Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Learning to distinguish progressive and non-progressive ductal carcinoma in situ

An Author Correction to this article was published on 15 December 2022

This article has been updated

Abstract

Ductal carcinoma in situ (DCIS) is a non-invasive breast neoplasia that accounts for 25% of all screen-detected breast cancers diagnosed annually. Neoplastic cells in DCIS are confined to the ductal system of the breast, although they can escape and progress to invasive breast cancer in a subset of patients. A key concern of DCIS is overtreatment, as most patients screened for DCIS and in whom DCIS is diagnosed will not go on to exhibit symptoms or die of breast cancer, even if left untreated. However, differentiating low-risk, indolent DCIS from potentially progressive DCIS remains challenging. In this Review, we summarize our current knowledge of DCIS and explore open questions about the basic biology of DCIS, including those regarding how genomic events in neoplastic cells and the surrounding microenvironment contribute to the progression of DCIS to invasive breast cancer. Further, we discuss what information will be needed to prevent overtreatment of indolent DCIS lesions without compromising adequate treatment for high-risk patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example of non-high-grade and high-grade DCIS.
Fig. 2: Genomic concordance of DCIS and IBC.
Fig. 3: Evolutionary models of DCIS-to-IBC progression.
Fig. 4: Interactions between DCIS and the microenvironment.

Similar content being viewed by others

Change history

References

  1. Elshof, L. E. et al. Cause-specific mortality in a population-based cohort of 9799 women treated for ductal carcinoma in situ. Ann. Surg. 267, 952–958 (2018).

    Article  Google Scholar 

  2. Roses, R. E. et al. Ductal carcinoma-in-situ of the breast with subsequent distant metastasis and death. Ann. Surg. Oncol. 18, 2873–2878 (2011).

    Article  Google Scholar 

  3. Ernster, V. L., Barclay, J., Kerlikowske, K., Wilkie, H. & Ballard-Barbash, R. Mortality among women with ductal carcinoma in situ of the breast in the population-based surveillance, epidemiology and end results program. Arch. Intern. Med. 160, 953–958 (2000).

    Article  CAS  Google Scholar 

  4. Bleyer, A. & Welch, H. G. Effect of three decades of screening mammography on breast-cancer incidence. N. Engl. J. Med. 367, 1998–2005 (2012). This analysis of data on the incidence of DCIS, early-stage IBC and late-stage IBC from the Surveillance, Epidemiology, and End Results programme collected from 1976 to 2008 reveals that mammography screening has only marginally reduced the rate at which women present with advanced cancer, suggesting the existence of overdiagnosis.

    Article  CAS  Google Scholar 

  5. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018).

    Article  Google Scholar 

  6. American Cancer Society. How common is breast cancer, https://www.cancer.org/cancer/breast-cancer/about/how-common-is-breast-cancer.html (2019).

  7. Cancer Research UK. In situ breast carcinoma incidence statistics, https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/incidence-in-situ (2020).

  8. Netherlands Cancer Registry. National evaluation of breast cancer screening in the Netherlands 2017/2018 https://iknl.nl/getmedia/8b019b63-0eb1-4afa-a824-31c4d10cc86e/Breast_cancer_screening_in_the_Netherlands_2017-2018_en.pdf (2020).

  9. Ward, E. M. et al. Cancer statistics: breast cancer in situ. CA Cancer J. Clin. 65, 481–495 (2015).

    Article  Google Scholar 

  10. Vachon, C. M. et al. Strong evidence of a genetic determinant for mammographic density, a major risk factor for breast cancer. Cancer Res. 67, 8412–8418 (2007).

    Article  CAS  Google Scholar 

  11. Alaeikhanehshir, S. et al. The impact of patient characteristics and lifestyle factors on the risk of an ipsilateral event after a primary DCIS: a systematic review. Breast 50, 95–103 (2020).

    Article  Google Scholar 

  12. Flanagan, M. R. et al. Relationship between anthropometric factors and risk of second breast cancer among women with a history of ductal carcinoma in situ. JNCI Cancer Spectr. 2, pky020 (2018).

    Article  Google Scholar 

  13. Picon-Ruiz, M., Morata-Tarifa, C., Valle-Goffin, J. J., Friedman, E. R. & Slingerland, J. M. Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. CA Cancer J. Clin. 67, 378–397 (2017). This comprehensive overview describes the associations of obesity with breast cancer risk and outcome as well as the underlying molecular mechanisms that could explain these associations.

    Article  Google Scholar 

  14. Vachon, C. M. et al. Mammographic breast density as a general marker of breast cancer risk. Cancer Epidemiol. Biomark. Prev. 16, 43–49 (2007).

    Article  Google Scholar 

  15. Mazzola, E., Cheng, S. C. & Parmigiani, G. The penetrance of ductal carcinoma in situ among BRCA1 and BRCA2 mutation carriers. Breast Cancer Res. Treat. 137, 315–318 (2013).

    Article  CAS  Google Scholar 

  16. Bergholtz, H. et al. Comparable cancer-relevant mutation profiles in synchronous ductal carcinoma in situ and invasive breast cancer. Cancer Rep. 3, e1248 (2020).

    CAS  Google Scholar 

  17. Hwang, E. S. et al. Patterns of chromosomal alterations in breast ductal carcinoma in situ. Clin. Cancer Res. 10, 5160–5167 (2004).

    Article  CAS  Google Scholar 

  18. van Seijen, M. et al. Variability in grading of ductal carcinoma in situ among an international group of pathologists. J. Pathol. Clin. Res. 7, 233–242 (2021).

    Article  Google Scholar 

  19. Groen, E. J. et al. Prognostic value of histopathological DCIS features in a large-scale international interrater reliability study. Breast Cancer Res. Treat. 183, 759–770 (2020). On the basis of the majority opinion of pathologists, DCIS grade, growth pattern and mitotic activity are reported in this study to be associated with the risk of subsequent IBC in the same breast after treatment with breast-sparing surgery followed by radiotherapy, although inter-rater variability is substantial.

    Article  Google Scholar 

  20. Berg, W. A., Campassi, C., Langenberg, P. & Sexton, M. J. Breast imaging reporting and data system: inter- and intraobserver variability in feature analysis and final assessment. AJR Am. J. Roentgenol. 174, 1769–1777 (2000).

    Article  CAS  Google Scholar 

  21. Harrison, B. T., Hwang, E. S., Partridge, A. H., Thompson, A. M. & Schnitt, S. J. Variability in diagnostic threshold for comedo necrosis among breast pathologists: implications for patient eligibility for active surveillance trials of ductal carcinoma in situ. Mod. Pathol. 32, 1257–1262 (2019).

    Article  Google Scholar 

  22. Casasent, A. K. et al. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 172, 205–217 (2018).

    Article  CAS  Google Scholar 

  23. Hernandez, L. et al. Genomic and mutational profiling of ductal carcinomas in situ and matched adjacent invasive breast cancers reveals intra-tumour genetic heterogeneity and clonal selection. J. Pathol. 227, 42–52 (2012).

    Article  CAS  Google Scholar 

  24. Doebar, S. C. et al. Gene expression differences between ductal carcinoma in situ with and without progression to invasive breast cancer. Am. J. Pathol. 187, 1648–1655 (2017).

    Article  CAS  Google Scholar 

  25. Miron, A. et al. PIK3CA mutations in in situ and invasive breast carcinomas. Cancer Res. 70, 5674–5678 (2010).

    Article  CAS  Google Scholar 

  26. Moelans, C. B., de Weger, R. A., Monsuur, H. N., Maes, A. H. & van Diest, P. J. Molecular differences between ductal carcinoma in situ and adjacent invasive breast carcinoma: a multiplex ligation-dependent probe amplification study. Anal. Cell Pathol. 33, 165–173 (2010).

    Article  CAS  Google Scholar 

  27. Lesurf, R. et al. Molecular features of subtype-specific progression from ductal carcinoma in situ to invasive breast cancer. Cell Rep. 16, 1166–1179 (2016). This study suggests that the five intrinsic subtypes of breast cancer might help to categorize DCIS and help predict which DCIS have a higher likelihood to progress.

    Article  CAS  Google Scholar 

  28. Lips, E. H. et al. Genomic analysis defines clonal relationships of ductal carcinoma in situ and recurrent invasive breast cancer. Nat. Genet. 54, 850–860 (2022). This is an in-depth genomic characterization of initial DCIS and paired invasive recurrences in 95 patients. Seventy-five per cent of the cases clearly showed clonal relatedness, while in 18% of the cases no relationship was seen between the primary DCIS and subsequent invasive recurrence, indicating independent lineages.

    Article  CAS  Google Scholar 

  29. Petridis, C. et al. Frequency of pathogenic germline variants in BRCA1, BRCA2, PALB2, CHEK2 and TP53 in ductal carcinoma in situ diagnosed in women under the age of 50 years. Breast Cancer Res. 21, 58 (2019).

    Article  Google Scholar 

  30. Petridis, C. et al. Genetic predisposition to ductal carcinoma in situ of the breast. Breast Cancer Res. 18, 22 (2016).

    Article  Google Scholar 

  31. Grimm, L. J. et al. Surgical upstaging rates for vacuum assisted biopsy proven DCIS: implications for active surveillance trials. Ann. Surg. Oncol. 24, 3534–3540 (2017).

    Article  Google Scholar 

  32. Ryser, M. D. et al. Cancer outcomes in DCIS patients without locoregional treatment. J. Natl Cancer Inst. 111, 952–960 (2019). This study strongly suggests that patients with DCIS without locoregional treatment have a limited risk of invasive progression, suggesting that there may be overtreatment, especially among patients with increased co-morbidities.

    Article  Google Scholar 

  33. Elshof, L. E. et al. Subsequent risk of ipsilateral and contralateral invasive breast cancer after treatment for ductal carcinoma in situ: incidence and the effect of radiotherapy in a population-based cohort of 10,090 women. Breast Cancer Res. Treat. 159, 553–563 (2016).

    Article  Google Scholar 

  34. Rakovitch, E. et al. Can we select individuals with low risk ductal carcinoma in situ (DCIS)? A population-based outcomes analysis. Breast Cancer Res. Treat. 138, 581–590 (2013).

    Article  Google Scholar 

  35. Falk, R. S., Hofvind, S., Skaane, P. & Haldorsen, T. Second events following ductal carcinoma in situ of the breast: a register-based cohort study. Breast Cancer Res. Treat. 129, 929–938 (2011).

    Article  CAS  Google Scholar 

  36. Maxwell, A. J. et al. Risk factors for the development of invasive cancer in unresected ductal carcinoma in situ. Eur. J. Surg. Oncol. 44, 429–435 (2018). This study indicates that there is a need for reproducible grading for DCIS to ensure patients receive accurate treatment if one is looking to use active surveillance for patients with pure low-grade DCIS. In addition, it suggests that low-grade DCIS was much less likely to progress than DCIS of high or intermediate grade.

    Article  Google Scholar 

  37. Maxwell, A. J. et al. Unresected screen detected ductal carcinoma in situ: outcomes of 311 women in the Forget-me–not 2 study. Breast 61, 145–155 (2022).

    Article  Google Scholar 

  38. Worni, M. et al. Trends in treatment patterns and outcomes for ductal carcinoma in situ. J. Natl Cancer Inst. 107, djv263 (2015).

    Article  Google Scholar 

  39. Rakovitch, E. et al. 21-Gene assay and breast cancer mortality in ductal carcinoma in situ. J. Natl Cancer Inst. 113, 572–579 (2021).

    Article  Google Scholar 

  40. van Maaren, M. C. et al. Trends in incidence, treatment, survival and subsequent breast cancer in lobular carcinoma in situ in the Netherlands: a population-based analysis. Breast 59, 376–382 (2021).

    Article  Google Scholar 

  41. Visser, L. L. et al. Predictors of an invasive breast cancer recurrence after DCIS: a systematic review and meta-analyses. Cancer Epidemiol. Biomark. Prev. https://doi.org/10.1158/1055-9965.EPI-18-0976 (2019).

    Article  Google Scholar 

  42. Kerlikowske, K. et al. Biomarker expression and risk of subsequent tumors after initial ductal carcinoma in situ diagnosis. J. Natl Cancer Inst. 102, 627–637 (2010).

    Article  CAS  Google Scholar 

  43. Thompson, A. M. et al. Management and 5-year outcomes in 9938 women with screen-detected ductal carcinoma in situ: the UK Sloane Project. Eur. J. Cancer 101, 210–219 (2018).

    Article  Google Scholar 

  44. Shaaban, A. M. et al. Pathological features of 11,337 patients with primary ductal carcinoma in situ (DCIS) and subsequent events: results from the UK Sloane Project. Br. J. Cancer 124, 1009–1017 (2021).

    Article  CAS  Google Scholar 

  45. Gierisch, J. M. et al. Prioritization of research addressing management strategies for ductal carcinoma in situ. Ann. Intern. Med. 160, 484–491 (2014). This article outlines a prioritized research agenda for the management of DCIS. PubMed and ClinicalTrials.gov entries were searched and analysed, and the ten largest evidence gaps for DCIS were identified, including patient-reported outcomes in research, better methods to predict risk of invasive cancer, evaluation of active surveillance strategies and testing decision-making tools.

    Article  Google Scholar 

  46. Martelotto, L. G. et al. Whole-genome single-cell copy number profiling from formalin-fixed paraffin-embedded samples. Nat. Med. 23, 376–385 (2017).

    Article  CAS  Google Scholar 

  47. Berg, W. A., Arnoldus, C. L., Teferra, E. & Bhargavan, M. Biopsy of amorphous breast calcifications: pathologic outcome and yield at stereotactic biopsy. Radiology 221, 495–503 (2001).

    Article  CAS  Google Scholar 

  48. Wilkinson, L., Thomas, V. & Sharma, N. Microcalcification on mammography: approaches to interpretation and biopsy. Br. J. Radiol. 90, 20160594 (2017).

    Article  Google Scholar 

  49. Perry, N. et al. European guidelines for quality assurance in breast cancer screening and diagnosis. Fourth edition-summary document. Ann. Oncol. 19, 614–622 (2008).

    Article  CAS  Google Scholar 

  50. Claus, E. B. et al. Pathobiologic findings in DCIS of the breast: morphologic features, angiogenesis, HER-2/neu and hormone receptors. Exp. Mol. Pathol. 70, 303–316 (2001).

    Article  CAS  Google Scholar 

  51. Leal, C. B., Schmitt, F. C., Bento, M. J., Maia, N. C. & Lopes, C. S. Ductal carcinoma in situ of the breast. Histologic categorization and its relationship to ploidy and immunohistochemical expression of hormone receptors, p53, and c-erbB-2 protein. Cancer 75, 2123–2131 (1995).

    Article  CAS  Google Scholar 

  52. Hou, R. et al. Prediction of upstaged ductal carcinoma in situ using forced labeling and domain adaptation. IEEE Trans. Biomed. Eng. 67, 1565–1572 (2020).

    Article  Google Scholar 

  53. Gosling, S. et al. Calcification microstructure reflects breast tissue microenvironment. J. Mammary Gland. Biol. Neoplasia 24, 333–342 (2019).

    Article  Google Scholar 

  54. Kim, H. et al. Clinical outcomes according to molecular subtypes in stage II-III breast cancer patients treated with neoadjuvant chemotherapy followed by surgery and radiotherapy. Asia Pac. J. Clin. Oncol. 13, 329–336 (2017).

    Article  Google Scholar 

  55. Orsaria, P. et al. Clinical outcomes among major breast cancer subtypes after neoadjuvant chemotherapy: impact on breast cancer recurrence and survival. Anticancer. Res. 41, 2697–2709 (2021).

    Article  CAS  Google Scholar 

  56. Yu, K. D. et al. Different distribution of breast cancer subtypes in breast ductal carcinoma in situ (DCIS), DCIS with microinvasion, and DCIS with invasion component. Ann. Surg. Oncol. 18, 1342–1348 (2011).

    Article  Google Scholar 

  57. Doebar, S. C. et al. Extent of ductal carcinoma in situ according to breast cancer subtypes: a population-based cohort study. Breast Cancer Res. Treat. 158, 179–187 (2016).

    Article  CAS  Google Scholar 

  58. Bergholtz, H. et al. Contrasting DCIS and invasive breast cancer by subtype suggests basal-like DCIS as distinct lesions. NPJ Breast Cancer 6, 26 (2020). This study convincingly shows that RNA-intrinsic centroid-based classifiers do not match between DCIS and IBC owing to the different distribution of subtype frequencies and mutations in DCIS and IBC.

    Article  CAS  Google Scholar 

  59. Coates, A. S. et al. Tailoring therapies-improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann. Oncol. 26, 1533–1546 (2015).

    Article  CAS  Google Scholar 

  60. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  Google Scholar 

  61. Solin, L. J. et al. A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J. Natl Cancer Inst. 105, 701–710 (2013).

    Article  CAS  Google Scholar 

  62. Rakovitch, E. et al. Multigene expression assay and benefit of radiotherapy after breast conservation in ductal carcinoma in situ. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djw256 (2017).

    Article  Google Scholar 

  63. Nofech-Mozes, S., Hanna, W. & Rakovitch, E. Molecular evaluation of breast ductal carcinoma in situ with Oncotype DX DCIS. Am. J. Pathol. 189, 975–980 (2019).

    Article  CAS  Google Scholar 

  64. Raldow, A. C., Sher, D., Chen, A. B. & Punglia, R. S. Cost effectiveness of DCISionRT for guiding treatment of ductal carcinoma in situ. JNCI Cancer Spectr. 4, pkaa004 (2020).

    Article  Google Scholar 

  65. Raldow, A. C., Sher, D., Chen, A. B., Recht, A. & Punglia, R. S. Cost effectiveness of the Oncotype DX DCIS score for guiding treatment of patients with ductal carcinoma in situ. J. Clin. Oncol. 34, 3963–3968 (2016).

    Article  Google Scholar 

  66. Bremer, T. et al. A biological signature for breast ductal carcinoma in situ to predict radiotherapy benefit and assess recurrence risk. Clin. Cancer Res. 24, 5895–5901 (2018).

    Article  Google Scholar 

  67. Weinmann, S. et al. Validation of a ductal carcinoma in situ biomarker profile for risk of recurrence after breast-conserving surgery with and without radiotherapy. Clin. Cancer Res. 26, 4054–4063 (2020).

    Article  Google Scholar 

  68. Mitchell, E. et al. Loss of myoepithelial calponin-1 characterizes high-risk ductal carcinoma in situ cases, which are further stratified by T cell composition. Mol. Carcinog. 59, 701–712 (2020).

    Article  CAS  Google Scholar 

  69. Nagasawa, S. et al. Genomic profiling reveals heterogeneous populations of ductal carcinoma in situ of the breast. Commun. Biol. 4, 438 (2021).

    Article  CAS  Google Scholar 

  70. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).

    Article  CAS  Google Scholar 

  71. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article  Google Scholar 

  72. Yates, L. R. et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 21, 751–759 (2015).

    Article  CAS  Google Scholar 

  73. Pareja, F. et al. Whole-exome sequencing analysis of the progression from non-low-grade ductal carcinoma in situ to invasive ductal carcinoma. Clin. Cancer Res. 26, 3682–3693 (2020).

    Article  CAS  Google Scholar 

  74. Agahozo, M. C. et al. PIK3CA mutations in ductal carcinoma in situ and adjacent invasive breast cancer. Endocr. Relat. Cancer 26, 471–482 (2019).

    Article  CAS  Google Scholar 

  75. Roylance, R. et al. Comparative genomic hybridization of breast tumors stratified by histological grade reveals new insights into the biological progression of breast cancer. Cancer Res. 59, 1433–1436 (1999).

    CAS  Google Scholar 

  76. Kitamura, M. et al. Progression potential of ductal carcinoma in situ assessed by genomic copy number profiling. Pathobiology 86, 92–101 (2019).

    Article  CAS  Google Scholar 

  77. Buerger, H. et al. Different genetic pathways in the evolution of invasive breast cancer are associated with distinct morphological subtypes. J. Pathol. 189, 521–526 (1999).

    Article  CAS  Google Scholar 

  78. Abba, M. C. et al. A molecular portrait of high-grade ductal carcinoma in situ. Cancer Res. 75, 3980–3990 (2015).

    Article  CAS  Google Scholar 

  79. Afghahi, A. et al. Chromosomal copy number alterations for associations of ductal carcinoma in situ with invasive breast cancer. Breast Cancer Res. 17, 108 (2015).

    Article  Google Scholar 

  80. Pang, J. B. et al. Breast ductal carcinoma in situ carry mutational driver events representative of invasive breast cancer. Mod. Pathol. 30, 952–963 (2017).

    Article  CAS  Google Scholar 

  81. Latta, E. K., Tjan, S., Parkes, R. K. & O’Malley, F. P. The role of HER2/neu overexpression/amplification in the progression of ductal carcinoma in situ to invasive carcinoma of the breast. Mod. Pathol. 15, 1318–1325 (2002).

    Article  CAS  Google Scholar 

  82. Van Bockstal, M. et al. Histopathological characterization of ductal carcinoma in situ (DCIS) of the breast according to HER2 amplification status and molecular subtype. Virchows Arch. 465, 275–289 (2014).

    Article  Google Scholar 

  83. Lambein, K. et al. Comparison of HER2 amplification status among breast cancer subgroups offers new insights in pathways of breast cancer progression. Virchows Arch. 471, 575–587 (2017).

    Article  CAS  Google Scholar 

  84. Miligy, I. M. et al. The clinical and biological significance of HER2 over-expression in breast ductal carcinoma in situ: a large study from a single institution. Br. J. Cancer 120, 1075–1082 (2019).

    Article  CAS  Google Scholar 

  85. Park, K., Han, S., Kim, H. J., Kim, J. & Shin, E. HER2 status in pure ductal carcinoma in situ and in the intraductal and invasive components of invasive ductal carcinoma determined by fluorescence in situ hybridization and immunohistochemistry. Histopathology 48, 702–707 (2006).

    Article  CAS  Google Scholar 

  86. Vincent-Salomon, A. et al. Integrated genomic and transcriptomic analysis of ductal carcinoma in situ of the breast. Clin. Cancer Res. 14, 1956–1965 (2008).

    Article  CAS  Google Scholar 

  87. Begon, D. Y., Delacroix, L., Vernimmen, D., Jackers, P. & Winkler, R. Yin Yang 1 cooperates with activator protein 2 to stimulate ERBB2 gene expression in mammary cancer cells. J. Biol. Chem. 280, 24428–24434 (2005).

    Article  CAS  Google Scholar 

  88. Powe, D. G. et al. Investigating AP-2 and YY1 protein expression as a cause of high HER2 gene transcription in breast cancers with discordant HER2 gene amplification. Breast Cancer Res. 11, R90 (2009).

    Article  Google Scholar 

  89. Lin, C. Y. et al. Genomic landscape of ductal carcinoma in situ and association with progression. Breast Cancer Res. Treat. 178, 307–316 (2019).

    Article  CAS  Google Scholar 

  90. Li, H. et al. PIK3CA mutations mostly begin to develop in ductal carcinoma of the breast. Exp. Mol. Pathol. 88, 150–155 (2010).

    Article  CAS  Google Scholar 

  91. Martinez-Saez, O. et al. Frequency and spectrum of PIK3CA somatic mutations in breast cancer. Breast Cancer Res. 22, 45 (2020).

    Article  CAS  Google Scholar 

  92. Kumar, A. & Carrera, A. C. New functions for PI3K in the control of cell division. Cell Cycle 6, 1696–1698 (2007).

    Article  CAS  Google Scholar 

  93. Rodgers, S. J., Ferguson, D. T., Mitchell, C. A. & Ooms, L. M. Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases. Biosci. Rep. https://doi.org/10.1042/BSR20160432 (2017).

    Article  Google Scholar 

  94. Eeles, R. A., Bartkova, J., Lane, D. P. & Bartek, J. The role of TP53 in breast cancer development. Cancer Surv. 18, 57–75 (1993).

    CAS  Google Scholar 

  95. Meijnen, P., Peterse, J. L., Antonini, N., Rutgers, E. J. & van de Vijver, M. J. Immunohistochemical categorisation of ductal carcinoma in situ of the breast. Br. J. Cancer 98, 137–142 (2008).

    Article  CAS  Google Scholar 

  96. Klajic, J. et al. Quantitative DNA methylation analyses reveal stage dependent DNA methylation and association to clinico-pathological factors in breast tumors. BMC Cancer 13, 456 (2013).

    Article  Google Scholar 

  97. Muggerud, A. A. et al. Frequent aberrant DNA methylation of ABCB1, FOXC1, PPP2R2B and PTEN in ductal carcinoma in situ and early invasive breast cancer. Breast Cancer Res. 12, R3 (2010).

    Article  Google Scholar 

  98. Pang, J. M. et al. Methylation profiling of ductal carcinoma in situ and its relationship to histopathological features. Breast Cancer Res. 16, 423 (2014).

    Article  Google Scholar 

  99. Verschuur-Maes, A. H., de Bruin, P. C. & van Diest, P. J. Epigenetic progression of columnar cell lesions of the breast to invasive breast cancer. Breast Cancer Res. Treat. 136, 705–715 (2012).

    Article  Google Scholar 

  100. Lee, J. S. et al. Quantitative promoter hypermethylation profiles of ductal carcinoma in situ in North American and Korean women: potential applications for diagnosis. Cancer Biol. Ther. 7, 1398–1406 (2008).

    Article  CAS  Google Scholar 

  101. Moelans, C. B., Verschuur-Maes, A. H. & van Diest, P. J. Frequent promoter hypermethylation of BRCA2, CDH13, MSH6, PAX5, PAX6 and WT1 in ductal carcinoma in situ and invasive breast cancer. J. Pathol. 225, 222–231 (2011).

    Article  CAS  Google Scholar 

  102. Kim, H., Kim, C. Y., Park, K. H. & Kim, A. Clonality analysis of multifocal ipsilateral breast carcinomas using X-chromosome inactivation patterns. Hum. Pathol. 78, 106–114 (2018).

    Article  Google Scholar 

  103. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  104. Ying, Z. & Beronja, S. Embryonic barcoding of equipotent mammary progenitors functionally identifies breast cancer drivers. Cell Stem Cell 26, 403–419 (2020).

    Article  CAS  Google Scholar 

  105. Giraddi, R. R. et al. Stem and progenitor cell division kinetics during postnatal mouse mammary gland development. Nat. Commun. 6, 8487 (2015).

    Article  CAS  Google Scholar 

  106. Scheele, C. L. et al. Identity and dynamics of mammary stem cells during branching morphogenesis. Nature 542, 313–317 (2017). This study shows that the majority of terminal end bud cells function as highly proliferative, lineage-committed MaSCs, heterogeneous in their expression profile. Through cell rearrangements during terminal end bud bifurcation, each MaSC is able to contribute actively to long-term growth, not directly linked to a single expression profile.

    Article  CAS  Google Scholar 

  107. Zhou, J. et al. Stem cells and cellular origins of breast cancer: updates in the rationale, controversies, and therapeutic implications. Front. Oncol. 9, 820 (2019).

    Article  Google Scholar 

  108. Watson, C. J. & Khaled, W. T. Mammary development in the embryo and adult: new insights into the journey of morphogenesis and commitment. Development https://doi.org/10.1242/dev.169862 (2020).

    Article  Google Scholar 

  109. Williams, J. M. & Daniel, C. W. Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev. Biol. 97, 274–290 (1983).

    Article  CAS  Google Scholar 

  110. Silberstein, G. B. & Daniel, C. W. Glycosaminoglycans in the basal lamina and extracellular matrix of serially aged mouse mammary ducts. Mech. Ageing Dev. 24, 151–162 (1984).

    Article  CAS  Google Scholar 

  111. van Amerongen, R., Bowman, A. N. & Nusse, R. Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11, 387–400 (2012).

    Article  Google Scholar 

  112. Van Keymeulen, A. et al. Lineage-restricted mammary stem cells sustain the development, homeostasis, and regeneration of the estrogen receptor positive lineage. Cell Rep. 20, 1525–1532 (2017).

    Article  Google Scholar 

  113. Keymeulen, A. V. et al. Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. Nature 525, 119–123 (2015).

    Article  Google Scholar 

  114. Davis, F. M. et al. Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny. Nat. Commun. 7, 13053 (2016).

    Article  CAS  Google Scholar 

  115. Casasent, A. K., Edgerton, M. & Navin, N. E. Genome evolution in ductal carcinoma in situ: invasion of the clones. J. Pathol. 241, 208–218 (2017). In this review, the role of intratumour heterogeneity in the progression of DCIS to IDC in the context of independent lineages, evolutionary bottlenecks and multiclonal invasion is discussed, along with their relevance to the diagnosis of DCIS and the treatment of patients with DCIS.

    Article  Google Scholar 

  116. Trinh, A. et al. Genomic alterations during the in situ to invasive ductal breast carcinoma transition shaped by the immune system. Mol. Cancer Res. 19, 623–635 (2021).

    Article  CAS  Google Scholar 

  117. Kroigard, A. B. et al. Clonal expansion and linear genome evolution through breast cancer progression from pre-invasive stages to asynchronous metastasis. Oncotarget 6, 5634–5649 (2015).

    Article  Google Scholar 

  118. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  Google Scholar 

  119. Poste, G. & Fidler, I. J. The pathogenesis of cancer metastasis. Nature 283, 139–146 (1980).

    Article  CAS  Google Scholar 

  120. Walens, A. et al. Adaptation and selection shape clonal evolution of tumors during residual disease and recurrence. Nat. Commun. 11, 5017 (2020).

    Article  CAS  Google Scholar 

  121. Welter, L. et al. Treatment response and tumor evolution: lessons from an extended series of multianalyte liquid biopsies in a metastatic breast cancer patient. Cold Spring Harb. Mol. Case Stud. https://doi.org/10.1101/mcs.a005819 (2020).

    Article  Google Scholar 

  122. Maggrah, A. et al. Paired ductal carcinoma in situ and invasive breast cancer lesions in the D-loop of the mitochondrial genome indicate a cancerization field effect. Biomed. Res. Int. 2013, 379438 (2013).

    Article  Google Scholar 

  123. Desmedt, C. et al. Uncovering the genomic heterogeneity of multifocal breast cancer. J. Pathol. 236, 457–466 (2015).

    Article  CAS  Google Scholar 

  124. McCrorie, A. D. et al. Multifocal breast cancers are more prevalent in BRCA2 versus BRCA1 mutation carriers. J. Pathol. Clin. Res. 6, 146–153 (2020).

    Article  CAS  Google Scholar 

  125. Visser, L. L. et al. Discordant marker expression between invasive breast carcinoma and corresponding synchronous and preceding DCIS. Am. J. Surg. Pathol. 43, 1574–1582 (2019).

    Article  Google Scholar 

  126. Foschini, M. P. et al. Genetic clonal mapping of in situ and invasive ductal carcinoma indicates the field cancerization phenomenon in the breast. Hum. Pathol. 44, 1310–1319 (2013).

    Article  CAS  Google Scholar 

  127. Sakr, R. A. et al. PI3K pathway activation in high-grade ductal carcinoma in situ-implications for progression to invasive breast carcinoma. Clin. Cancer Res. 20, 2326–2337 (2014).

    Article  CAS  Google Scholar 

  128. Ottesen, G. L., Christensen, I. J., Larsen, J. K., Hansen, B. & Andersen, A. J. Flow cytometric DNA analysis of breast cancers with predominance of carcinoma in situ: a comparison of the premalignant and malignant components. Clin. Cancer Res. 1, 881–888 (1995).

    CAS  Google Scholar 

  129. Sontag, L. & Axelrod, D. E. Evaluation of pathways for progression of heterogeneous breast tumors. J. Theor. Biol. 232, 179–189 (2005).

    Article  Google Scholar 

  130. Mai, K. T. Morphological evidence for field effect as a mechanism for tumour spread in mammary Paget’s disease. Histopathology 35, 567–576 (1999).

    Article  CAS  Google Scholar 

  131. Asioli, S., Morandi, L., Cavatorta, C., Cucchi, M. C. & Foschini, M. P. The impact of field cancerization on the extent of duct carcinoma in situ (DCIS) in breast tissue after conservative excision. Eur. J. Surg. Oncol. 42, 1806–1813 (2016).

    Article  CAS  Google Scholar 

  132. Tan, M. P. Integration of ‘sick lobe hypothesis’ with concept of field cancerisation for a personalised surgical margin for breast conserving surgery. J. Surg. Oncol. 116, 954–955 (2017).

    Article  Google Scholar 

  133. Going, J. J. & Mohun, T. J. Human breast duct anatomy, the ‘sick lobe’ hypothesis and intraductal approaches to breast cancer. Breast Cancer Res. Treat. 97, 285–291 (2006). This study reveals highly detailed central and peripheral duct anatomy in the human breast. Such knowledge is required for understanding normal breast development, for understanding the growth of cancer precursors and for developing the intraductal approach to breast cancer.

    Article  Google Scholar 

  134. Petrova, S. C. et al. Regulation of breast cancer oncogenesis by the cell of origin’s differentiation state. Oncotarget 11, 3832–3848 (2020).

    Article  Google Scholar 

  135. Tan, M. P. & Tot, T. The sick lobe hypothesis, field cancerisation and the new era of precision breast surgery. Gland. Surg. 7, 611–618 (2018).

    Article  Google Scholar 

  136. Dooley, W., Bong, J. & Parker, J. Redefining lumpectomy using a modification of the “sick lobe” hypothesis and ductal anatomy. Int. J. Breast Cancer 2011, 726384 (2011).

    Article  CAS  Google Scholar 

  137. Tot, T. The theory of the sick breast lobe and the possible consequences. Int. J. Surg. Pathol. 15, 369–375 (2007).

    Article  Google Scholar 

  138. Park, S., Supek, F. & Lehner, B. Systematic discovery of germline cancer predisposition genes through the identification of somatic second hits. Nat. Commun. 9, 2601 (2018).

    Article  Google Scholar 

  139. Knudson, A. G. Jr Heredity and human cancer. Am. J. Pathol. 77, 77–84 (1974).

    Google Scholar 

  140. Konishi, H. et al. Mutation of a single allele of the cancer susceptibility gene BRCA1 leads to genomic instability in human breast epithelial cells. Proc. Natl Acad. Sci. USA 108, 17773–17778 (2011).

    Article  CAS  Google Scholar 

  141. Gao, Y. et al. Single-cell sequencing deciphers a convergent evolution of copy number alterations from primary to circulating tumor cells. Genome Res. 27, 1312–1322 (2017).

    Article  CAS  Google Scholar 

  142. Wang, F. et al. MEDALT: single-cell copy number lineage tracing enabling gene discovery. Genome Biol. 22, 70 (2021).

    Article  CAS  Google Scholar 

  143. Tegze, B. et al. Parallel evolution under chemotherapy pressure in 29 breast cancer cell lines results in dissimilar mechanisms of resistance. PLoS ONE 7, e30804 (2012).

    Article  CAS  Google Scholar 

  144. Brommesson, S. et al. Tiling array-CGH for the assessment of genomic similarities among synchronous unilateral and bilateral invasive breast cancer tumor pairs. BMC Clin. Pathol. 8, 6 (2008).

    Article  Google Scholar 

  145. Regitnig, P., Ploner, F., Maderbacher, M. & Lax, S. F. Bilateral carcinomas of the breast with local recurrence: analysis of genetic relationship of the tumors. Mod. Pathol. 17, 597–602 (2004).

    Article  CAS  Google Scholar 

  146. Lim, B., Lin, Y. & Navin, N. Advancing cancer research and medicine with single-cell genomics. Cancer Cell 37, 456–470 (2020).

    Article  CAS  Google Scholar 

  147. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  Google Scholar 

  148. Badve, S. S. et al. Multi-protein spatial signatures in ductal carcinoma in situ (DCIS) of breast. Br. J. Cancer 124, 1150–1159 (2021).

    Article  CAS  Google Scholar 

  149. Ma, X. J. et al. Gene expression profiles of human breast cancer progression. Proc. Natl Acad. Sci. USA 100, 5974–5979 (2003).

    Article  CAS  Google Scholar 

  150. Porter, D. et al. Molecular markers in ductal carcinoma in situ of the breast. Mol. Cancer Res. 1, 362–375 (2003).

    CAS  Google Scholar 

  151. Castro, N. P. et al. Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma. Breast Cancer Res. 10, R87 (2008).

    Article  Google Scholar 

  152. Song, G. et al. Identification of aberrant gene expression during breast ductal carcinoma in situ progression to invasive ductal carcinoma. J. Int. Med. Res. 48, 0300060518815364 (2020).

    CAS  Google Scholar 

  153. Dettogni, R. S. et al. Potential biomarkers of ductal carcinoma in situ progression. BMC Cancer 20, 119 (2020).

    Article  CAS  Google Scholar 

  154. Lee, S. et al. Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer. Cancer Res. 72, 4574–4586 (2012).

    Article  CAS  Google Scholar 

  155. Schuetz, C. S. et al. Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res. 66, 5278–5286 (2006).

    Article  CAS  Google Scholar 

  156. Abba, M. C. et al. Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression. Breast Cancer Res. 6, R499–R513 (2004).

    Article  CAS  Google Scholar 

  157. Knudsen, E. S. et al. Progression of ductal carcinoma in situ to invasive breast cancer is associated with gene expression programs of EMT and myoepithelia. Breast Cancer Res. Treat. 133, 1009–1024 (2012).

    Article  CAS  Google Scholar 

  158. Krstic, M. et al. TBX3 promotes progression of pre-invasive breast cancer cells by inducing EMT and directly up-regulating SLUG. J. Pathol. 248, 191–203 (2019).

    Article  CAS  Google Scholar 

  159. Coradini, D., Boracchi, P., Ambrogi, F., Biganzoli, E. & Oriana, S. Cell polarity, epithelial-mesenchymal transition, and cell-fate decision gene expression in ductal carcinoma in situ. Int. J. Surg. Oncol. 2012, 984346 (2012).

    Google Scholar 

  160. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  CAS  Google Scholar 

  161. Coradini, D., Boracchi, P., Oriana, S., Biganzoli, E. & Ambrogi, F. Cell identity disruption in breast cancer precursors. Anticancer. Res. 34, 1307–1319 (2014).

    CAS  Google Scholar 

  162. Deshmukh, A. P. et al. Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing. Proc. Natl Acad. Sci. USA 118, e2102050118 (2021).

    Article  CAS  Google Scholar 

  163. Sorlie, T. et al. Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms. BMC Genomics 7, 127 (2006).

    Article  Google Scholar 

  164. Oliemuller, E. et al. SOX11 promotes epithelial/mesenchymal hybrid state and alters tropism of invasive breast cancer cells. Elife https://doi.org/10.7554/eLife.58374 (2020).

    Article  Google Scholar 

  165. Oliemuller, E. et al. SOX11 promotes invasive growth and ductal carcinoma in situ progression. J. Pathol. 243, 193–207 (2017).

    Article  CAS  Google Scholar 

  166. Ma, X. J., Dahiya, S., Richardson, E., Erlander, M. & Sgroi, D. C. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 11, R7 (2009).

    Article  Google Scholar 

  167. Allinen, M. et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6, 17–32 (2004).

    Article  CAS  Google Scholar 

  168. Yoosuf, N., Navarro, J. F., Salmen, F., Stahl, P. L. & Daub, C. O. Identification and transfer of spatial transcriptomics signatures for cancer diagnosis. Breast Cancer Res. 22, 6 (2020).

    Article  CAS  Google Scholar 

  169. Li, Y. H. et al. Visualization and analysis of gene expression in Stanford type A aortic dissection tissue section by spatial transcriptomics. Front. Genet 12, 698124 (2021).

    Article  CAS  Google Scholar 

  170. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    Article  CAS  Google Scholar 

  171. Hu, M. et al. Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13, 394–406 (2008).

    Article  CAS  Google Scholar 

  172. Gil Del Alcazar, C. R. et al. Immune escape in breast cancer during in situ to invasive carcinoma transition. Cancer Discov. 7, 1098–1115 (2017). This study reported fewer activated GZMB+CD8+ T cells in IBC than in DCIS and a decrease in CD8+ signatures in IBC.

    Article  CAS  Google Scholar 

  173. Acerbi, I. et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. 7, 1120–1134 (2015).

    Article  CAS  Google Scholar 

  174. Allen, M. D. et al. Altered microenvironment promotes progression of preinvasive breast cancer: myoepithelial expression of alphavbeta6 integrin in DCIS identifies high-risk patients and predicts recurrence. Clin. Cancer Res. 20, 344–357 (2014).

    Article  CAS  Google Scholar 

  175. Chanson, L. et al. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells. Proc. Natl Acad. Sci. USA 108, 3264–3269 (2011).

    Article  CAS  Google Scholar 

  176. Duivenvoorden, H. M. et al. Myoepithelial cell-specific expression of stefin A as a suppressor of early breast cancer invasion. J. Pathol. 243, 496–509 (2017).

    Article  CAS  Google Scholar 

  177. Sarper, M. et al. Loss of MMP-8 in ductal carcinoma in situ (DCIS)-associated myoepithelial cells contributes to tumour promotion through altered adhesive and proteolytic function. Breast Cancer Res. 19, 33 (2017).

    Article  Google Scholar 

  178. Wang, L. et al. TGF-beta1 stimulates epithelial-mesenchymal transition and cancer-associated myoepithelial cell during the progression from in situ to invasive breast cancer. Cancer Cell Int. 19, 343 (2019).

    Article  CAS  Google Scholar 

  179. Risom, T. et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell 185, 299–310 (2022). This Human Tumor Atlas network Breast PreCancer Atlas study suggests that myoepithelial disruption is more advanced in patients with DCIS who do not develop IBC.

    Article  CAS  Google Scholar 

  180. Conklin, M. W. et al. Collagen alignment as a predictor of recurrence after ductal carcinoma in situ. Cancer Epidemiol. Biomark. Prev. 27, 138–145 (2018).

    Article  CAS  Google Scholar 

  181. Toss, M. S. et al. Collagen (XI) alpha-1 chain is an independent prognostic factor in breast ductal carcinoma in situ. Mod. Pathol. https://doi.org/10.1038/s41379-019-0286-9 (2019).

    Article  Google Scholar 

  182. Toss, M. S. et al. Geometric characteristics of collagen have independent prognostic significance in breast ductal carcinoma in situ: an image analysis study. Mod. Pathol. https://doi.org/10.1038/s41379-019-0296-7 (2019).

    Article  Google Scholar 

  183. Toss, M. S. et al. Prolyl-4-hydroxylase alpha subunit 2 (P4HA2) expression is a predictor of poor outcome in breast ductal carcinoma in situ (DCIS). Br. J. Cancer 119, 1518–1526 (2018).

    Article  CAS  Google Scholar 

  184. Habel, L. A. et al. Mammographic density and risk of second breast cancer after ductal carcinoma in situ. Cancer Epidemiol. Biomark. Prev. 19, 2488–2495 (2010).

    Article  Google Scholar 

  185. Huo, C. W. et al. High mammographic density in women is associated with protumor inflammation. Breast Cancer Res. 20, 92 (2018).

    Article  Google Scholar 

  186. Strand, S. H. et al. DCIS genomic signatures define biology and correlate with clinical outcome: a Human Tumor Atlas Network (HTAN) analysis of TBCRC 038 and RAHBT cohorts. Preprint at bioRxiv https://doi.org/10.1101/2021.06.16.448585.

  187. Morita, M. et al. CD8+ tumor-infiltrating lymphocytes contribute to spontaneous “healing” in HER2-positive ductal carcinoma in situ. Cancer Med. 5, 1607–1618 (2016).

    Article  CAS  Google Scholar 

  188. Agahozo, M. C. et al. Immune response and stromal changes in ductal carcinoma in situ of the breast are subtype dependent. Mod. Pathol. 33, 1773–1782 (2020).

    Article  CAS  Google Scholar 

  189. Pruneri, G. et al. The prevalence and clinical relevance of tumor-infiltrating lymphocytes (TILs) in ductal carcinoma in situ of the breast. Ann. Oncol. 28, 321–328 (2017). This study assesses TILs by the criteria of the International Immuno-Oncology Biomarker Working Group in a large cohort of patients with pure DCIS (1,488 patients) with known outcome.

    Article  CAS  Google Scholar 

  190. Almekinders, M. M. et al. Comprehensive multiplexed immune profiling of the ductal carcinoma in situ immune microenvironment regarding subsequent ipsilateral invasive breast cancer risk. Br. J. Cancer https://doi.org/10.1038/s41416-022-01888-2 (2022). In this comprehensive analysis, multiplexed profiling of the DCIS immune microenvironment in a large, well-annotated case–control series of pure DCIS does not reveal an association between the investigated immune factors and subsequent ipsilateral IBC risk.

    Article  Google Scholar 

  191. Toss, M. S. et al. The prognostic significance of immune microenvironment in breast ductal carcinoma in situ. Br. J. Cancer https://doi.org/10.1038/s41416-020-0797-7 (2020).

    Article  Google Scholar 

  192. Campbell, M. J. et al. Characterizing the immune microenvironment in high-risk ductal carcinoma in situ of the breast. Breast Cancer Res. Treat. 161, 17–28 (2017).

    Article  CAS  Google Scholar 

  193. Thike, A. A. et al. Higher densities of tumour-infiltrating lymphocytes and CD4+ T cells predict recurrence and progression of ductal carcinoma in situ of the breast. Histopathology 76, 852–864 (2020).

    Article  Google Scholar 

  194. Chen, X. Y. et al. Higher density of stromal M2 macrophages in breast ductal carcinoma in situ predicts recurrence. Virchows Arch. https://doi.org/10.1007/s00428-019-02735-1 (2020).

    Article  Google Scholar 

  195. Agahozo, M. C. et al. Ductal carcinoma in situ of the breast: immune cell composition according to subtype. Mod. Pathol. https://doi.org/10.1038/s41379-019-0331-8 (2019).

    Article  Google Scholar 

  196. Chen, X. Y. et al. Breast ductal carcinoma in situ associated with microinvasion induces immunological response and predicts ipsilateral invasive recurrence. Virchows Arch: https://doi.org/10.1007/s00428-020-02959-6 (2020).

    Article  Google Scholar 

  197. Darvishian, F. et al. Tumor-infiltrating lymphocytes in a contemporary cohort of women with ductal carcinoma in situ (DCIS). Ann. Surg. Oncol. 26, 3337–3343 (2019).

    Article  Google Scholar 

  198. Farolfi, A. et al. Tumor-infiltrating lymphocytes (TILs) and risk of a second breast event after a ductal carcinoma in situ. Front. Oncol. 10, 1486 (2020).

    Article  Google Scholar 

  199. Hendry, S. et al. Relationship of the breast ductal carcinoma in situ immune microenvironment with clinicopathological and genetic features. Clin. Cancer Res. 23, 5210–5217 (2017).

    Article  CAS  Google Scholar 

  200. Kim, M. et al. Immune microenvironment in ductal carcinoma in situ: a comparison with invasive carcinoma of the breast. Breast Cancer Res. https://doi.org/10.1186/s13058-020-01267-w (2020).

    Article  Google Scholar 

  201. Ramachandra, S., Machin, L., Ashley, S., Monaghan, P. & Gusterson, B. A. Immunohistochemical distribution of c-erbB-2 in in situ breast carcinoma-a detailed morphological analysis. J. Pathol. 161, 7–14 (1990).

    Article  CAS  Google Scholar 

  202. Toss, M. S. et al. Prognostic significance of tumor-infiltrating lymphocytes in ductal carcinoma in situ of the breast. Mod. Pathol. 31, 1226–1236 (2018).

    Article  Google Scholar 

  203. Narayanan, P. L. et al. Unmasking the immune microecology of ductal carcinoma in situ with deep learning. NPJ Breast Cancer 7, 19 (2021).

    Article  CAS  Google Scholar 

  204. Almekinders, M. M. M. et al. Breast adipocyte size associates with ipsilateral invasive breast cancer risk after ductal carcinoma in situ. NPJ Breast Cancer 7, 31 (2021).

    Article  CAS  Google Scholar 

  205. Morris, P. G. et al. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev. Res. 4, 1021–1029 (2011).

    Article  CAS  Google Scholar 

  206. Lee, J. Y., Sohn, K. H., Rhee, S. H. & Hwang, D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J. Biol. Chem. 276, 16683–16689 (2001).

    Article  CAS  Google Scholar 

  207. Meyer, D. S. et al. Luminal expression of PIK3CA mutant H1047R in the mammary gland induces heterogeneous tumors. Cancer Res. 71, 4344–4351 (2011).

    Article  CAS  Google Scholar 

  208. Liu, X. et al. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc. Natl Acad. Sci. USA 104, 12111–12116 (2007).

    Article  CAS  Google Scholar 

  209. Cardiff, R. D., Moghanaki, D. & Jensen, R. A. Genetically engineered mouse models of mammary intraepithelial neoplasia. J. Mammary Gland. Biol. Neoplasia 5, 421–437 (2000).

    Article  CAS  Google Scholar 

  210. Crist, K. A., Chaudhuri, B., Shivaram, S. & Chaudhuri, P. K. Ductal carcinoma in situ in rat mammary gland. J. Surg. Res. 52, 205–208 (1992).

    Article  CAS  Google Scholar 

  211. Thompson, H. J. & Singh, M. Rat models of premalignant breast disease. J. Mammary Gland. Biol. Neoplasia 5, 409–420 (2000).

    Article  CAS  Google Scholar 

  212. Hong, Y. et al. Mouse-INtraDuctal (MIND): an in vivo model for studying the underlying mechanisms of DCIS malignancy. J. Pathol. https://doi.org/10.1002/path.5820 (2021). This hallmark publication describes the development of the mouse intraductal model, in which patient-derived DCIS epithelial cells are injected intraductally and allowed to progress naturally in mice to study the dynamics of DCIS initiation and progression.

    Article  Google Scholar 

  213. Annunziato, S., Barazas, M., Rottenberg, S. & Jonkers, J. Genetic dissection of cancer development, therapy response, and resistance in mouse models of breast cancer. Cold Spring Harb. Symp. Quant. Biol. 81, 141–150 (2016).

    Article  Google Scholar 

  214. Bu, W. & Li, Y. Intraductal injection of lentivirus vectors for stably introducing genes into rat mammary epithelial cells in vivo. J. Mammary Gland. Biol. Neoplasia 25, 389–396 (2020).

    Article  Google Scholar 

  215. Behbod, F., Gomes, A. M. & Machado, H. L. Modeling human ductal carcinoma in situ in the mouse. J. Mammary Gland. Biol. Neoplasia 23, 269–278 (2018).

    Article  Google Scholar 

  216. Valdez, K. E. et al. Human primary ductal carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model. J. Pathol. 225, 565–573 (2011).

    Article  CAS  Google Scholar 

  217. Koren, S. et al. PIK3CAH1047R induces multipotency and multi-lineage mammary tumours. Nature 525, 114–118 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Cancer Research UK and by KWF Kankerbestrijding (reference C38317/A24043). A.K.C. acknowledges support from the CPRIT Single Cell Genomics Center (RP180684) for funding. N.E.N. acknowledges support from the US National Cancer Institute (RO1CA240526) and the CPRIT Single Cell Genomics Center (RP180684). E.S.H. is funded by RFA-CA-17-035 (NIH), 1505-30497 (PCORI), BCRF 19-074 (BCRF), DOD BC132057 and R01 CA185138-01. S.N.-Z. is funded by a Cancer Research UK Advanced Clinician Scientist Fellowship (C60100/A23916) and an NIHR Research Professorship (NIHR 301607) and is supported by the NIHR Cambridge Biomedical Research Centre (BRC-125-20014). D.C. is funded by the Cancer Research UK PRECISION award. E.S.H, A.M.T and D.C. are supported by the PCORI-funded COMET study through the Alliance for Clinical Trials in Oncology Foundation. J.J and J.v.R. acknowledge funding by the Oncode Institute. C.M. is supported by the AVL Donation Investment Fund of the AVL Foundation. The authors thank the Grand Challenge PRECISION Consortium Steering Group. They also thank T. Kumar and M. Edgerton from MD Anderson Cancer Center and E. J. Sawyer from King’s College London for their feedback and support in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

A.K.C., M.M.A. and C.M. contributed equally to this work. J.W., A.K.C., M.A., C.M., A.M.T., J.v.R. and N.E.N researched data for the article. J.W., A.K.C., M.M.A., C.M., P.B., A.T., J.J., E.L., J.v.R., E.S.H., S.N.-Z. and N.E.N. made substantial contributions to discussion of the content. J.W., A.K.C., M.M.A., C.M., P.B., J.v.R., S.N.-Z. and N.E.N. wrote the manuscript. All authors were involved in the review and editing of the manuscript before submission.

Corresponding author

Correspondence to Jelle Wesseling.

Ethics declarations

Competing interests

S.N.Z. has filed the following patents on the use of mutational signatures for clinical applications: PCT/EP2017/06029, PCT/EP2017/060289, PCT/EP2017/060279, PCT/EP2017/060298 and PCT/EP2017/084409. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

COMET: https://clinicaltrials.gov/ct2/show/NCT02926911?term=comet&cond=DCIS&draw=2&rank=1

LORD: https://clinicaltrials.gov/ct2/show/NCT02492607

LORETTA: https://rctportal.niph.go.jp/en/detail?trial_id=UMIN000028298

LORIS: https://www.birmingham.ac.uk/research/crctu/trials/loris/index.aspx

Glossary

Synchronous DCIS–IBC

Cases of ductal carcinoma in situ (DCIS) and invasive breast cancer (IBC) that were diagnosed at the same time.

Breast-conserving surgery

(BCS). Surgery to remove only part of the breast tissue.

Active surveillance

Also called ‘active monitoring’, closely watching a patient’s condition but not giving any treatment unless the results of regularly scheduled tests show that the condition is getting worse.

Lobular carcinoma in situ

A non-invasive neoplastic proliferation of discohesive cells, originating in the terminal duct lobular units.

Sequential DCIS and/or IBC

General term for when ductal carcinoma in situ (DCIS) has recurred as DCIS or invasive breast cancer (IBC).

Contralateral DCIS and/or IBC

General term for when ductal carcinoma in situ (DCIS) and/or invasive breast cancer (IBC) events occur on the opposite sides of the body.

Ipsilateral DCIS and/or IBC

General term for when ductal carcinoma in situ (DCIS) and/or invasive breast cancer (IBC) events occur on the same side, often the same region, of the body as the initial DCIS.

Pure DCIS

Ductal carcinoma in situ (DCIS) without invasive growth.

Rudimental ductal tree

The small ductal network formed during embryonic stages, from which the adult network is formed during puberty.

Sick lobes

A ductal tree with a normal phenotype that carries a large number of mutant cells, thereby priming it for tumour initiation.

Mitochondrial D-loop

The non-coding displacement (D) loop of mitochondrial DNA, which lacks histone protection.

Sequential DCIS–IBC

Ductal carcinoma in situ (DCIS) that has recurred as invasive breast cancer (IBC).

Immunoediting

The process in which the immune system can constrain or promote tumour development through the stages of elimination, equilibrium and escape.

Neoantigen load

The amount of mutations in neoplastic cells that translate into new (non-self) peptides that are presented by human leukocyte antigen at the cell surface.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casasent, A.K., Almekinders, M.M., Mulder, C. et al. Learning to distinguish progressive and non-progressive ductal carcinoma in situ. Nat Rev Cancer 22, 663–678 (2022). https://doi.org/10.1038/s41568-022-00512-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00512-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer