Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer

Abstract

The potential of cancer immunotherapy relies on the mobilization of immune cells capable of producing antitumour cytokines and effectively killing tumour cells. These are major attributes of γδ T cells, a lymphoid lineage that is often underestimated despite its major role in tumour immune surveillance, which has been established in a variety of preclinical cancer models. This situation notwithstanding, in particular instances the tumour microenvironment seemingly mobilizes γδ T cells with immunosuppressive or tumour-promoting functions, thus emphasizing the importance of regulating γδ T cell responses in order to realize their translation into effective cancer immunotherapies. In this Review we outline both seminal work and recent advances in our understanding of how γδ T cells participate in tumour immunity and how their functions are regulated in experimental models of cancer. We also discuss the current strategies aimed at maximizing the therapeutic potential of human γδ T cells, on the eve of their exploration in cancer clinical trials that may position them as key players in cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of developments in the research of γδ T cell function in cancer and their exploitation for immunotherapy.
Fig. 2: Antitumour γδ T cell functions and their regulation.
Fig. 3: Pro-tumour γδ T cell functions and their regulation.
Fig. 4: Current strategies for therapeutic manipulation of human γδ T cells.

Similar content being viewed by others

References

  1. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    Article  PubMed  Google Scholar 

  3. Silva-Santos, B., Serre, K. & Norell, H. γδ T cells in cancer. Nat. Rev. Immunol. 15, 683–691 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Willcox, B. E. & Willcox, C. R. γδ TCR ligands: the quest to solve a 500-million-year-old mystery. Nat. Immunol. 20, 121–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Vermijlen, D., Gatti, D., Kouzeli, A., Rus, T. & Eberl, M. γδ T cell responses: how many ligands will it take till we know? Semin. Cell Dev. Biol. 84, 75–86 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Adams, E. J., Gu, S. & Luoma, A. M. Human γ δ T cells: evolution and ligand recognition. Cell. Immunol. 296, 31–40 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Melandri, D. et al. The γδTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat. Immunol. 19, 1352–1365 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001). Seminal work using TCR δ chain −/− mice to demonstrate a protective role for mouse γδ T cells in chemically induced skin cancer.

    Article  CAS  PubMed  Google Scholar 

  9. Gao, Y. et al. γδ T cells provide an early source of interferon γ in tumor immunity. J. Exp. Med. 198, 433–442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Street, S. E. et al. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and γδ T cells. J. Exp. Med. 199, 879–884 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, Z. et al. Protective immunosurveillance and therapeutic antitumor activity of γδ T cells demonstrated in a mouse model of prostate cancer. J. Immunol. 180, 6044–6053 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Lanca, T. et al. Protective role of the inflammatory CCR2/CCL2 chemokine pathway through recruitment of type 1 cytotoxic γδ T lymphocytes to tumor beds. J. Immunol. 190, 6673–6680 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. He, W. et al. Naturally activated V γ 4 γ δ T cells play a protective role in tumor immunity through expression of eomesodermin. J. Immunol. 185, 126–133 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Simoes, A. E., Di Lorenzo, B. & Silva-Santos, B. Molecular determinants of target cell recognition by human γδ T cells. Front. Immunol. 9, 929 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Strid, J. et al. Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis. Nat. Immunol. 9, 146–154 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Strid, J., Sobolev, O., Zafirova, B., Polic, B. & Hayday, A. The intraepithelial T cell response to NKG2D-ligands links lymphoid stress surveillance to atopy. Science 334, 1293–1297 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Dalessandri, T., Crawford, G., Hayes, M., Castro Seoane, R. & Strid, J. IL-13 from intraepithelial lymphocytes regulates tissue homeostasis and protects against carcinogenesis in the skin. Nat. Commun. 7, 12080 (2016). A study showing a crucial effect of IL-13-producing γδ T cells in maintaining skin integrity and therefore protecting from carcinogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao, G. et al. mTOR inhibition potentiates cytotoxicity of Vγ4 γδ T cells via up-regulating NKG2D and TNF-α. J. Leukoc. Biol. 100, 1181–1189 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γ δ T cells of MICA and MICB. Proc. Natl Acad. Sci. USA 96, 6879–6884 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kong, Y. et al. The NKG2D ligand ULBP4 binds to TCRγ9/δ2 and induces cytotoxicity to tumor cells through both TCRγδ and NKG2D. Blood 114, 310–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Lanca, T. et al. The MHC class Ib protein ULBP1 is a nonredundant determinant of leukemia/lymphoma susceptibility to γδ T cell cytotoxicity. Blood 115, 2407–2411 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Correia, D. V., Lopes, A. & Silva-Santos, B. Tumor cell recognition by γδ T lymphocytes: T cell receptor versus NK-cell receptors. Oncoimmunology 2, e22892 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Viey, E. et al. Phosphostim-activated γ δ T cells kill autologous metastatic renal cell carcinoma. J. Immunol. 174, 1338–1347 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Alexander, A. A. et al. Isopentenyl pyrophosphate-activated CD56+ T lymphocytes display potent antitumor activity toward human squamous cell carcinoma. Clin. Cancer Res. 14, 4232–4240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Todaro, M. et al. Efficient killing of human colon cancer stem cells by γδ T lymphocytes. J. Immunol. 182, 7287–7296 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. D’Asaro, M. et al. Vγ9Vδ2 T lymphocytes efficiently recognize and kill zoledronate-sensitized, imatinib-sensitive, and imatinib-resistant chronic myelogenous leukemia cells. J. Immunol. 184, 3260–3268 (2010).

    Article  PubMed  CAS  Google Scholar 

  28. Dokouhaki, P. et al. NKG2D regulates production of soluble TRAIL by ex vivo expanded human γδ T cells. Eur. J. Immunol. 43, 3175–3182 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Li, Z. et al. IFN-γ enhances HOS and U2OS cell lines susceptibility to γδ T cell-mediated killing through the Fas/Fas ligand pathway. Int. Immunopharmacol. 11, 496–503 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Couzi, L. et al. Antibody-dependent anti-cytomegalovirus activity of human γδ T cells expressing CD16 (FcγRIIIa). Blood 119, 1418–1427 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Tokuyama, H. et al. Vγ9Vδ2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs—rituximab and trastuzumab. Int. J. Cancer 122, 2526–2534 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Capietto, A. H., Martinet, L. & Fournie, J. J. Stimulated γδ T cells increase the in vivo efficacy of trastuzumab in HER-2+ breast cancer. J. Immunol. 187, 1031–1038 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Gertner-Dardenne, J. et al. Bromohydrin pyrophosphate enhances antibody-dependent cell-mediated cytotoxicity induced by therapeutic antibodies. Blood 113, 4875–4884 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Oberg, H. H. et al. Novel bispecific antibodies increase γδ T cell cytotoxicity against pancreatic cancer cells. Cancer Res. 74, 1349–1360 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Schiller, C. B. et al. CD19-specific triplebody SPM-1 engages NK and γδ T cells for rapid and efficient lysis of malignant B-lymphoid cells. Oncotarget 7, 83392–83408 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fisher, J. P. et al. Neuroblastoma killing properties of Vδ2 and Vδ2-negative γδT cells following expansion by artificial antigen-presenting cells. Clin. Cancer Res. 20, 5720–5732 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Riond, J., Rodriguez, S., Nicolau, M. L., al Saati, T. & Gairin, J. E. In vivo major histocompatibility complex class I (MHCI) expression on MHCIlow tumor cells is regulated by γδ T and NK cells during the early steps of tumor growth. Cancer Immun. 9, 10 (2009).

    PubMed  PubMed Central  Google Scholar 

  38. Brandes, M., Willimann, K. & Moser, B. Professional antigen-presentation function by human γδ T Cells. Science 309, 264–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Altvater, B. et al. Activated human γδ T cells induce peptide-specific CD8+ T cell responses to tumor-associated self-antigens. Cancer Immunol. Immunother. 61, 385–396 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Mao, C. et al. Tumor-activated TCRγδ(+) T cells from gastric cancer patients induce the antitumor immune response of TCRαβ(+) T cells via their antigen-presenting cell-like effects. J. Immunol. Res. 2014, 593562 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Himoudi, N. et al. Human γδ T lymphocytes are licensed for professional antigen presentation by interaction with opsonized target cells. J. Immunol. 188, 1708–1716 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Muto, M., Baghdadi, M., Maekawa, R., Wada, H. & Seino, K. Myeloid molecular characteristics of human γδ T cells support their acquisition of tumor antigen-presenting capacity. Cancer Immunol. Immunother. 64, 941–949 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Maniar, A. et al. Human γδ T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood 116, 1726–1733 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nussbaumer, O., Gruenbacher, G., Gander, H. & Thurnher, M. DC-like cell-dependent activation of human natural killer cells by the bisphosphonate zoledronic acid is regulated by γδ T lymphocytes. Blood 118, 2743–2751 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Wen, L. et al. Germinal center formation, immunoglobulin class switching, and autoantibody production driven by “non α/β” T cells. J. Exp. Med. 183, 2271–2282 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Huang, Y. et al. γδ T cells affect IL-4 production and B cell tolerance. Proc. Natl Acad. Sci. USA 112, E39–E48 (2015).

    CAS  PubMed  Google Scholar 

  47. Rezende, R. M. et al. γδ T cells control humoral immune response by inducing T follicular helper cell differentiation. Nat. Commun. 9, 3151 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bansal, R. R., Mackay, C. R., Moser, B. & Eberl, M. IL-21 enhances the potential of human γδ T cells to provide B cell help. Eur. J. Immunol. 42, 110–119 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Shimura, E. et al. Epidermal γδ T cells sense precancerous cellular dysregulation and initiate immune responses. Int. Immunol. 22, 329–340 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Crawford, G. et al. Epithelial damage and tissue γδ T cells promote a unique tumor-protective IgE response. Nat. Immunol. 19, 859–870 (2018). A work demonstrating that γδ T cells provide help for B cells to class-switch to IgE production, resulting in a protective response against tumour development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mattarollo, S. R. et al. Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res. 71, 4809–4820 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Ma, Y. et al. Contribution of IL-17-producing γ δ T cells to the efficacy of anticancer chemotherapy. J. Exp. Med. 208, 491–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Medina, B. D. et al. Oncogenic kinase inhibition limits Batf3-dependent dendritic cell development and antitumor immunity. J. Exp. Med. https://doi.org/10.1084/jem.20180660 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Wakita, D. et al. Tumor-infiltrating IL-17-producing γδ T cells support the progression of tumor by promoting angiogenesis. Eur. J. Immunol. 40, 1927–1937 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Carmi, Y. et al. Microenvironment-derived IL-1 and IL-17 interact in the control of lung metastasis. J. Immunol. 186, 3462–3471 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Benevides, L. et al. IL17 promotes mammary tumor progression by changing the behavior of tumor cells and eliciting tumorigenic neutrophils recruitment. Cancer Res. 75, 3788–3799 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kimura, Y. et al. IL-17A-producing CD30(+) Vδ1 T cells drive inflammation-induced cancer progression. Cancer Sci. 107, 1206–1214 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kulig, P. et al. IL17A-mediated endothelial breach promotes metastasis formation. Cancer Immunol. Res. 4, 26–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Ma, S. et al. IL-17A produced by γδ T cells promotes tumor growth in hepatocellular carcinoma. Cancer Res. 74, 1969–1982 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Rei, M. et al. Murine CD27(-) Vγ6(+) γδ T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc. Natl Acad. Sci. USA 111, E3562–E3570 (2014). The description of a pro-tumour axis between mouse IL-17-producing γδ T cells and pro-inflammatory and pro-angiogenic macrophages in an ovarian cancer mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Patin, E. C. et al. Type I IFN receptor signaling controls IL7-dependent accumulation and activity of protumoral IL17A-producing γδT cells in breast cancer. Cancer Res. 78, 195–204 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. McAllister, F. et al. Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell 25, 621–637 (2014). A study that shows a pathogenic role for IL-17, provided in the TME by γδ T cells and T H 17 cells, in pancreatic tumour development and progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Housseau, F. et al. Redundant innate and adaptive sources of IL17 production drive colon tumorigenesis. Cancer Res. 76, 2115–2124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015). The study that reveals for the first time a pro-metastatic role for mouse IL-17-producing γδ T cells in a breast cancer mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Busch, S. E. et al. Lung cancer subtypes generate unique immune responses. J. Immunol. 197, 4493–4503 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Jin, C. et al. Commensal microbiota promote lung cancer development via γδ T cells. Cell 176, 998–1013 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Van Hede, D. et al. Human papillomavirus oncoproteins induce a reorganization of epithelial-associated γδ T cells promoting tumor formation. Proc. Natl Acad. Sci. USA 114, E9056–E9065 (2017).

    Article  PubMed  CAS  Google Scholar 

  69. Gosmann, C., Mattarollo, S. R., Bridge, J. A., Frazer, I. H. & Blumenthal, A. IL-17 suppresses immune effector functions in human papillomavirus-associated epithelial hyperplasia. J. Immunol. 193, 2248–2257 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Ness-Schwickerath, K. J., Jin, C. & Morita, C. T. Cytokine requirements for the differentiation and expansion of IL-17A- and IL-22-producing human Vγ2Vδ2 T cells. J. Immunol. 184, 7268–7280 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Caccamo, N. et al. Differentiation, phenotype, and function of interleukin-17-producing human Vγ9Vδ2 T cells. Blood 118, 129–138 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Patil, R. S. et al. IL17 producing γδT cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients. Int. J. Cancer 139, 869–881 (2016).

    Article  PubMed  CAS  Google Scholar 

  73. Rutkowski, M. R. et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 27, 27–40 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Wu, P. et al. γδ T 17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40, 785–800 (2014). γδT The first report of a pro-tumour role for human IL-17-producing γδ T cells in colorectal cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Meraviglia, S. et al. Distinctive features of tumor-infiltrating γδ T lymphocytes in human colorectal cancer. Oncoimmunology 6, e1347742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kargl, J. et al. Neutrophils dominate the immune cell composition in non-small cell lung cancer. Nat. Commun. 8, 14381 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lo Presti, E. et al. Squamous cell tumors recruit γδ T cells producing either IL17 or IFNγ depending on the tumor stage. Cancer Immunol. Res. 5, 397–407 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Wesch, D., Glatzel, A. & Kabelitz, D. Differentiation of resting human peripheral blood γ δ T cells toward Th1− or Th2-phenotype. Cell. Immunol. 212, 110–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Hao, J. et al. Regulatory role of Vγ1 γδ T cells in tumor immunity through IL-4 production. J. Immunol. 187, 4979–4986 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Mao, Y. et al. A new effect of IL-4 on human γδ T cells: promoting regulatory Vδ1 T cells via IL-10 production and inhibiting function of Vδ2 T cells. Cell. Mol. Immunol. 13, 217–228 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Sundblad, V., Morosi, L. G., Geffner, J. R. & Rabinovich, G. A. Galectin-1: a jack-of-all-trades in the resolution of acute and chronic inflammation. J. Immunol. 199, 3721–3730 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Daley, D. et al. γδ T cells support pancreatic oncogenesis by restraining αβ T cell activation. Cell 166, 1485–1499 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gunderson, A. J. et al. Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer. Cancer Discov. 6, 270–285 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Khosravi, N. et al. IL22 promotes Kras-mutant lung cancer by induction of a protumor immune response and protection of stemness properties. Cancer Immunol. Res. 6, 788–797 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McKenzie, D. R. et al. IL-17-producing γδ T cells switch migratory patterns between resting and activated states. Nat. Commun. 8, 15632 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kersten, K. et al. Mammary tumor-derived CCL2 enhances pro-metastatic systemic inflammation through upregulation of IL1β in tumor-associated macrophages. Oncoimmunology 6, e1334744 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Glatzel, A. et al. Patterns of chemokine receptor expression on peripheral blood γ δ T lymphocytes: strong expression of CCR5 is a selective feature of V δ 2/V γ 9 γ δ T cells. J. Immunol. 168, 4920–4929 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Ye, J. et al. Specific recruitment of γδ regulatory T cells in human breast cancer. Cancer Res. 73, 6137–6148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ribot, J. C., Ribeiro, S. T., Correia, D. V., Sousa, A. E. & Silva-Santos, B. Human γδ thymocytes are functionally immature and differentiate into cytotoxic type 1 effector T cells upon IL-2/IL-15 signaling. J. Immunol. 192, 2237–2243 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Correia, D. V. et al. Differentiation of human peripheral blood Vδ1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 118, 992–1001 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Yamaguchi, T. et al. Interleukin-15 effectively potentiates the in vitro tumor-specific activity and proliferation of peripheral blood γδT cells isolated from glioblastoma patients. Cancer Immunol. Immunother. 47, 97–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Van Acker, H. H. et al. Interleukin-15-cultured dendritic cells enhance anti-tumor γ δ T cell functions through IL-15 secretion. Front. Immunol. 9, 658 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Haas, J. D. et al. CCR6 and NK1.1 distinguish between IL-17A and IFN-γ-producing γδ effector T cells. Eur. J. Immunol. 39, 3488–3497 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Li, W. et al. Effect of IL-18 on expansion of γδ T cells stimulated by zoledronate and IL-2. J. Immunother. 33, 287–296 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Thedrez, A. et al. IL-21-mediated potentiation of antitumor cytolytic and proinflammatory responses of human V γ 9V δ 2 T cells for adoptive immunotherapy. J. Immunol. 182, 3423–3431 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, X. et al. IL-36γ transforms the tumor microenvironment and promotes type 1 lymphocyte-mediated antitumor immune responses. Cancer Cell 28, 296–306 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yi, Y. et al. The functional impairment of HCC-infiltrating γδ T cells, partially mediated by regulatory T cells in a TGFβ- and IL-10-dependent manner. J. Hepatol. 58, 977–983 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Sacchi, A. et al. Myeloid-derived suppressor cells specifically suppress IFN-γ production and antitumor cytotoxic activity of Vδ2 T cells. Front. Immunol. 9, 1271 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Sabbione, F. et al. Neutrophils suppress γδ T cell function. Eur. J. Immunol. 44, 819–830 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Li, L. et al. Microenvironmental oxygen pressure orchestrates an anti- and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes. Oncogene 38, 2830–2843 (2018).

    Article  PubMed  CAS  Google Scholar 

  101. Rossi, C. et al. Boosting γδ T cell-mediated antibody-dependent cellular cytotoxicity by PD-1 blockade in follicular lymphoma. Oncoimmunology 8, 1554175 (2019).

    Article  PubMed  Google Scholar 

  102. Iwasaki, M. et al. Expression and function of PD-1 in human γδ T cells that recognize phosphoantigens. Eur. J. Immunol. 41, 345–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Hoeres, T., Holzmann, E., Smetak, M., Birkmann, J. & Wilhelm, M. PD-1 signaling modulates interferon-γ production by Gamma Delta (γδ) T-Cells in response to leukemia. Oncoimmunology 8, 1550618 (2019).

    Article  PubMed  Google Scholar 

  104. Siegers, G. M., Dutta, I., Lai, R. & Postovit, L. M. Functional plasticity of γ δ T cells and breast tumor targets in hypoxia. Front. Immunol. 9, 1367 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Rodrigues, N. V. et al. Low-density lipoprotein uptake inhibits the activation and antitumor functions of human Vγ9Vδ2 T cells. Cancer. Immunol. Res. 6, 448–457 (2018).

    CAS  Google Scholar 

  106. Mattarollo, S. R., Kenna, T., Nieda, M. & Nicol, A. J. Chemotherapy and zoledronate sensitize solid tumour cells to Vγ9Vδ2 T cell cytotoxicity. Cancer Immunol. Immunother. 56, 1285–1297 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Todaro, M., Meraviglia, S., Caccamo, N., Stassi, G. & Dieli, F. Combining conventional chemotherapy and γδ T cell-based immunotherapy to target cancer-initiating cells. Oncoimmunology 2, e25821 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wang, Z. et al. Decitabine enhances Vγ9Vδ2 T cell-mediated cytotoxic effects on osteosarcoma cells via the NKG2DL-NKG2D axis. Front. Immunol. 9, 1239 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Niu, C. et al. Decitabine inhibits γ δ T cell cytotoxicity by promoting KIR2DL2/3 expression. Front. Immunol. 9, 617 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Bhat, S. A., Vedpathak, D. M. & Chiplunkar, S. V. Checkpoint blockade rescues the repressive effect of histone deacetylases inhibitors on γδ T cell function. Front. Immunol. 9, 1615 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Michel, M. L. et al. Interleukin 7 (IL-7) selectively promotes mouse and human IL-17-producing γδ cells. Proc. Natl Acad. Sci. USA 109, 17549–17554 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tang, Q. et al. Hmgb1-IL-23-IL-17-IL-6-Stat3 axis promotes tumor growth in murine models of melanoma. Mediators Inflamm. 2013, 713859 (2013).

    PubMed  PubMed Central  Google Scholar 

  115. Douguet, L. et al. Inflammation drives nitric oxide synthase 2 expression by γδ T cells and affects the balance between melanoma and vitiligo associated melanoma. Oncoimmunology 7, e1484979 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Douguet, L. et al. Nitric oxide synthase 2 is involved in the pro-tumorigenic potential of γδ17 T cells in melanoma. Oncoimmunology 5, e1208878 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Baek, A. E. et al. The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat. Commun. 8, 864 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Kathania, M. et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-γt ubiquitination. Nat. Immunol. 17, 997–1004 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Mensurado, S. et al. Tumor-associated neutrophils suppress pro-tumoral IL-17+ γδ T cells through induction of oxidative stress. PLOS Biol. 16, e2004990 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Liu, Y. et al. CD11b+Ly6G+ cells inhibit tumor growth by suppressing IL-17 production at early stages of tumorigenesis. Oncoimmunology 5, e1061175 (2016).

    Article  PubMed  CAS  Google Scholar 

  121. Bialasiewicz, A. A., Ma, J. X. & Richard, G. Alpha/β- and γ/δ TCR(+) lymphocyte infiltration in necrotising choroidal melanomas. Br. J. Ophthalmol. 83, 1069–1073 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tosolini, M. et al. Assessment of tumor-infiltrating TCRVγ9Vδ2 γδ lymphocyte abundance by deconvolution of human cancers microarrays. Oncoimmunology 6, e1284723 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gibbons, D. L. et al. Neonates harbour highly active γδ T cells with selective impairments in preterm infants. Eur. J. Immunol. 39, 1794–1806 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Peng, G. et al. Tumor-infiltrating γδ T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity 27, 334–348 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Ma, C. et al. Tumor-infiltrating γδ T lymphocytes predict clinical outcome in human breast cancer. J. Immunol. 189, 5029–5036 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Ye, J. et al. Tumor-derived γδ regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. J. Immunol. 190, 2403–2414 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Wilhelm, M. et al. γδ T cells for immune therapy of patients with lymphoid malignancies. Blood 102, 200–206 (2003). A pioneering clinical trial showing the safety and efficacy of in vivo Vγ9Vδ2 T cell activation in patients with lymphoma.

    Article  CAS  PubMed  Google Scholar 

  129. Kobayashi, H. et al. Safety profile and anti-tumor effects of adoptive immunotherapy using γ-δ T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol. Immunother. 56, 469–476 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Nicol, A. J. et al. Clinical evaluation of autologous γδ T cell-based immunotherapy for metastatic solid tumours. Br. J. Cancer 105, 778–786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fournie, J. J. et al. What lessons can be learned from γδ T cell-based cancer immunotherapy trials? Cell. Mol. Immunol. 10, 35–41 (2013). A review providing an insightful discussion of the limited success of cancer clinical trials based on Vγ9Vδ2 T cells.

    Article  CAS  PubMed  Google Scholar 

  132. Wistuba-Hamprecht, K. et al. Proportions of blood-borne Vδ1+ and Vδ2+ T cells are associated with overall survival of melanoma patients treated with ipilimumab. Eur. J. Cancer 64, 116–126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gubin, M. M. et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell 175, 1443 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. de Weerdt, I. et al. Improving CLL Vγ9Vδ2-T cell fitness for cellular therapy by ex vivo activation and ibrutinib. Blood 132, 2260–2272 (2018).

    Article  PubMed  CAS  Google Scholar 

  135. de Bruin, R. C. G. et al. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells. Oncoimmunology 7, e1375641 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Oberg, H. H. et al. Tribody [(HER2)2xCD16] is more effective than trastuzumab in enhancing γδ T cell and natural killer cell cytotoxicity against HER2-expressing cancer cells. Front. Immunol. 9, 814 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Grunder, C. et al. γ9 and δ2CDR3 domains regulate functional avidity of T cells harboring γ9δ2TCRs. Blood 120, 5153–5162 (2012).

    Article  PubMed  CAS  Google Scholar 

  138. Marcu-Malina, V. et al. Redirecting αβ T cells against cancer cells by transfer of a broadly tumor-reactive γδT-cell receptor. Blood 118, 50–59 (2011). A work that establishes a proof of principle for transferring Vγ9Vδ2 TCRs into αβ T cells to improve their antitumour efficacy and safety.

    Article  CAS  PubMed  Google Scholar 

  139. Straetemans, T. et al. GMP-grade manufacturing of T cells engineered to express a defined γδTCR. Front. Immunol. 9, 1062 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Netherlands Trial Register. Trial NL6357 (NTR6541). TrialRegister.nl https://www.trialregister.nl/trial/6357 (2017).

  141. Di Marco Barros, R. et al. Epithelia use butyrophilin-like molecules to shape organ-specific γδ T cell compartments. Cell 167, 203–218 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Almeida, A. R. et al. δ1 T cells for immunotherapy of chronic lymphocytic leukemia: clinical-grade expansion/differentiation and preclinical proof of concept. Clin. Cancer Res. 22, 5795–5804 (2016). A study providing preclinical proof of principle for an application of Vδ1 + cells in adoptive immunotherapy of CLL.

    Article  CAS  PubMed  Google Scholar 

  143. Di Lorenzo, B. et al. Broad cytotoxic targeting of acute myeloid leukemia by polyclonal δ one T cells. Cancer Immunol. Res. 7, 552–558 (2019).

    Article  PubMed  Google Scholar 

  144. Benveniste, P. M. et al. Generation and molecular recognition of melanoma-associated antigen-specific human γδ T cells. Sci. Immunol. 3, eaav4036 (2018).

    Article  PubMed  Google Scholar 

  145. Mirzaei, H. R., Mirzaei, H., Lee, S. Y., Hadjati, J. & Till, B. G. Prospects for chimeric antigen receptor (CAR) γδ T cells: a potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett. 380, 413–423 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rischer, M. et al. Human γδ T cells as mediators of chimaeric-receptor redirected anti-tumour immunity. Br. J. Haematol. 126, 583–592 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Deniger, D. C. et al. Bispecific T cells expressing polyclonal repertoire of endogenous γδ T cell receptors and introduced CD19-specific chimeric antigen receptor. Mol. Ther. 21, 638–647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Salter, A. I., Pont, M. J. & Riddell, S. R. Chimeric antigen receptor-modified T cells: CD19 and the road beyond. Blood 131, 2621–2629 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Orlando, E. J. et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat. Med. 24, 1504–1506 (2018).

    Article  PubMed  CAS  Google Scholar 

  150. Ruella, M. et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat. Med. 24, 1499–1503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zumwalde, N. A. et al. Adoptively transferred Vγ9Vδ2 T cells show potent antitumor effects in a preclinical B cell lymphomagenesis model. JCI Insight 2, 93179 (2017).

    Article  PubMed  Google Scholar 

  152. Jarry, U. et al. Stereotaxic administrations of allogeneic human Vγ9Vδ2 T cells efficiently control the development of human glioblastoma brain tumors. Oncoimmunology 5, e1168554 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Deniger, D. C. et al. Activating and propagating polyclonal γδ T cells with broad specificity for malignancies. Clin. Cancer Res. 20, 5708–5719 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Qaqish, A. et al. Adoptive transfer of phosphoantigen-specific γδ T cell subset attenuates Mycobacterium tuberculosis infection in nonhuman primates. J. Immunol. 198, 4753–4763 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Sicard, H. et al. In vivo immunomanipulation of Vγ9Vδ2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J. Immunol. 175, 5471–5480 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Godder, K. T. et al. Long term disease-free survival in acute leukemia patients recovering with increased γδ T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transplant. 39, 751–757 (2007). An important paper showing that upon stem cell transplantation, efficient Vδ1 + T cell reconstitution is associated with improved clinical outcomes in patients with leukaemia.

    Article  CAS  PubMed  Google Scholar 

  157. Airoldi, I. et al. γδ T cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-αβ+/CD19+ lymphocytes. Blood 125, 2349–2358 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mittal, D., Gubin, M. M., Schreiber, R. D. & Smyth, M. J. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr. Opin. Immunol. 27, 16–25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Cheng, M. et al. Microbiota modulate tumoral immune surveillance in lung through a γδT17 immune cell-dependent mechanism. Cancer Res. 74, 4030–4041 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Munoz-Ruiz, M., Sumaria, N., Pennington, D. J. & Silva-Santos, B. Thymic determinants of γδ T cell differentiation. Trends Immunol. 38, 336–344 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Tripodo, C. et al. Gamma-δ T cell lymphomas. Nat. Rev. Clin. Oncol. 6, 707–717 (2009).

    Article  PubMed  Google Scholar 

  163. Foppoli, M. & Ferreri, A. J. Gamma-δ t-cell lymphomas. Eur. J. Haematol. 94, 206–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Matos, D. M., Rizzatti, E. G., Fernandes, M., Buccheri, V. & Falcao, R. P. γδ and αβ T cell acute lymphoblastic leukemia: comparison of their clinical and immunophenotypic features. Haematologica 90, 264–266 (2005).

    PubMed  Google Scholar 

  165. Ribeiro, S. T. et al. Casein kinase 2 controls the survival of normal thymic and leukemic γδ T cells via promotion of AKT signaling. Leukemia 31, 1603–1610 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Saito, H. et al. Complete primary structure of a heterodimeric T cell receptor deduced from cDNA sequences. Nature 309, 757–762 (1984).

    Article  CAS  PubMed  Google Scholar 

  167. Brenner, M. B. et al. Identification of a putative second T cell receptor. Nature 322, 145–149 (1986).

    Article  CAS  PubMed  Google Scholar 

  168. Bank, I. et al. A functional T3 molecule associated with a novel heterodimer on the surface of immature human thymocytes. Nature 322, 179–181 (1986).

    Article  CAS  PubMed  Google Scholar 

  169. Borst, J. et al. A T cell receptor γ/CD3 complex found on cloned functional lymphocytes. Nature 325, 683–688 (1987).

    Article  CAS  PubMed  Google Scholar 

  170. Fournie, J. J. & Bonneville, M. Stimulation of γδ T cells by phosphoantigens. Res. Immunol. 147, 338–347 (1996).

    Article  CAS  PubMed  Google Scholar 

  171. Harly, C. et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T cell subset. Blood 120, 2269–2279 (2012). A seminal paper on butyrophilin subfamily 3 member A1 and its role in inducing cellular stress-sensing by human Vγ9Vδ2 T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Correia, A. Simões, H. Norell and K. Serre (iMM JLA) for insightful discussions on this topic. We acknowledge funding from the European Research Council (CoG_646701 to B.S.-S.), Cancer Research UK Glasgow Centre (A25142 to S.B.C.), Breast Cancer Now (2018JulPR1101 to S.B.C.), Wellcome Trust (208990/Z/17/Z to S.B.C.), Tenovus Scotland (Project S17-17 to S.B.C.) and Fundação para a Ciência e a Tecnologia / Ministério da Ciência, Tecnologia e Ensino Superior through Fundos do Orçamento de Estado (refs. UID/BIM/50005/2019 and PD/BD/114099/2015).

Reviewer information

Nature Reviews Cancer thanks W. Havran, B. Willcox and F. Dieli for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

B.S.-S., S.M. and S.B.C. researched the data for the article and contributed equally to the writing as well as to the review and/or editing of the manuscript before submission.

Corresponding authors

Correspondence to Bruno Silva-Santos or Seth B. Coffelt.

Ethics declarations

Competing interests

B.S.-S. is a co-founder and shareholder of Lymphact, the company that developed DOT cells, which was acquired in 2018 by GammaDelta Therapeutics (London, UK). S.M. and S.B.C. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Triplebodies

Immunoligands consisting of three tandem single-chain variable fragments with three distinct specificities.

Aminobisphosphonate

A drug type that derives from bisphosphonates and is commonly used in bone-related disorders to avoid excessive bone resorption.

Immunoglobulin class switching

Mechanism by which B cells change the isotype of immunoglobulin produced, altering its effector function.

Germinal centre

A site within the spleen and lymph nodes where B cells proliferate, differentiate and perform immunoglobulin class switching.

V(D)J recombination

Also known as somatic recombination. The somatic rearrangement of variable (V), diversity (D) and joining (J) regions of the genes that encode antigen receptors, leading to repertoire diversity of both T cell and B cell receptors.

Angiogenic switch

Time point during tumour progression when the pro-angiogenic factors outcompete the antiangiogenic ones, leading to transition between a dormant avascularized hyperplasia and an outgrowing vascularized tumour.

Thymocytes

Haematopoietic progenitor cells present in the thymus gland.

Oxygen tension

Partial pressure of oxygen molecules dissolved in a liquid (such as blood plasma).

Mevalonate pathway

Also known as the isoprenoid pathway. An essential metabolic pathway that gives rise to two five-carbon building blocks, called isopentenyl pyrophosphate and dimethylallyl purophosphate, that are converted into isoprenoids. Metabolites of this pathway accumulate in metabolically distressed cells.

Nanobody

An antibody with a single monomeric domain.

Stereotaxic administration

Delivery of a compound into the brain using an external, three-dimensional frame of reference, usually based on the Cartesian coordinate system.

Haploidentical stem cell transplantation

Treatment of blood disorders involving the replacement of the patient’s haematopoietic cells by healthy partially (50%) human leukocyte antigen-matched haematopoietic progenitors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Santos, B., Mensurado, S. & Coffelt, S.B. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat Rev Cancer 19, 392–404 (2019). https://doi.org/10.1038/s41568-019-0153-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-019-0153-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer