Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunobiology of high-grade serous ovarian cancer: lessons for clinical translation

Abstract

Treatment of high-grade serous ovarian cancer (HGSOC) remains challenging. Although HGSOC can potentially be responsive to immunotherapy owing to endogenous immunity at the molecular or T cell level, immunotherapy for this disease has fallen short of expectations to date. This Review proposes a working classification for HGSOC based on the presence or absence of intraepithelial T cells, and elaborates the putative mechanisms that give rise to such immunophenotypes. These differences might explain the failures of existing immunotherapies, and suggest that rational therapeutic approaches tailored to each immunophenotype might meet with improved success. In T cell-inflamed tumours, treatment could focus on mobilizing pre-existing immunity and strengthening the activation of T cells embedded in intraepithelial tumour myeloid niches. Conversely, in immune-excluded and immune-desert tumours, treatment could focus on restoring inflammation by reprogramming myeloid cells, stromal cells and vascular epithelial cells. Poly(ADP-ribose) polymerase (PARP) inhibitors, low-dose radiotherapy, epigenetic drugs and anti-angiogenesis therapy are among the tools available to restore T cell infiltration in HGSOC tumours and could be implemented in combination with vaccines and redirected T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunophenotypic classification of high-grade serous ovarian cancer.
Fig. 2: Cellular crosstalk in the tumour microenvironment orchestrates the T cell-inflamed immunophenotype of high-grade serous ovarian cancer.
Fig. 3: Inducing anticancer immune responses in high-grade serous ovarian cancer tumours with an immune-excluded or cold immunophenotype.

Similar content being viewed by others

References

  1. Torre, L. A. et al. Ovarian cancer statistics, 2018. CA Cancer J. Clin. 68, 284–296 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Narod, S. Can advanced-stage ovarian cancer be cured? Nat. Rev. Clin. Oncol. 13, 255–261 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Vaughan, S. et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat. Rev. Cancer 11, 719–725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Ovarian Tumor Tissue Analysis, C. et al. Dose-response association of CD8+ tumor-infiltrating lymphocytes and survival time in high-grade serous ovarian cancer. JAMA Oncol. 3, e173290 (2017).

    Article  Google Scholar 

  7. Hwang, W. T., Adams, S. F., Tahirovic, E., Hagemann, I. S. & Coukos, G. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol. Oncol. 124, 192–198 (2012).

    Article  PubMed  Google Scholar 

  8. Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Tothill, R. W. et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin. Cancer Res. 14, 5198–5208 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. George, J. et al. Nonequivalent gene expression and copy number alterations in high-grade serous ovarian cancers with BRCA1 and BRCA2 mutations. Clin. Cancer Res. 19, 3474–3484 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

    Article  PubMed Central  Google Scholar 

  12. Verhaak, R. G. et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J. Clin. Invest. 123, 517–525 (2013).

    CAS  PubMed  Google Scholar 

  13. Chen, G. M. et al. Consensus on molecular subtypes of high-grade serous ovarian carcinoma. Clin. Cancer Res. 24, 5037–5047 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hanker, L. C. et al. The impact of second to sixth line therapy on survival of relapsed ovarian cancer after primary taxane/platinum-based therapy. Ann. Oncol. 23, 2605–2612 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Bamias, A. et al. Bevacizumab with or after chemotherapy for platinum-resistant recurrent ovarian cancer: exploratory analyses of the AURELIA trial. Ann. Oncol. 28, 1842–1848 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Markman, M. The use of bevacizumab in the management of ovarian cancer: an argument for single-agent rather than combination therapy. Ann. Oncol. 22, viii69–viii71 (2011).

    Article  PubMed  Google Scholar 

  17. Hamanishi, J. et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J. Clin. Oncol. 33, 4015–4022 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Matulonis, U. A. et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase II KEYNOTE-100 study. Ann. Oncol. 30, 1080–1087 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Duraiswamy, J. et al. Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-1 blockade via CD28 costimulation. Cancer Cell https://doi.org/10.1016/j.ccell.2021.10.008 (2021).

    Article  PubMed  Google Scholar 

  20. Hornburg, M. et al. Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell 39, 928–944 e926 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Olalekan, S., Xie, B., Back, R., Eckart, H. & Basu, A. Characterizing the tumor microenvironment of metastatic ovarian cancer by single-cell transcriptomics. Cell Rep. 35, 109165 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Ye, Q. et al. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin. Cancer Res. 20, 44–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Webb, J. R., Milne, K., Watson, P., Deleeuw, R. J. & Nelson, B. H. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin. Cancer Res. 20, 434–444 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Webb, J. R., Milne, K. & Nelson, B. H. PD-1 and CD103 are widely coexpressed on prognostically favorable intraepithelial CD8 T cells in human ovarian cancer. Cancer Immunol. Res. 3, 926–935 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Eiva, M. A., Omran., D. K., Chacon, J. & Powell, D. J. Jr Systematic analysis of CD39, CD103, CD137 and PD-1 as biomarkers for naturally occurring tumor antigen-specific TILs. Preprint at bioRxiv https://doi.org/10.1101/2021.03.29.437255 (2021).

    Article  Google Scholar 

  27. Desbois, M. et al. Integrated digital pathology and transcriptome analysis identifies molecular mediators of T-cell exclusion in ovarian cancer. Nat. Commun. 11, 5583 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anadon, C. M. et al. Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells. Cancer Cell https://doi.org/10.1016/j.ccell.2022.03.008 (2022).

    Article  PubMed  Google Scholar 

  29. Zhang, A. W. et al. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell 173, 1755–1769 e1722 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bobisse, S. et al. Sensitive and frequent identification of high avidity neo-epitope specific CD8+ T cells in immunotherapy-naive ovarian cancer. Nat. Commun. 9, 1092 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu, S. et al. Efficient identification of neoantigen-specific T-cell responses in advanced human ovarian cancer. J. Immunother. Cancer 7, 156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. D’Angelo, S. P. et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1c259T cells in synovial sarcoma. Cancer Discov. 8, 944–957 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Siddiqui, I. et al. Intratumoral Tcf1+ PD-1+ CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 e110 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kroeger, D. R., Milne, K. & Nelson, B. H. Tumor-Infiltrating plasma cells are associated with tertiary lymphoid structures, cytolytic T-cell responses, and superior prognosis in ovarian cancer. Clin. Cancer Res. 22, 3005–3015 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Conejo-Garcia, J. R., Rutkowski, M. R. & Cubillos-Ruiz, J. R. State-of-the-art of regulatory dendritic cells in cancer. Pharmacol. Ther. 164, 97–104 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cubillos-Ruiz, J. R. et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161, 1527–1538 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chopra, S. et al. IRE1alpha-XBP1 signaling in leukocytes controls prostaglandin biosynthesis and pain. Science https://doi.org/10.1126/science.aau6499 (2019).

    Article  PubMed  Google Scholar 

  40. Gottlieb, C. E., Mills, A. M., Cross, J. V. & Ring, K. L. Tumor-associated macrophage expression of PD-L1 in implants of high grade serous ovarian carcinoma: a comparison of matched primary and metastatic tumors. Gynecol. Oncol. 144, 607–612 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Qin, W. et al. The diverse function of PD-1/PD-L pathway beyond cancer. Front. Immunol. 10, 2298 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kryczek, I. et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 203, 871–881 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dangaj, D. et al. Novel recombinant human B7-H4 antibodies overcome tumoral immune escape to potentiate T-cell antitumor responses. Cancer Res. 73, 4820–4829 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smith, J. B., Stashwick, C. & Powell, D. J. B7-H4 as a potential target for immunotherapy for gynecologic cancers: a closer look. Gynecol. Oncol. 134, 181–189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zou, W. et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat. Med. 7, 1339–1346 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Nielsen, J. S. et al. CD20+ tumor-infiltrating lymphocytes have an atypical CD27- memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin. Cancer Res. 18, 3281–3292 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Biswas, S. et al. IgA transcytosis and antigen recognition govern ovarian cancer immunity. Nature 591, 464–470 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mazor, R. D. et al. Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell 185, 1208–1222 e1221 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 39, 1578–1593 e1578 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Payne, K. K. et al. BTN3A1 governs antitumor responses by coordinating alphabeta and gammadelta T cells. Science 369, 942–949 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Crome, S. Q. et al. A distinct innate lymphoid cell population regulates tumor-associated T cells. Nat. Med. 23, 368–375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gonzalez, V. D. et al. High-grade serous ovarian tumor cells modulate NK cell function to create an immune-tolerant microenvironment. Cell Rep. 36, 109632 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Hong, M. et al. Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control. Cancer Res. 71, 6997–7009 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Mikucki, M. E. et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat. Commun. 6, 7458 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dangaj, D. et al. Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors. Cancer Cell 35, 885–900 e810 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rodig, S. J. et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aar3342 (2018).

    Article  PubMed  Google Scholar 

  61. Han, L. Y. et al. HLA class I antigen processing machinery component expression and intratumoral T-Cell infiltrate as independent prognostic markers in ovarian carcinoma. Clin. Cancer Res. 14, 3372–3379 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fehlings, M. et al. Checkpoint blockade immunotherapy reshapes the high-dimensional phenotypic heterogeneity of murine intratumoural neoantigen-specific CD8+ T cells. Nat. Commun. 8, 562 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Strickland, K. C. et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 7, 13587–13598 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. McAlpine, J. N. et al. BRCA1 and BRCA2 mutations correlate with TP53 abnormalities and presence of immune cell infiltrates in ovarian high-grade serous carcinoma. Mod. Pathol. 25, 740–750 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Bruand, M. et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 36, 109412 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fuertes, M. B. et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J. Exp. Med. 208, 2005–2016 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Diamond, M. S. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208, 1989–2003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, 711–723 e714 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ding, L. et al. PARP inhibition elicits STING-dependent antitumor immunity in Brca1-deficient ovarian cancer. Cell Rep. 25, 2972–2980 e2975 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Duraiswamy, J., Freeman, G. J. & Coukos, G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors — response. Cancer Res. 74, 633–634 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. McGrail, D. J. et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann. Oncol. 32, 661–672 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Moore, K. N. et al. Atezolizumab, bevacizumab, and chemotherapy for newly diagnosed stage III or IV ovarian cancer: placebo-controlled randomized phase III trial (IMagyn050/GOG 3015/ENGOT-OV39). J. Clin. Oncol. 39, 1842–1855 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Farkkila, A. et al. Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat. Commun. 11, 1459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Duraiswamy, J., Kaluza, K. M., Freeman, G. J. & Coukos, G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res. 73, 3591–3603 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zamarin, D. et al. Randomized phase II trial of nivolumab versus nivolumab and ipilimumab for recurrent or persistent ovarian cancer: an NRG Oncology study. J. Clin. Oncol. 38, 1814–1823 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shoushtari, A. N. et al. Measuring toxic effects and time to treatment failure for nivolumab plus ipilimumab in melanoma. JAMA Oncol. 4, 98–101 (2018).

    Article  PubMed  Google Scholar 

  81. Huang, R. Y. et al. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget 6, 27359–27377 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Leem, G. et al. 4-1BB co-stimulation further enhances anti-PD-1-mediated reinvigoration of exhausted CD39+ CD8 T cells from primary and metastatic sites of epithelial ovarian cancers. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-001650 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Waldhauer, I. et al. Simlukafusp alfa (FAP-IL2v) immunocytokine is a versatile combination partner for cancer immunotherapy. MAbs 13, 1913791 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Scarlett, U. K. et al. In situ stimulation of CD40 and Toll-like receptor 3 transforms ovarian cancer-infiltrating dendritic cells from immunosuppressive to immunostimulatory cells. Cancer Res. 69, 7329–7337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liljenfeldt, L., Dieterich, L. C., Dimberg, A., Mangsbo, S. M. & Loskog, A. S. CD40L gene therapy tilts the myeloid cell profile and promotes infiltration of activated T lymphocytes. Cancer Gene Ther. 21, 95–102 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Schiza, A. et al. Adenovirus-mediated CD40L gene transfer increases Teffector/Tregulatory cell ratio and upregulates death receptors in metastatic melanoma patients. J. Transl. Med. 15, 79 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Morrison, A. H., Diamond, M. S., Hay, C. A., Byrne, K. T. & Vonderheide, R. H. Sufficiency of CD40 activation and immune checkpoint blockade for T cell priming and tumor immunity. Proc. Natl Acad. Sci. USA 117, 8022–8031 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Laman, J. D., Claassen, E. & Noelle, R. J. Functions of CD40 and its ligand, gp39 (CD40L). Crit. Rev. Immunol. 37, 371–420 (2017).

    Article  PubMed  Google Scholar 

  89. Richman, L. P. & Vonderheide, R. H. Role of crosslinking for agonistic CD40 monoclonal antibodies as immune therapy of cancer. Cancer Immunol. Res. 2, 19–26 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Futagawa, T. et al. Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Int. Immunol. 14, 275–286 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Lin, J. H. et al. Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis. J. Exp. Med. https://doi.org/10.1084/jem.20190673 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Byrne, K. T. & Vonderheide, R. H. CD40 stimulation obviates innate sensors and drives T cell immunity in cancer. Cell Rep. 15, 2719–2732 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lind, N. A., Rael, V. E., Pestal, K., Liu, B. & Barton, G. M. Regulation of the nucleic acid-sensing Toll-like receptors. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-021-00577-0 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Engel, A. L., Holt, G. E. & Lu, H. The pharmacokinetics of Toll-like receptor agonists and the impact on the immune system. Expert. Rev. Clin. Pharmacol. 4, 275–289 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Monk, B. J. et al. A phase 2, randomized, double-blind, placebo- controlled study of chemo-immunotherapy combination using motolimod with pegylated liposomal doxorubicin in recurrent or persistent ovarian cancer: a Gynecologic Oncology Group partners study. Ann. Oncol. 28, 996–1004 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572, 392–396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bradley, C. A. CD24 - a novel ‘don’t eat me’ signal. Nat. Rev. Cancer 19, 541 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Willingham, S. B. et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl Acad. Sci. USA 109, 6662–6667 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tian, L. et al. Targeting Fc receptor-mediated effects and the “don’t eat me” signal with an oncolytic virus expressing an anti-CD47 antibody to treat metastatic ovarian cancer. Clin. Cancer Res. 28, 201–214 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Shu, R. et al. Engineered CAR-T cells targeting TAG-72 and CD47 in ovarian cancer. Mol. Ther. Oncolytics 20, 325–341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Molgora, M. et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 182, 886–900 e817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Binnewies, M. et al. Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep. 37, 109844 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Le, D. T. & Jaffee, E. M. Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective. Cancer Res. 72, 3439–3444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vlad, A. M. et al. A phase II trial of intraperitoneal interleukin-2 in patients with platinum-resistant or platinum-refractory ovarian cancer. Cancer Immunol. Immunother. 59, 293–301 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Edwards, R. P. et al. Comparison of toxicity and survival following intraperitoneal recombinant interleukin-2 for persistent ovarian cancer after platinum: twenty-four-hour versus 7-day infusion. J. Clin. Oncol. 15, 3399–3407 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Dudley, M. E. et al. CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin. Cancer Res. 16, 6122–6131 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rosenberg, S. A. & Dudley, M. E. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol. 21, 233–240 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Creelan, B. C. et al. Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial. Nat. Med. 27, 1410–1418 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stevanovic, S. et al. A phase II study of tumor-infiltrating lymphocyte therapy for human papillomavirus-associated epithelial cancers. Clin. Cancer Res. 25, 1486–1493 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Kverneland, A. H. et al. Adoptive cell therapy with tumor-infiltrating lymphocytes supported by checkpoint inhibition across multiple solid cancer types. J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-003499 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Pedersen, M. et al. Adoptive cell therapy with tumor-infiltrating lymphocytes in patients with metastatic ovarian cancer: a pilot study. Oncoimmunology 7, e1502905 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kverneland, A. H. et al. Adoptive cell therapy in combination with checkpoint inhibitors in ovarian cancer. Oncotarget 11, 2092–2105 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jimenez-Sanchez, A. et al. Unraveling tumor-immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nat. Genet. 52, 582–593 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jimenez-Sanchez, A. et al. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell 170, 927–938 e920 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Joshi, K. et al. Spatial heterogeneity of the T cell receptor repertoire reflects the mutational landscape in lung cancer. Nat. Med. 25, 1549–1559 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Adams, S. F. et al. Rapid tumor vaccine using Toll-like receptor-activated ovarian cancer ascites monocytes. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-000875 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Fujita, K. et al. Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes. Clin. Cancer Res. 1, 501–507 (1995).

    CAS  PubMed  Google Scholar 

  121. Herrera, F. G. et al. Low dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-21-0003 (2021).

    Article  PubMed  Google Scholar 

  122. Kunos, C. A. et al. Low-dose abdominal radiation as a docetaxel chemosensitizer for recurrent epithelial ovarian cancer: a phase I study of the Gynecologic Oncology Group. Gynecol. Oncol. 120, 224–228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fucikova, J. et al. Immunological control of ovarian carcinoma by chemotherapy and targeted anticancer agents. Trends Cancer 8, 426–444 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Wijayahadi, N., Haron, M. R., Stanslas, J. & Yusuf, Z. Changes in cellular immunity during chemotherapy for primary breast cancer with anthracycline regimens. J. Chemother. 19, 716–723 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Lo, C. S. et al. Neoadjuvant chemotherapy of ovarian cancer results in three patterns of tumor-infiltrating lymphocyte response with distinct implications for immunotherapy. Clin. Cancer Res. 23, 925–934 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Bohm, S. et al. Neoadjuvant chemotherapy modulates the immune microenvironment in metastases of tubo-ovarian high-grade serous carcinoma. Clin. Cancer Res. 22, 3025–3036 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Pujade-Lauraine, E. et al. Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or platinum-refractory ovarian cancer (JAVELIN Ovarian 200): an open-label, three-arm, randomised, phase 3 study. Lancet Oncol. 22, 1034–1046 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Socinski, M. A. et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288–2301 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Palmer, A. C. & Sorger, P. K. Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell 171, 1678–1691 e1613 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shen, J. et al. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res. 79, 311–319 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Monk, B. J. et al. ATHENA (GOG-3020/ENGOT-ov45): a randomized, phase III trial to evaluate rucaparib as monotherapy (ATHENA-MONO) and rucaparib in combination with nivolumab (ATHENA-COMBO) as maintenance treatment following frontline platinum-based chemotherapy in ovarian cancer. Int. J. Gynecol. Cancer 31, 1589–1594 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Ochoa de Olza, M., Navarro Rodrigo, B., Zimmermann, S. & Coukos, G. Turning up the heat on non-immunoreactive tumours: opportunities for clinical development. Lancet Oncol. 21, e419–e430 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Matei, D. & Nephew, K. P. Epigenetic attire in ovarian cancer: the emperor’s new clothes. Cancer Res. 80, 3775–3785 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Baretti, M. & Yarchoan, M. Epigenetic modifiers synergize with immune-checkpoint blockade to enhance long-lasting antitumor efficacy. J. Clin. Invest. https://doi.org/10.1172/JCI151002 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Topper, M. J. et al. Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell 171, 1284–1300 e1221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Siebenkas, C. et al. Inhibiting DNA methylation activates cancer testis antigens and expression of the antigen processing and presentation machinery in colon and ovarian cancer cells. PLoS ONE 12, e0179501 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Odunsi, K. et al. Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. Cancer Immunol. Res. 2, 37–49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mogilenko, D. A. et al. Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging. Immunity 54, 99–115 e112 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Sato, E. et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA 102, 18538–18543 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mariathasan, S. et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tauriello, D. V. F. et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Desbois, M. & Wang, Y. Cancer-associated fibroblasts: Key players in shaping the tumor immune microenvironment. Immunol. Rev. 302, 241–258 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Kochetkova, M. & Samuel, M. S. Differentiation of the tumor microenvironment: are CAFs the organizer? Trends Cell Biol. https://doi.org/10.1016/j.tcb.2021.11.008 (2021).

    Article  PubMed  Google Scholar 

  146. Eckert, M. A. et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature 569, 723–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dasari, S., Fang, Y. & Mitra, A. K. Cancer associated fibroblasts: naughty neighbors that drive ovarian cancer progression. Cancers https://doi.org/10.3390/cancers10110406 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Buckanovich, R. J. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat. Med. 14, 28–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Bouzin, C., Brouet, A., De Vriese, J., Dewever, J. & Feron, O. Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J. Immunol. 178, 1505–1511 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Rask, K., Zhu, Y., Wang, W., Hedin, L. & Sundfeldt, K. Ovarian epithelial cancer: a role for PGE2-synthesis and signalling in malignant transformation and progression. Mol. Cancer 5, 62 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Baci, D. et al. The ovarian cancer tumor immune microenvironment (TIME) as target for therapy: a focus on innate immunity cells as therapeutic effectors. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21093125 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rodig, N. et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur. J. Immunol. 33, 3117–3126 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Wu, F. H. et al. Endothelial cell-expressed Tim-3 facilitates metastasis of melanoma cells by activating the NF-kappaB pathway. Oncol. Rep. 24, 693–699 (2010).

    CAS  PubMed  Google Scholar 

  156. Huang, X. et al. Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion. J. Exp. Med. 207, 505–520 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zang, X. et al. Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas. Mod. Pathol. 23, 1104–1112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kraan, J. et al. Endothelial CD276 (B7-H3) expression is increased in human malignancies and distinguishes between normal and tumour-derived circulating endothelial cells. Br. J. Cancer 111, 149–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Qin, X. et al. B7-H3 is a new cancer-specific endothelial marker in clear cell renal cell carcinoma. Onco Targets Ther. 6, 1667–1673 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Krambeck, A. E. et al. B7-H4 expression in renal cell carcinoma and tumor vasculature: associations with cancer progression and survival. Proc. Natl Acad. Sci. USA 103, 10391–10396 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mulligan, J. K. & Young, M. R. Tumors induce the formation of suppressor endothelial cells in vivo. Cancer Immunol. Immunother. 59, 267–277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Casos, K. et al. Tumor cells induce COX-2 and mPGES-1 expression in microvascular endothelial cells mainly by means of IL-1 receptor activation. Microvasc. Res. 81, 261–268 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Taflin, C. et al. Human endothelial cells generate Th17 and regulatory T cells under inflammatory conditions. Proc. Natl Acad. Sci. USA 108, 2891–2896 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Motz, G. T. & Coukos, G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat. Rev. Immunol. 11, 702–711 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Motz, G. T. & Coukos, G. Deciphering and reversing tumor immune suppression. Immunity 39, 61–73 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Ohtsu, A. et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J. Clin. Oncol. 29, 3968–3976 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Motzer, R. et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N. Engl. J. Med. 384, 1289–1300 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Lee, W. S., Yang, H., Chon, H. J. & Kim, C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp. Mol. Med. 52, 1475–1485 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Burger, R. A., Sill, M. W., Monk, B. J., Greer, B. E. & Sorosky, J. I. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group study. J. Clin. Oncol. 25, 5165–5171 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Cannistra, S. A. et al. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J. Clin. Oncol. 25, 5180–5186 (2007).

    Article  CAS  PubMed  Google Scholar 

  172. Rossi, L. et al. Bevacizumab in ovarian cancer: a critical review of phase III studies. Oncotarget 8, 12389–12405 (2017).

    Article  PubMed  Google Scholar 

  173. Liu, J. F. et al. Assessment of combined nivolumab and bevacizumab in relapsed ovarian cancer: a phase 2 clinical trial. JAMA Oncol. 5, 1731–1738 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Lee, J. M. et al. Safety and clinical activity of the programmed death-ligand 1 inhibitor durvalumab in combination with poly (ADP-ribose) polymerase inhibitor olaparib or vascular endothelial growth factor receptor 1-3 inhibitor cediranib in women’s cancers: a dose-escalation, phase I study. J. Clin. Oncol. 35, 2193–2202 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Aghajanian, C. et al. OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J. Clin. Oncol. 30, 2039–2045 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Coleman, R. L. et al. Bevacizumab and paclitaxel-carboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (NRG Oncology/Gynecologic Oncology Group study GOG-0213): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 18, 779–791 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ray-Coquard, I. et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N. Engl. J. Med. 381, 2416–2428 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Noman, M. Z. et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211, 781–790 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lim, A. R., Rathmell, W. K. & Rathmell, J. C. The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy. Elife https://doi.org/10.7554/eLife.55185 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Corbet, C. & Feron, O. Tumour acidosis: from the passenger to the driver’s seat. Nat. Rev. Cancer 17, 577–593 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Calcinotto, A. et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 72, 2746–2756 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Mendler, A. N. et al. Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int. J. Cancer 131, 633–640 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Pilon-Thomas, S. et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 76, 1381–1390 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. Brand, A. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24, 657–671 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zsiros, E. et al. Efficacy and safety of pembrolizumab in combination with bevacizumab and oral metronomic cyclophosphamide in the treatment of recurrent ovarian cancer: a phase 2 nonrandomized clinical trial. JAMA Oncol. 7, 78–85 (2021).

    Article  PubMed  Google Scholar 

  187. Yakkala, C., Chiang, C. L., Kandalaft, L., Denys, A. & Duran, R. Cryoablation and immunotherapy: an enthralling synergy to confront the tumors. Front. Immunol. 10, 2283 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Dafni, U. et al. Efficacy of cancer vaccines in selected gynaecological breast and ovarian cancers: a 20-year systematic review and meta-analysis. Eur. J. Cancer 142, 63–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Harari, A., Graciotti, M., Bassani-Sternberg, M. & Kandalaft, L. E. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat. Rev. Drug Discov. 19, 635–652 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Chu, C. et al. Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remission. Cancer Immunol. Immunother. 61, 629–641 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Kobayashi, M. et al. The feasibility and clinical effects of dendritic cell-based immunotherapy targeting synthesized peptides for recurrent ovarian cancer. J. Ovarian Res. 7, 48 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Peethambaram, P. P. et al. A phase 1 trial of immunotherapy with lapuleucel-T (APC8024) in patients with refractory metastatic tumors that express HER-2/neu. Clin. Cancer Res. 15, 5937–5944 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Romero, P. et al. The human vaccines project: a roadmap for cancer vaccine development. Sci. Transl. Med. 8, 334ps339 (2016).

    Article  Google Scholar 

  194. Kandalaft, L. E. et al. A Phase I vaccine trial using dendritic cells pulsed with autologous oxidized lysate for recurrent ovarian cancer. J. Transl. Med. 11, 149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Sarivalasis, A. et al. A Phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinoma. J. Transl. Med. 17, 391 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Tanyi, J. L. et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aao5931 (2018).

    Article  PubMed  Google Scholar 

  197. Tanyi, J. L. et al. Personalized cancer vaccine strategy elicits polyfunctional T cells and demonstrates clinical benefits in ovarian cancer. NPJ Vaccines 6, 36 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sarivalasis, A., Morotti, M., Mulvey, A., Imbimbo, M. & Coukos, G. Cell therapies in ovarian cancer. Ther. Adv. Med. Oncol. 13, 17588359211008399 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Robbins, P. F. et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21, 1019–1027 (2015).

    Article  CAS  PubMed  Google Scholar 

  200. Kershaw, M. H. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12, 6106–6115 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Haas, A. R. et al. Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers. Mol. Ther. 27, 1919–1929 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Koneru, M., Purdon, T. J., Spriggs, D., Koneru, S. & Brentjens, R. J. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology 4, e994446 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Luo, H., Xu, X., Ye, M., Sheng, B. & Zhu, X. The prognostic value of HER2 in ovarian cancer: A meta-analysis of observational studies. PLoS ONE 13, e0191972 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Szender, J. B. et al. NY-ESO-1 expression predicts an aggressive phenotype of ovarian cancer. Gynecol. Oncol. 145, 420–425 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Dangaj, D. et al. Mannose receptor (MR) engagement by mesothelin GPI anchor polarizes tumor-associated macrophages and is blocked by anti-MR human recombinant antibody. PLoS ONE 6, e28386 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Lanitis, E., Coukos, G. & Irving, M. All systems go: converging synthetic biology and combinatorial treatment for CAR-T cell therapy. Curr. Opin. Biotechnol. 65, 75–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  207. Macintyre, G. et al. Copy number signatures and mutational processes in ovarian carcinoma. Nat. Genet. 50, 1262–1270 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Konstantinopoulos, P. A., Ceccaldi, R., Shapiro, G. I. & D’Andrea, A. D. Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov. 5, 1137–1154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Davies, H. et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 23, 517–525 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Gulhan, D. C., Lee, J. J., Melloni, G. E. M., Cortes-Ciriano, I. & Park, P. J. Detecting the mutational signature of homologous recombination deficiency in clinical samples. Nat. Genet. 51, 912–919 (2019).

    Article  CAS  PubMed  Google Scholar 

  211. Polak, P. et al. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat. Genet. 49, 1476–1486 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Telli, M. L. et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin. Cancer Res. 22, 3764–3773 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wang, Y. K. et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat. Genet. 49, 856–865 (2017).

    Article  CAS  PubMed  Google Scholar 

  214. Shah, S. P. Copy number signatures in ovarian cancer. Nat. Genet. 50, 1208–1209 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Roby, K. F. et al. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 21, 585–591 (2000).

    Article  CAS  PubMed  Google Scholar 

  216. Walton, J. et al. CRISPR/Cas9-mediated Trp53 and Brca2 knockout to generate improved murine models of ovarian high-grade serous carcinoma. Cancer Res. 76, 6118–6129 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Walton, J. B. et al. CRISPR/Cas9-derived models of ovarian high grade serous carcinoma targeting Brca1, Pten and Nf1, and correlation with platinum sensitivity. Sci. Rep. 7, 16827 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Iyer, S. et al. Genetically defined syngeneic mouse models of ovarian cancer as tools for the discovery of combination immunotherapy. Cancer Discov. 11, 384–407 (2021).

    Article  CAS  PubMed  Google Scholar 

  219. Maniati, E. et al. Mouse ovarian cancer models recapitulate the human tumor microenvironment and patient response to treatment. Cell Rep. 30, 525–540 e527 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Gitto, S. B. et al. An autologous humanized patient-derived-xenograft platform to evaluate immunotherapy in ovarian cancer. Gynecol. Oncol. 156, 222–232 (2020).

    Article  CAS  PubMed  Google Scholar 

  221. Rongvaux, A. et al. Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol. 32, 364–372 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Bankert, R. B. et al. Humanized mouse model of ovarian cancer recapitulates patient solid tumor progression, ascites formation, and metastasis. PLoS ONE 6, e24420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Sisman, Y., Schnack, T., Hogdall, E. & Hogdall, C. Organoids and epithelial ovarian cancer - a future tool for personalized treatment decisions? (Review). Mol. Clin. Oncol. 16, 29 (2022).

    Article  CAS  PubMed  Google Scholar 

  224. Yang, J. et al. Application of ovarian cancer organoids in precision medicine: key challenges and current opportunities. Front. Cell Dev. Biol. 9, 701429 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Kim, J. et al. Cell origins of high-grade serous ovarian cancer. Cancers https://doi.org/10.3390/cancers10110433 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Piek, J. M. et al. Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. J. Pathol. 195, 451–456 (2001).

    Article  CAS  PubMed  Google Scholar 

  227. Lee, Y. et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J. Pathol. 211, 26–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  228. Kuhn, E. et al. TP53 mutations in serous tubal intraepithelial carcinoma and concurrent pelvic high-grade serous carcinoma–evidence supporting the clonal relationship of the two lesions. J. Pathol. 226, 421–426 (2012).

    Article  CAS  PubMed  Google Scholar 

  229. Perets, R. et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell 24, 751–765 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Cao, Y. et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat. Commun. 10, 1280 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Visvanathan, K. et al. Diagnosis of serous tubal intraepithelial carcinoma based on morphologic and immunohistochemical features: a reproducibility study. Am. J. Surg. Pathol. 35, 1766–1775 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Vang, R. et al. Validation of an algorithm for the diagnosis of serous tubal intraepithelial carcinoma. Int. J. Gynecol. Pathol. 31, 243–253 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Kuhn, E., Kurman, R. J., Sehdev, A. S. & Shih Ie, M. Ki-67 labeling index as an adjunct in the diagnosis of serous tubal intraepithelial carcinoma. Int. J. Gynecol. Pathol. 31, 416–422 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Medeiros, F. et al. The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. Am. J. Surg. Pathol. 30, 230–236 (2006).

    Article  PubMed  Google Scholar 

  235. Ducie, J. et al. Molecular analysis of high-grade serous ovarian carcinoma with and without associated serous tubal intra-epithelial carcinoma. Nat. Commun. 8, 990 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Wu, R. C. et al. Genomic landscape and evolutionary trajectories of ovarian cancer precursor lesions. J. Pathol. 248, 41–50 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Gutkin, D. W. et al. Novel protein and immune response markers of human serous tubal intraepithelial carcinoma of the ovary. Cancer Biomark. 26, 471–479 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. McPherson, A. et al. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet. 48, 758–767 (2016).

    Article  CAS  PubMed  Google Scholar 

  239. Labidi-Galy, S. I. et al. High grade serous ovarian carcinomas originate in the fallopian tube. Nat. Commun. 8, 1093 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Masoodi, T. et al. Genetic heterogeneity and evolutionary history of high-grade ovarian carcinoma and matched distant metastases. Br. J. Cancer 122, 1219–1230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Jamieson, A., Sykes, P., Eva, L., Bergzoll, C. & Simcock, B. Subtypes of stage IV ovarian cancer; response to treatment and patterns of disease recurrence. Gynecol. Oncol. 146, 273–278 (2017).

    Article  PubMed  Google Scholar 

  242. Bashashati, A. et al. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J. Pathol. 231, 21–34 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Hoogstraat, M. et al. Genomic and transcriptomic plasticity in treatment-naive ovarian cancer. Genome Res. 24, 200–211 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Schwarz, R. F. et al. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med. 12, e1001789 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ research work is supported by the Ludwig Institute for Cancer Research and NIH grants P50 CA083638 National Cancer Institute Specialized Program of Research Excellence (SPORE) in Ovarian Cancer, R01-CA116779 and R01-CA098951; grants from the Pennsylvania Department of Health (the department specifically disclaims responsibility for any analyses, interpretations or conclusions); and grants from the Ovarian Cancer Immunotherapy Initiative, Ovarian Cancer Research Fund, Sidney Kimmel Foundation, Gynecologic Cancer Foundation, Mary Kay Ash Foundation, Sandy Rollman Ovarian Cancer Foundation, American Cancer Society, Cancer Foundation, Biltema Foundation and Paul Matson Foundation (all to G.C.); partly supported by the Department of Defense (DOD) Early Career Investigator (ECI) W81XWH2210703 Award OC210038 (to D.D.L.) (Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the Department of Defense); and supported by OvaCure and the Rivkin Center for Ovarian Cancer (to L.E.K.).

Author information

Authors and Affiliations

Authors

Contributions

L.E.K. and D.D.L. contributed to researching data for the article and writing the initial draft. All authors contributed to reviewing and/or editing of the manuscript before submission. In addition, G.C. and D.D.L. contributed to discussions of the article content.

Corresponding author

Correspondence to George Coukos.

Ethics declarations

Competing interests

G.C. declares that he has received grants or research support from or is a co-investigator in clinical trials conducted by Boehringer Ingelheim, Bristol-Myers Squibb, Celgene, Iovance, Kite, Roche and Tigen. Lausanne University Hospital has received honoraria for advisory services provided by G.C. to AstraZeneca, Bristol-Myers Squibb, Hoffmann-La Roche, MSD and Geneos Therapeutics. G.C. holds patents related to antibodies and vaccines targeting the tumour vasculature as well as technologies related to T cell expansion and engineering of T cell therapy, for which G.C. receives royalties from the University of Pennsylvania. L.E.K. declares that she has received honoraria for advisory services provided to Geneos Therapeutics and AstraZeneca. D.D.L. declares no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Rebecca Arend and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandalaft, L.E., Dangaj Laniti, D. & Coukos, G. Immunobiology of high-grade serous ovarian cancer: lessons for clinical translation. Nat Rev Cancer 22, 640–656 (2022). https://doi.org/10.1038/s41568-022-00503-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00503-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer