen-presenting cell imparts Treg-dependent tolerance to gut microbiota. Nature 610, 752–760 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lyu, M. et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 610, 744–751 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kedmi, R. et al. A RORγt+ cell instructs gut microbiota-specific Treg cell differentiation. Nature 610, 737–743 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Goc, J. et al. Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer. Cell 184, 5015–5030.e16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Brandes, M., Willimann, K. & Moser, B. Professional antigen-presentation function by human γδ T cells. Science 309, 264–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  201. Mao, C. et al. Tumor-activated TCRγδ+ T cells from gastric cancer patients induce the antitumor immune response of TCRαβ+ T cells via their antigen-presenting cell-like effects. J. Immunol. Res. 2014, 593562 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Roan, F., Obata-Ninomiya, K. & Ziegler, S. F. Epithelial cell-derived cytokines: more than just signaling the alarm. J. Clin. Invest. 129, 1441–1451 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Azzout, M. et al. IL-33 enhances IFNγ and TNFα production by human MAIT cells: a new pro-Th1 effect of IL-33. Int. J. Mol. Sci. 22, 10602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ferhat, M. H. et al. The impact of invariant NKT cells in sterile inflammation: the possible contribution of the alarmin/cytokine IL-33. Front. Immunol. 9, 2308 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Schwartz, C., O’Grady, K., Lavelle, E. C. & Fallon, P. G. Interleukin 33: an innate alarm for adaptive responses beyond Th2 immunity-emerging roles in obesity, intestinal inflammation, and cancer. Eur. J. Immunol. 46, 1091–1100 (2016).

    Article  CAS  PubMed  Google Scholar 

  206. Schuijs, M. J. et al. ILC2-driven innate immune checkpoint mechanism antagonizes NK cell antimetastatic function in the lung. Nat. Immunol. 21, 998–1009 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Sakuishi, K. et al. Invariant NKT cells biased for IL-5 production act as crucial regulators of inflammation. J. Immunol. 179, 3452–3462 (2007).

    Article  CAS  PubMed  Google Scholar 

  208. de Oliveira Henriques, M. D. & Penido, C. γδ T lymphocytes coordinate eosinophil influx during allergic responses. Front. Pharmacol. 3, 200 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Trabanelli, S. et al. Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2–MDSC axis. Nat. Commun. 8, 593 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Jovanovic, I. P. et al. Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int. J. Cancer 134, 1669–1682 (2014).

    Article  CAS  PubMed  Google Scholar 

  211. Zaiss, D. M. et al. Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor. Immunity 38, 275–284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Robertson, F. C., Berzofsky, J. A. & Terabe, M. NKT cell networks in the regulation of tumor immunity. Front. Immunol. 5, 543 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Mao, Y. et al. A new effect of IL-4 on human T cells: promoting regulatory Vδ1 T cells via IL-10 production and inhibiting function of Vδ2 T cells. Cell Mol. Immunol. 13, 217–228 (2016).

    Article  CAS  PubMed  Google Scholar 

  214. Schneider, C., O’Leary, C. E. & Locksley, R. M. Regulation of immune responses by tuft cells. Nat. Rev. Immunol. 19, 584–593 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Camelo, A. et al. Blocking IL-25 signalling protects against gut inflammation in a type-2 model of colitis by suppressing nuocyte and NKT derived IL-13. J. Gastroenterol. 47, 1198–1211 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Wu, P. et al. γδ T17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40, 785–800 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Kersten, K. et al. Mammary tumor-derived CCL2 enhances pro-metastatic systemic inflammation through upregulation of IL1β in tumor-associated macrophages. Oncoimmunology 6, e1334744 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Kimura, Y. et al. IL-17A-producing CD30+ Vδ1 T cells drive inflammation-induced cancer progression. Cancer Sci. 107, 1206–1214 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Carmi, Y. et al. Microenvironment-derived IL-1 and IL-17 interact in the control of lung metastasis. J. Immunol. 186, 3462–3471 (2011).

    Article  CAS  PubMed  Google Scholar 

  220. Chan, I. H. et al. Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 7, 842–856 (2014).

    Article  CAS  PubMed  Google Scholar 

  221. Rachitskaya, A. V. et al. Cutting edge: NKT cells constitutively express IL-23 receptor and RORγt and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J. Immunol. 180, 5167–5171 (2008).

    Article  CAS  PubMed  Google Scholar 

  222. Sutton, C. E., Mielke, L. A. & Mills, K. H. IL-17-producing γδ T cells and innate lymphoid cells. Eur. J. Immunol. 42, 2221–2231 (2012).

    Article  CAS  PubMed  Google Scholar 

  223. Rei, M. et al. Murine CD27 Vγ6+ γδ T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc. Natl Acad. Sci. USA 111, E3562–E3570 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Elinav, E., Garrett, W. S., Trinchieri, G. & Wargo, J. The cancer microbiome. Nat. Rev. Cancer 19, 371–376 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Xu, X. et al. Group-2 innate lymphoid cells promote HCC progression through CXCL2-neutrophil-induced immunosuppression. Hepatology 74, 2526–2543 (2021).

    Article  CAS  PubMed  Google Scholar 

  226. Zumwalde, N. A., Haag, J. D., Gould, M. N. & Gumperz, J. E. Mucosal associated invariant T cells from human breast ducts mediate a Th17-skewed response to bacterially exposed breast carcinoma cells. Breast Cancer Res. 20, 111 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Housseau, F. et al. Redundant innate and adaptive sources of IL17 production drive colon tumorigenesis. Cancer Res. 76, 2115–2124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Malmberg, K. J. et al. Natural killer cell-mediated immunosurveillance of human cancer. Semin. Immunol. 31, 20–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  229. Hoos, A. Development of immuno-oncology drugs — from CTLA4 to PD1 to the next generations. Nat. Rev. Drug Discov. 15, 235–247 (2016).

    Article  CAS  PubMed  Google Scholar 

  230. Duan, M. et al. Activated and exhausted MAIT cells foster disease progression and indicate poor outcome in hepatocellular carcinoma. Clin. Cancer Res. 25, 3304–3316 (2019).

    Article  PubMed  Google Scholar 

  231. Heinrich, B. et al. Checkpoint inhibitors modulate plasticity of innate lymphoid cells in peripheral blood of patients with hepatocellular carcinoma. Front. Immunol. 13, 849958 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Rossi, C. et al. Boosting γδ T cell-mediated antibody-dependent cellular cytotoxicity by PD-1 blockade in follicular lymphoma. Oncoimmunology 8, 1554175 (2019).

    Article  PubMed  Google Scholar 

  233. Zhang, Q. et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19, 723–732 (2018).

    Article  CAS  PubMed  Google Scholar 

  234. de Vries, N. L. et al. γδ T cells are effectors of immunotherapy in cancers with HLA class I defects. Nature 613, 743–750 (2023). This study suggests a contribution of PD1+ γδ T cells to the control of DNA mismatch repair-deficient (dMMR) cancers with additional defects in antigen presentation (HLA-I-negative) upon immune checkpoint blockade.

    Article  PubMed  PubMed Central  Google Scholar 

  235. De Biasi, S. et al. Circulating mucosal-associated invariant T cells identify patients responding to anti-PD-1 therapy. Nat. Commun. 12, 1669 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Daley, D. et al. γδ T cells support pancreatic oncogenesis by restraining αβ T cell activation. Cell 166, 1485–1499.e15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Sivori, S. et al. NK cells and ILCs in tumor immunotherapy. Mol. Asp. Med. 80, 100870 (2021).

    Article  CAS  Google Scholar 

  238. Ruggeri, L. et al. Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells. Haematologica 101, 626–633 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Andre, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Segal, N. H. et al. First-in-human dose escalation of monalizumab plus durvalumab, with expansion in patients with metastatic microsatellite-stable colorectal cancer. J. Clin. Oncol. 36, 3540–3540 (2018).

    Article  Google Scholar 

  241. Sivori, S. et al. Inhibitory receptors and checkpoints in human NK cells, implications for the immunotherapy of cancer. Front. Immunol. 11, 2156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Korde, N. et al. A phase II trial of pan-KIR2D blockade with IPH2101 in smoldering multiple myeloma. Haematologica 99, e81–e83 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Carlsten, M. et al. Checkpoint inhibition of KIR2D with the monoclonal antibody IPH2101 induces contraction and hyporesponsiveness of NK cells in patients with myeloma. Clin. Cancer Res. 22, 5211–5222 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Benson, D. M. Jr et al. A phase I trial of the anti-KIR antibody IPH2101 and lenalidomide in patients with relapsed/refractory multiple myeloma. Clin. Cancer Res. 21, 4055–4061 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Hsi, E. D. et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin. Cancer Res. 14, 2775–2784 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Cruz-Munoz, M. E., Dong, Z., Shi, X., Zhang, S. & Veillette, A. Influence of CRACC, a SLAM family receptor coupled to the adaptor EAT-2, on natural killer cell function. Nat. Immunol. 10, 297–305 (2009).

    Article  CAS  PubMed  Google Scholar 

  247. Veillette, A. & Guo, H. CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma. Crit. Rev. Oncol. Hematol. 88, 168–177 (2013).

    Article  PubMed  Google Scholar 

  248. Collins, S. M. et al. Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC. Cancer Immunol. Immunother. 62, 1841–1849 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Felices, M., Lenvik, T. R., Davis, Z. B., Miller, J. S. & Vallera, D. A. Generation of BiKEs and TriKEs to improve NK cell-mediated targeting of tumor cells. Methods Mol. Biol. 1441, 333–346 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Arvindam, U. S. et al. A trispecific killer engager molecule against CLEC12A effectively induces NK-cell mediated killing of AML cells. Leukemia 35, 1586–1596 (2021).

    Article  CAS  PubMed  Google Scholar 

  251. Gauthier, L. et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 177, 1701–1713.e16 (2019).

    Article  CAS  PubMed  Google Scholar 

  252. Demaria, O. et al. Antitumor immunity induced by antibody-based natural killer cell engager therapeutics armed with not-α IL-2 variant. Cell Rep. Med. 3, 100783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Ando, T., Ito, H., Ohtaki, H. & Seishima, M. Toll-like receptor agonists and α-galactosylceramide synergistically enhance the production of interferon-γ in murine splenocytes. Sci. Rep. 3, 2559 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Parekh, V. V. et al. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J. Clin. Invest. 115, 2572–2583 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Kunii, N. et al. Combination therapy of in vitro-expanded natural killer T cells and α-galactosylceramide-pulsed antigen-presenting cells in patients with recurrent head and neck carcinoma. Cancer Sci. 100, 1092–1098 (2009).

    Article  CAS  PubMed  Google Scholar 

  256. Uchida, T. et al. Phase I study of α-galactosylceramide-pulsed antigen presenting cells administration to the nasal submucosa in unresectable or recurrent head and neck cancer. Cancer Immunol. Immunother. 57, 337–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  257. Toyoda, T. et al. Phase II study of α-galactosylceramide-pulsed antigen-presenting cells in patients with advanced or recurrent non-small cell lung cancer. J. Immunother. Cancer 8, e000316 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Kobayashi, H. et al. Safety profile and anti-tumor effects of adoptive immunotherapy using γδ T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol. Immunother. 56, 469–476 (2007).

    Article  CAS  PubMed  Google Scholar 

  259. Nicol, A. J. et al. Clinical evaluation of autologous γδ T cell-based immunotherapy for metastatic solid tumours. Br. J. Cancer 105, 778–786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Hoeres, T., Smetak, M., Pretscher, D. & Wilhelm, M. Improving the efficiency of Vγ9Vδ2 T-cell immunotherapy in cancer. Front. Immunol. 9, 800 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Walwyn-Brown, K. et al. Phosphoantigen-stimulated γδ T cells suppress natural killer-cell responses to missing-self. Cancer Immunol. Res. 10, 558–570 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Roediger, B. et al. IL-2 is a critical regulator of group 2 innate lymphoid cell function during pulmonary inflammation. J. Allergy Clin. Immunol. 136, 1653–1663.e57 (2015).

    Article  CAS  PubMed  Google Scholar 

  263. Corpuz, T. M. et al. IL-2 shapes the survival and plasticity of IL-17-producing γδ T cells. J. Immunol. 199, 2366–2376 (2017).

    Article  CAS  PubMed  Google Scholar 

  264. Krijgsman, D., Hokland, M. & Kuppen, P. J. K. The role of natural killer T cells in cancer — a phenotypical and functional approach. Front. Immunol. 9, 367 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Ghiringhelli, F. et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-β-dependent manner. J. Exp. Med. 202, 1075–1085 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Viey, E. et al. Chemokine receptors expression and migration potential of tumor-infiltrating and peripheral-expanded Vγ9Vδ2 T cells from renal cell carcinoma patients. J. Immunother. 31, 313–323 (2008).

    Article  CAS  PubMed  Google Scholar 

  267. Felices, M. et al. Continuous treatment with IL-15 exhausts human NK cells via a metabolic defect. JCI Insight 3, e96219 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Gordy, L. E. et al. IL-15 regulates homeostasis and terminal maturation of NKT cells. J. Immunol. 187, 6335–6345 (2011).

    Article  CAS  PubMed  Google Scholar 

  269. Aehnlich, P., Carnaz Simoes, A. M., Skadborg, S. K., Holmen Olofsson, G. & Thor Straten, P. Expansion with IL-15 increases cytotoxicity of Vγ9Vδ2 T cells and is associated with higher levels of cytotoxic molecules and T-bet. Front. Immunol. 11, 1868 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Rha, M. S. et al. Human liver CD8+ MAIT cells exert TCR/MR1-independent innate-like cytotoxicity in response to IL-15. J. Hepatol. 73, 640–650 (2020).

    Article  CAS  PubMed  Google Scholar 

  271. Tourret, M. et al. Human MAIT cells are devoid of alloreactive potential: prompting their use as universal cells for adoptive immune therapy. J. Immunother. Cancer 9, e003123 (2021). This study suggests that MAIT cells could be an attractive platform for adoptive cell transfer owing to their lack of alloreactivity.

    Article  PubMed  PubMed Central  Google Scholar 

  272. Laskowski, T. J., Biederstadt, A. & Rezvani, K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat. Rev. Cancer 22, 557–575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Lupo, K. B. & Matosevic, S. Natural killer cells as allogeneic effectors in adoptive cancer immunotherapy. Cancers 11, 769 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Miller, J. S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057 (2005).

    Article  CAS  PubMed  Google Scholar 

  275. Li, L. et al. Adoptive transfer of natural killer cells in combination with chemotherapy improves outcomes of patients with locally advanced colon carcinoma. Cytotherapy 20, 134–148 (2018).

    Article  CAS  PubMed  Google Scholar 

  276. Yoon, D. H., Koh, Y., Park, H., Hwang, Y. K. & Kim, W. S. A phase 1 study of the combination of MG4101, ex vivo-expanded allogeneic NK cells and rituximab for relapsed or refractory non-Hodgkin’s lymphoma. Blood 136, 14–15 (2020).

    Article  Google Scholar 

  277. Motohashi, S. et al. A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res. 12, 6079–6086 (2006).

    Article  CAS  PubMed  Google Scholar 

  278. Exley, M. A. et al. Adoptive transfer of invariant NKT cells as immunotherapy for advanced melanoma: a phase I clinical trial. Clin. Cancer Res. 23, 3510–3519 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Gao, Y. et al. Adoptive transfer of autologous invariant natural killer T cells as immunotherapy for advanced hepatocellular carcinoma: a phase I clinical trial. Oncologist 26, e1919–e1930 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Parrot, T. et al. Expansion of donor-unrestricted MAIT cells with enhanced cytolytic function suitable for TCR redirection. JCI Insight 6, e140074 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  281. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Basar, R., Daher, M. & Rezvani, K. Next-generation cell therapies: the emerging role of CAR-NK cells. Blood Adv. 4, 5868–5876 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Rozenbaum, M. et al. γδ CAR-T cells show CAR-directed and independent activity against leukemia. Front. Immunol. 11, 1347 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Capsomidis, A. et al. Chimeric antigen receptor-engineered human γδ T cells: enhanced cytotoxicity with retention of cross presentation. Mol. Ther. 26, 354–365 (2018).

    Article  CAS  PubMed  Google Scholar 

  287. Heczey, A. et al. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood 124, 2824–2833 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Dogan, M. et al. Engineering human MAIT cells with chimeric antigen receptors for cancer immunotherapy. J. Immunol. 209, 1523–1531 (2022).

    Article  CAS  PubMed  Google Scholar 

  289. Du, S. H. et al. Co-expansion of cytokine-induced killer cells and Vγa9Vδ2 T cells for CAR T-cell therapy. PLoS ONE 11, e0161820 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Papotto, P. H., Ribot, J. C. & Silva-Santos, B. IL-17+ γδ T cells as kick-starters of inflammation. Nat. Immunol. 18, 604–611 (2017).

    Article  CAS  PubMed  Google Scholar 

  291. Luci, C. et al. Cutaneous squamous cell carcinoma development is associated with a temporal infiltration of ILC1 and NK cells with immune dysfunctions. J. Invest. Dermatol. 141, 2369–2379 (2021).

    Article  CAS  PubMed  Google Scholar 

  292. Koay, H. F. et al. A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat. Immunol. 17, 1300–1311 (2016).

    Article  CAS  PubMed  Google Scholar 

  293. Savage, A. K. et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29, 391–403 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Kreslavsky, T. et al. TCR-inducible PLZF transcription factor required for innate phenotype of a subset of γδ T cells with restricted TCR diversity. Proc. Natl Acad. Sci. USA 106, 12453–12458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Constantinides, M. G. et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366, eaax6624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Legoux, F. et al. Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science 366, 494–499 (2019).

    Article  CAS  PubMed  Google Scholar 

  297. Wingender, G. et al. Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology 143, 418–428 (2012).

    Article  CAS  PubMed  Google Scholar 

  298. Lim, A. I. et al. Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168, 1086–1100.e10 (2017). This article describes comprehensive characterization of circulating ILC precursor cells in human peripheral blood.

    Article  CAS  PubMed  Google Scholar 

  299. Scoville, S. D., Freud, A. G. & Caligiuri, M. A. Cellular pathways in the development of human and murine innate lymphoid cells. Curr. Opin. Immunol. 56, 100–106 (2019).

    Article  CAS  PubMed  Google Scholar 

  300. Male, V. et al. The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J. Exp. Med. 211, 635–642 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Bai, L. et al. Liver type 1 innate lymphoid cells develop locally via an interferon-γ-dependent loop. Science 371, eaba4177 (2021).

    Article  CAS  PubMed  Google Scholar 

  302. Ebihara, T. & Taniuchi, I. Transcription factors in the development and function of group 2 innate lymphoid cells. Int. J. Mol. Sci. 20, 1377 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Cording, S. et al. Mouse models for the study of fate and function of innate lymphoid cells. Eur. J. Immunol. 48, 1271–1280 (2018).

    Article  CAS  PubMed  Google Scholar 

  304. Zook, E. C. & Kee, B. L. Development of innate lymphoid cells. Nat. Immunol. 17, 775–782 (2016).

    Article  CAS  PubMed  Google Scholar 

  305. Stokic-Trtica, V., Diefenbach, A. & Klose, C. S. N. NK cell development in times of innate lymphoid cell diversity. Front. Immunol. 11, 813 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Kotas, M. E. & Locksley, R. M. Why innate lymphoid cells. Immunity 48, 1081–1090 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Kogame, T., Egawa, G., Nomura, T. & Kabashima, K. Waves of layered immunity over innate lymphoid cells. Front. Immunol. 13, 957711 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  309. Di Marco Barros, R. et al. Epithelia use butyrophilin-like molecules to shape organ-specific γδ T cell compartments. Cell 167, 203–218.e17 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  310. Farber, D. L., Netea, M. G., Radbruch, A., Rajewsky, K. & Zinkernagel, R. M. Immunological memory: lessons from the past and a look to the future. Nat. Rev. Immunol. 16, 124–128 (2016).

    Article  CAS  PubMed  Google Scholar 

  311. Adams, N. M., Grassmann, S. & Sun, J. C. Clonal expansion of innate and adaptive lymphocytes. Nat. Rev. Immunol. 20, 694–707 (2020).

    Article  CAS  PubMed  Google Scholar 

  312. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Wang, X. et al. Memory formation and long-term maintenance of IL-7Rα+ ILC1s via a lymph node–liver axis. Nat. Commun. 9, 4854 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  314. Martinez-Gonzalez, I. et al. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity 45, 198–208 (2016).

    Article  CAS  PubMed  Google Scholar 

  315. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Ataide, M. A. et al. Lymphatic migration of unconventional T cells promotes site-specific immunity in distinct lymph nodes. Immunity 55, 1813–1828.e19 (2022). This article demonstrates how ILTCs represent functional units in different tissues where their function is imprinted by the homeostatic niche they are derived from.

    Article  CAS  PubMed  Google Scholar 

  317. Bal, S. M., Golebski, K. & Spits, H. Plasticity of innate lymphoid cell subsets. Nat. Rev. Immunol. 20, 552–565 (2020).

    Article  CAS  PubMed  Google Scholar 

  318. Colonna, M. Innate lymphoid cells: diversity, plasticity, and unique functions in immunity. Immunity 48, 1104–1117 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. DuPage, M. & Bluestone, J. A. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat. Rev. Immunol. 16, 149–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  320. Galli, S. J., Borregaard, N. & Wynn, T. A. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 12, 1035–1044 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Bald, T., Wagner, M., Gao, Y., Koyasu, S. & Smyth, M. J. Hide and seek: plasticity of innate lymphoid cells in cancer. Semin. Immunol. 41, 101273 (2019).

    Article  PubMed  Google Scholar 

  322. Cortez, V. S. et al. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling. Nat. Immunol. 18, 995–1003 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Eisenring, M., vom Berg, J., Kristiansen, G., Saller, E. & Becher, B. IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat. Immunol. 11, 1030–1038 (2010).

    Article  CAS  PubMed  Google Scholar 

  324. Brennan, P. J., Brigl, M. & Brenner, M. B. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat. Rev. Immunol. 13, 101–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  325. Lafont, V. et al. Plasticity of γδ T cells: impact on the anti-tumor response. Front. Immunol. 5, 622 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Zhu (NIH) for critical reading of the manuscript and helpful suggestions and comments. The authors apologize to all the scientists whose work could not be cited owing to space limitations. B.R. was supported by the International Liver Cancer Association Fellowship Award 2021. T.F.G. was supported by the Intramural Research Program of the NIH, NCI (ZIA BC 011345).

Author information

Authors and Affiliations

Authors

Contributions

F.K. and B.R. researched data for the article. All authors contributed substantially to discussion of the content, as well as writing, reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Firouzeh Korangy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Hergen Spits, Pamela Ohashi and Nicolas Jacquelot and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

αβ T cells

T cells expressing a lineage-specific heterodimeric T cell receptor consisting of an α-chain and a β-chain (as opposed to γδ T cell receptors).

Antibody opsonization

Antigen-specific antibodies can bind to foreign pathogens or transformed cells and mark them for elimination by phagocyting cells.

Degrees of innateness

This term was previously coined, for example, by Gutierrez-Arcelus et al.10 and Constantinides and Belkaid11, to describe where an immune response lies on the continuum that exists between innate and adaptive immunity.

Graft-versus-host disease

(GvHD). A potentially fatal complication after allogeneic cell transfer caused by a detrimental reaction of the transferred allogeneic T cells (graft) against the (host) healthy tissue of the recipient.

Lymphoid tissue-inducing (LTi) cells

These cells are members of the innate lymphoid cell family that promote generation of secondary lymphoid structures.

M2 macrophages

Although defining macrophage polarization is oversimplistic, this is commonly used to describe alternatively activated macrophages with immunosuppressive features that are often associated with poor outcomes in cancer.

‘Missing-self’ mechanism

This describes a mechanism of nature killer cell activation, in which absence or altered expression of major histocompatibility complex I molecules (for example, on tumour cells) leads to the recognition and elimination of these target cells.

Pancreatic intraepithelial neoplasia

A precursor lesion to invasive ductal adenocarcinoma of the pancreas with well-defined histological features.

Pyroptosis

An inflammatory pathway leading to cell death as mediated by activation of caspase 1 and inflammatory cytokines such as IL-1β and IL-18.

T-bet

The transcription factor T-bet (encoded by TBX21) promotes the differentiation programmes of innate and adaptive lymphocytes towards interferon-γ-producing type 1 cells.

Toll-like receptor

Pattern-recognition receptor expressed on innate immune cells that recognizes structurally conserved molecules (also called pathogen-associated molecular patterns) derived from microorganisms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruf, B., Greten, T.F. & Korangy, F. Innate lymphoid cells and innate-like T cells in cancer — at the crossroads of innate and adaptive immunity. Nat Rev Cancer 23, 351–371 (2023). https://doi.org/10.1038/s41568-023-00562-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00562-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer