Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Liquid–liquid phase separation drives cellular function and dysfunction in cancer

Abstract

Cancer is a disease of uncontrollably reproducing cells. It is governed by biochemical pathways that have escaped the regulatory bounds of normal homeostatic balance. This balance is maintained through precise spatiotemporal regulation of these pathways. The formation of biomolecular condensates via liquid–liquid phase separation (LLPS) has recently emerged as a widespread mechanism underlying the spatiotemporal coordination of biological activities in cells. Biomolecular condensates are widely observed to directly regulate key cellular processes involved in cancer cell pathology, and the dysregulation of LLPS is increasingly implicated as a previously hidden driver of oncogenic activity. In this Perspective, we discuss how LLPS shapes the biochemical landscape of cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Basic principles of liquid–liquid phase separation and biomolecular condensates.
Fig. 2: The regulation of nuclear function by LLPS.
Fig. 3: The role of LLPS in cellular quality control.
Fig. 4: LLPS regulates signalling pathway function.
Fig. 5: Dysregulation of LLPS as a tumorigenic driver.

Similar content being viewed by others

References

  1. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    CAS  PubMed  Google Scholar 

  2. Sever, R. & Brugge, J. S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med. 5, a006098 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. Sanchez-Vega, F. et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 173, 321–337.e10 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sengupta, S. & George, R. E. Super-enhancer-driven transcriptional dependencies in cancer. Trends Cancer 3, 269–281 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pohl, C. & Dikic, I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366, 818–822 (2019).

    CAS  PubMed  Google Scholar 

  7. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  8. Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer Hallmark Even Warburg did not anticipate. Cancer Cell 21, 297–308 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014). An excellent foundational review of LLPS and the underlying thermodynamic principles.

    CAS  PubMed  Google Scholar 

  12. Boija, A., Klein, I. A. & Young, R. A. Biomolecular condensates and cancer. Cancer Cell 39, 174–192 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cai, D., Liu, Z. & Lippincott-Schwartz, J. Biomolecular condensates and their links to cancer progression. Trends Biochem. Sci. 46, 535–549 (2021).

    CAS  PubMed  Google Scholar 

  14. Lu, J. et al. Emerging roles of liquid–liquid phase separation in cancer: from protein aggregation to immune-associated signaling. Front. Cell Dev. Biol. 9, 631486 (2021).

    PubMed  PubMed Central  Google Scholar 

  15. Taniue, K. & Akimitsu, N. Aberrant phase separation and cancer. FEBS J. 289, 17–39 (2021).

    PubMed  Google Scholar 

  16. Jiang, S., Fagman, J. B., Chen, C., Alberti, S. & Liu, B. Protein phase separation and its role in tumorigenesis. eLife 9, e60264 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020). A comprehensive and essential primer on the stickers-and-spacers model of molecular interactions in LLPS.

    CAS  PubMed  Google Scholar 

  18. Hyman, A. A. & Brangwynne, C. P. Beyond stereospecificity: liquids and mesoscale organization of cytoplasm. Dev. Cell 21, 14–16 (2011).

    CAS  PubMed  Google Scholar 

  19. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009). This seminal work elegantly revealed the liquid-like properties of C. elegans P granules and fundamentally shaped the study of biological phase separation.

    CAS  PubMed  Google Scholar 

  20. Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6, e30294 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Banani, S. F. et al. Compositional control of phase-separated cellular bodies. Cell 166, 651–663 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zink, D., Fischer, A. H. & Nickerson, J. A. Nuclear structure in cancer cells. Nat. Rev. Cancer 4, 677–687 (2004).

    CAS  PubMed  Google Scholar 

  23. Strom, A. R. & Brangwynne, C. P. The liquid nucleome – phase transitions in the nucleus at a glance. J. Cell Sci. 132, jcs235093 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).

    CAS  PubMed  Google Scholar 

  25. Min, J., Wright, W. E. & Shay, J. W. Clustered telomeres in phase-separated nuclear condensates engage mitotic DNA synthesis through BLM and RAD52. Gene Dev. 33, 814–827 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, H. et al. Nuclear body phase separation drives telomere clustering in ALT cancer cells. Mol. Biol. Cell 31, 2048–2056 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. de Thé, H., Pandolfi, P. P. & Chen, Z. Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure. Cancer Cell 32, 552–560 (2017).

    PubMed  Google Scholar 

  28. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, eaar4199 (2018).

    Google Scholar 

  30. Cai, D. et al. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol. 21, 1578–1589 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu, Y. et al. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat. Cell Biol. 22, 453–464 (2020).

    CAS  PubMed  Google Scholar 

  32. Altmeyer, M. et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat. Commun. 6, 8088 (2015).

    CAS  PubMed  Google Scholar 

  33. Kilic, S. et al. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J. 38, e101379 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e21 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanulli, S. et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575, 390–394 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jia, Q., Chen, S., Tan, Y., Li, Y. & Tang, F. Oncogenic super-enhancer formation in tumorigenesis and its molecular mechanisms. Exp. Mol. Med. 52, 713–723 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    CAS  PubMed  Google Scholar 

  39. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Han, X. et al. Roles of the BRD4 short isoform in phase separation and active gene transcription. Nat. Struct. Mol. Biol. 27, 333–341 (2020).

    CAS  PubMed  Google Scholar 

  41. Arnold, P. R., Wells, A. D. & Li, X. C. Diversity and emerging roles of enhancer RNA in regulation of gene expression and cell fate. Front. Cell Dev. Biol. 7, 377 (2020).

    PubMed  PubMed Central  Google Scholar 

  42. Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).

    CAS  PubMed  Google Scholar 

  43. Nair, S. J. et al. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat. Struct. Mol. Biol. 26, 193–203 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei, M.-T. et al. Nucleated transcriptional condensates amplify gene expression. Nat. Cell Biol. 22, 1187–1196 (2020).

    CAS  PubMed  Google Scholar 

  45. Jaeger, M. G. et al. Selective Mediator dependence of cell-type-specifying transcription. Nat. Genet. 52, 719–727 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Khattabi, L. E. et al. A pliable mediator acts as a functional rather than an architectural bridge between promoters and enhancers. Cell 178, 1145–1158.e20 (2019).

    PubMed  PubMed Central  Google Scholar 

  47. Crump, N. T. et al. BET inhibition disrupts transcription but retains enhancer-promoter contact. Nat. Commun. 12, 223 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hsieh, T.-H. S. et al. Enhancer-promoter interactions and transcription are maintained upon acute loss of CTCF, cohesin, WAPL, and YY1. Preprint at bioRxiv https://doi.org/10.1101/2021.07.14.452365 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zanconato, F. et al. Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nat. Med. 24, 1599–1610 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zanconato, F., Cordenonsi, M. & Piccolo, S. YAP/TAZ at the roots of cancer. Cancer Cell 29, 783–803 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, M. et al. Interferon-γ induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Mol. Cell 81, 1216–1230.e9 (2021).

    CAS  PubMed  Google Scholar 

  52. Reggiani, F., Gobbi, G., Ciarrocchi, A. & Sancisi, V. YAP and TAZ are not identical twins. Trends Biochem. Sci. 46, 154–168 (2020).

    PubMed  Google Scholar 

  53. Dietlein, F., Thelen, L. & Reinhardt, H. C. Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches. Trends Genet. 30, 326–339 (2014).

    CAS  PubMed  Google Scholar 

  54. Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    CAS  PubMed  Google Scholar 

  55. Pessina, F. et al. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat. Cell Biol. 21, 1286–1299 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Iarovaia, O. V. et al. Dynamics of double strand breaks and chromosomal translocations. Mol. Cancer 13, 249 (2014).

    PubMed  PubMed Central  Google Scholar 

  57. Singatulina, A. S. et al. PARP-1 activation directs FUS to DNA damage sites to form PARG-reversible compartments enriched in damaged DNA. Cell Rep. 27, 1809–1821.e5 (2019).

    CAS  PubMed  Google Scholar 

  58. Aguilera, A. The connection between transcription and genomic instability. EMBO J. 21, 195–201 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Dialynas, G. K., Vitalini, M. W. & Wallrath, L. L. Linking heterochromatin protein 1 (HP1) to cancer progression. Mutat. Res. 647, 13–20 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Erdel, F. et al. Mouse heterochromatin adopts digital compaction states without showing Hallmarks of HP1-driven liquid-liquid phase separation. Mol. Cell 78, 236–249.e7 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dikic, I. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 86, 193–224 (2017).

    CAS  PubMed  Google Scholar 

  63. White, E. The role for autophagy in cancer. J. Clin. Invest. 125, 42–46 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. Manasanch, E. E. & Orlowski, R. Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 14, 417–433 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, H., Bhattacharya, A. & Qi, L. Endoplasmic reticulum quality control in cancer: friend or foe. Semin. Cancer Biol. 33, 25–33 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Clark, A. & Burleson, M. SPOP and cancer: a systematic review. Am. J. Cancer Res. 10, 704–726 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bouchard, J. J. et al. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol. Cell 72, 19–36.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yasuda, S. et al. Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 578, 296–300 (2020).

    CAS  PubMed  Google Scholar 

  69. Dai, C., Whitesell, L., Rogers, A. B. & Lindquist, S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130, 1005–1018 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, L. et al. Enhanced degradation of misfolded proteins promotes tumorigenesis. Cell Rep. 18, 3143–3154 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Fujioka, Y. et al. Phase separation organizes the site of autophagosome formation. Nature 578, 301–305 (2020).

    CAS  PubMed  Google Scholar 

  72. Yamamoto, H. et al. The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Dev. Cell 38, 86–99 (2016).

    CAS  PubMed  Google Scholar 

  73. Noda, N. N. & Fujioka, Y. Atg1 family kinases in autophagy initiation. Cell Mol. Life Sci. 72, 3083–3096 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sun, D., Wu, R., Zheng, J., Li, P. & Yu, L. Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res. 28, 405–415 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, X., He, S. & Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer 19, 12 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chavez-Dominguez, R., Perez-Medina, M., Lopez-Gonzalez, J. S., Galicia-Velasco, M. & Aguilar-Cazares, D. The double-edge sword of autophagy in cancer: from tumor suppression to pro-tumor activity. Front. Oncol. 10, 578418 (2020).

    PubMed  PubMed Central  Google Scholar 

  77. Kumar, M. & Papaleo, E. A pan-cancer assessment of alterations of the kinase domain of ULK1, an upstream regulator of autophagy. Sci. Rep. 10, 14874 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Amaravadi, R., Kimmelman, A. C. & White, E. Recent insights into the function of autophagy in cancer. Gene Dev. 30, 1913–1930 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mehta, S. & Zhang, J. Biochemical activity architectures visualized–using genetically encoded fluorescent biosensors to map the spatial boundaries of signaling compartments. Acc. Chem. Res. 54, 2409–2420 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Patra, K. C. & Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347–354 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, M. & Vousden, K. H. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662 (2016).

    CAS  PubMed  Google Scholar 

  82. Sweetlove, L. J. & Fernie, A. R. The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nat. Commun. 9, 2136 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Kohnhorst, C. L. et al. Identification of a multienzyme complex for glucose metabolism in living cells. J. Biol. Chem. 292, 9191–9203 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. An, S., Kumar, R., Sheets, E. D. & Benkovic, S. J. Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320, 103–106 (2008).

    CAS  PubMed  Google Scholar 

  85. Zhou, W. et al. Purine metabolism regulates DNA repair and therapy resistance in glioblastoma. Nat. Commun. 11, 3811 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lv, Y. et al. Nucleotide de novo synthesis increases breast cancer stemness and metastasis via cGMP-PKG-MAPK signaling pathway. PLoS Biol. 18, e3000872 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kyoung, M., Russell, S. J., Kohnhorst, C. L., Esemoto, N. N. & An, S. Dynamic architecture of the purinosome involved in human de novo purine biosynthesis. Biochemistry 54, 870–880 (2015).

    CAS  PubMed  Google Scholar 

  88. Doigneaux, C. et al. Hypoxia drives the assembly of the multienzyme purinosome complex. J. Biol. Chem. 295, 9551–9566 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Pareek, V., Tian, H., Winograd, N. & Benkovic, S. J. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science 368, 283–290 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu, Q. et al. Glycogen accumulation and phase separation drives liver tumor initiation. Cell 184, 5559–5576.e19 (2021).

    CAS  PubMed  Google Scholar 

  91. Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yum, S., Li, M., Frankel, A. E. & Chen, Z. J. Roles of the cGAS-STING pathway in cancer immunosurveillance and immunotherapy. Annu. Rev. Cancer Biol. 3, 323–344 (2019).

    Google Scholar 

  93. Du, M. & Chen, Z. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361, eaat1022 (2018).

    Google Scholar 

  94. Zhou, W., Mohr, L., Maciejowski, J. & Kranzusch, P. J. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Mol. Cell 81, 739–755.e7 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Woo, S.-R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Schadt, L. et al. Cancer-cell-intrinsic cGAS expression mediates tumor immunogenicity. Cell Rep. 29, 1236–1248.e7 (2019).

    CAS  PubMed  Google Scholar 

  97. Ng, K. W., Marshall, E. A., Bell, J. C. & Lam, W. L. cGAS–STING and cancer: dichotomous roles in tumor immunity and development. Trends Immunol. 39, 44–54 (2018).

    CAS  PubMed  Google Scholar 

  98. Yu, X. et al. The STING phase-separator suppresses innate immune signalling. Nat. Cell Biol. 23, 330–340 (2021).

    CAS  PubMed  Google Scholar 

  99. Zaccolo, M. Spatial control of cAMP signalling in health and disease. Curr. Opin. Pharmacol. 11, 649–655 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu, V. et al. Illuminating the Onco-GPCRome: novel G protein–coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. J. Biol. Chem. 294, 11062–11086 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ramms, D. J. et al. Gαs-protein kinase A (PKA) pathway signalopathies: the emerging genetic landscape and therapeutic potential of human diseases driven by aberrant Gαs-PKA signaling. Pharmacol. Rev. 73, 155–197 (2021).

    CAS  PubMed  Google Scholar 

  102. Deng, Z. et al. Selective autophagy of AKAP11 activates cAMP/PKA to fuel mitochondrial metabolism and tumor cell growth. Proc. Natl Acad. Sci. USA 118, e2020215118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Beristain, A. G. et al. PKA signaling drives mammary tumorigenesis through Src. Oncogene 34, 1160–1173 (2015).

    CAS  PubMed  Google Scholar 

  104. Zhang, J. Z. et al. Phase separation of a PKA regulatory subunit controls cAMP compartmentation and oncogenic signaling. Cell 182, 1531–1544.e15 (2020). This study revealed that phase separation plays a key role in the spatial organization of cAMP signalling and underlies the pathological mechanism of an oncogenic fusion kinase.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Buxton, I. L. & Brunton, L. L. Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J. Biol. Chem. 258, 10233–10239 (1983).

    CAS  PubMed  Google Scholar 

  106. Baillie, G. S. Compartmentalized signalling: spatial regulation of cAMP by the action of compartmentalized phosphodiesterases. FEBS J. 276, 1790–1799 (2009).

    CAS  PubMed  Google Scholar 

  107. Bock, A. et al. Optical mapping of cAMP signaling at the nanometer scale. Cell 182, 1519–1530.e17 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Adriaens, C. et al. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat. Med. 22, 861–868 (2016). This study implicates biomolecular condensates in a negative feedback loop that suppresses p53 activation in precancerous cells and identifies NEAT1 as a potential therapeutic target.

    CAS  PubMed  Google Scholar 

  109. Barra, J. et al. Integrator restrains paraspeckles assembly by promoting isoform switching of the lncRNA NEAT1. Sci. Adv. 6, eaaz9072 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    CAS  PubMed  Google Scholar 

  111. Sengupta, S. & Harris, C. C. p53: traffic cop at the crossroads of DNA repair and recombination. Nat. Rev. Mol. Cell Biol. 6, 44–55 (2005).

    CAS  PubMed  Google Scholar 

  112. Blume, C. J. et al. p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia 29, 2015–2023 (2015).

    CAS  PubMed  Google Scholar 

  113. Hu, J. et al. AKAP95 regulates splicing through scaffolding RNAs and RNA processing factors. Nat. Commun. 7, 13347 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Li, W. et al. Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nat. Cell Biol. 22, 960–972 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Qi, F. et al. Synergistic effects of AKAP95, Cyclin D1, Cyclin E1, and Cx43 in the development of rectal cancer. Int. J. Clin. Exp. Pathol. 8, 1666–1673 (2015).

    PubMed  PubMed Central  Google Scholar 

  116. Liu, W. et al. Roles of Cx43 and AKAP95 in ovarian cancer tissues in G1/S phase. Int. J. Clin. Exp. Pathol. 8, 14315–14324 (2015).

    PubMed  PubMed Central  Google Scholar 

  117. Kerr, D. L., Haderk, F. & Bivona, T. G. Allosteric SHP2 inhibitors in cancer: targeting the intersection of RAS, resistance, and the immune microenvironment. Curr. Opin. Chem. Biol. 62, 1–12 (2021).

    CAS  PubMed  Google Scholar 

  118. Yuan, X., Bu, H., Zhou, J., Yang, C.-Y. & Zhang, H. Recent advances of SHP2 inhibitors in cancer therapy: current development and clinical application. J. Med. Chem. 63, 11368–11396 (2020).

    CAS  PubMed  Google Scholar 

  119. Edouard, T. et al. How do Shp2 mutations that oppositely influence its biochemical activity result in syndromes with overlapping symptoms? Cell Mol. Life Sci. 64, 1585–1590 (2007).

    CAS  PubMed  Google Scholar 

  120. Zhu, G. et al. Phase separation of disease-associated SHP2 mutants underlies MAPK hyperactivation. Cell 183, 490–502.e18 (2020). SHP2 mutations with opposite effects on catalytic activity are shown to drive aberrant signalling via enhanced phase separation, highlighting gain of LLPS as an oncogenic driver.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Nelson, K. N., Peiris, M. N., Meyer, A. N., Siari, A. & Donoghue, D. J. Receptor tyrosine kinases: translocation partners in hematopoietic disorders. Trends Mol. Med. 23, 59–79 (2017).

    CAS  PubMed  Google Scholar 

  122. Kovar, H. Dr. Jekyll and Mr. Hyde: the two faces of the FUS/EWS/TAF15 protein family. Sarcoma 2011, 837474 (2011).

    PubMed  Google Scholar 

  123. Boulay, G. et al. Cancer-specific retargeting of BAF complexes by a Prion-like domain. Cell 171, 163–178.e19 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ahn, J. H. et al. Phase separation drives aberrant chromatin looping and cancer development. Nature 595, 591–595 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Du, Z. & Lovly, C. M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 17, 58 (2018).

    PubMed  PubMed Central  Google Scholar 

  126. Sabir, S. R., Yeoh, S., Jackson, G. & Bayliss, R. EML4-ALK variants: biological and molecular properties, and the implications for patients. Cancers 9, 118 (2017).

    PubMed Central  Google Scholar 

  127. Tulpule, A. et al. Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell 184, 2649–2664.e18 (2021). This study reveals that aberrant gain of phase separation capability allows oncogenic receptor tyrosine kinase fusions to drive tumorigenic signalling from the cytoplasm.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Qin, Z. et al. Phase separation of EML4–ALK in firing downstream signaling and promoting lung tumorigenesis. Cell Discov. 7, 33 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Brien, G. L., Stegmaier, K. & Armstrong, S. A. Targeting chromatin complexes in fusion protein-driven malignancies. Nat. Rev. Cancer 19, 255–269 (2019).

    CAS  PubMed  Google Scholar 

  131. Arvand, A. & Denny, C. T. Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene 20, 5747–5754 (2001).

    CAS  PubMed  Google Scholar 

  132. Delattre, O. et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359, 162–165 (1992).

    CAS  PubMed  Google Scholar 

  133. Johnson, K. M. et al. Role for the EWS domain of EWS/FLI in binding GGAA-microsatellites required for Ewing sarcoma anchorage independent growth. Proc. Natl Acad. Sci. USA 114, 9870–9875 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Riggi, N. et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 26, 668–681 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA 100, 2450–2455 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Honeyman, J. N. et al. Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science 343, 1010–1014 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kastenhuber, E. R. et al. DNAJB1–PRKACA fusion kinase interacts with β-catenin and the liver regenerative response to drive fibrolamellar hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 114, 13076–13084 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Riggle, K. M. et al. Enhanced cAMP-stimulated protein kinase A activity in human fibrolamellar hepatocellular carcinoma. Pediatr. Res. 80, 110–118 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Cao, B. et al. Structures of the PKA RIα holoenzyme with the FLHCC driver J-PKAcα or wild-type PKAcα. Structure 27, 816–828.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Graham, R. P. et al. Fibrolamellar carcinoma in the Carney complex: PRKAR1A loss instead of the classic DNAJB1-PRKACA fusion. Hepatology 68, 1441–1447 (2018).

    CAS  PubMed  Google Scholar 

  141. Singhi, A. D. et al. Recurrent rearrangements in PRKACA and PRKACB in intraductal oncocytic papillary neoplasms of the pancreas and bile duct. Gastroenterology 158, 573–582.e2 (2019).

    PubMed  Google Scholar 

  142. Shi, B. et al. UTX condensation underlies its tumour-suppressive activity. Nature 597, 726–731 (2021). Phase separation is shown to be the key molecular activity in UTX-mediated tumour suppression that is disrupted by cancer-causing mutations, illustrating how loss of LLPS drives cancer pathology.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Andricovich, J. et al. Loss of KDM6A activates super-enhancers to induce gender-specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors. Cancer Cell 33, 512–526.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Miller, S. A., Mohn, S. E. & Weinmann, A. S. Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol. Cell 40, 594–605 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Wang, L. & Shilatifard, A. UTX mutations in human cancer. Cancer Cell 35, 168–176 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Fasciani, A. et al. MLL4-associated condensates counterbalance polycomb-mediated nuclear mechanical stress in Kabuki syndrome. Nat. Genet. 52, 1397–1411 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang, Y. et al. Nuclear condensates of p300 formed though the structured catalytic core can act as a storage pool of p300 with reduced HAT activity. Nat. Commun. 12, 4618 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Huang, W. Y. C. et al. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science 363, 1098–1103 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Tenner, B. et al. FluoSTEPs: fluorescent biosensors for monitoring compartmentalized signaling within endogenous microdomains. Sci. Adv. 7, eabe4091 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168, 159–171.e14 (2017).

    CAS  PubMed  Google Scholar 

  151. Bracha, D. et al. Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 175, 1467–1480.e13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhang, Z. et al. Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation. eLife 4, e07777 (2015).

    PubMed Central  Google Scholar 

  153. Ban, D., Iconaru, L. I., Ramanathan, A., Zuo, J. & Kriwacki, R. W. A small molecule causes a population shift in the conformational landscape of an intrinsically disordered protein. J. Am. Chem. Soc. 139, 13692–13700 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Iconaru, L. I. et al. Discovery of small molecules that inhibit the disordered protein, p27Kip1. Sci. Rep. 5, 15686 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Wheeler, R. J. et al. Small molecules for modulating protein driven liquid-liquid phase separation in treating neurodegenerative disease. Preprint at bioRxiv https://doi.org/10.1101/721001 (2019).

    Article  Google Scholar 

  156. Burslem, G. M. & Crews, C. M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181, 102–114 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629–651 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Dammes, N. & Peer, D. Paving the road for RNA therapeutics. Trends Pharmacol. Sci. 41, 755–775 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386–1392 (2020). By revealing that anticancer drugs spontaneously accumulate in phase-separated bodies, which affects drug activity, this work provides new insights into drug pharmacodynamics that may ultimately inform therapeutic advances.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Bracha, D., Walls, M. T. & Brangwynne, C. P. Probing and engineering liquid-phase organelles. Nat. Biotechnol. 37, 1435–1445 (2019).

    CAS  PubMed  Google Scholar 

  161. Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    PubMed  Google Scholar 

  163. Kamiyama, D. et al. Versatile protein tagging in cells with split fluorescent protein. Nat. Commun. 7, 11046 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143 (2021).

    CAS  PubMed  Google Scholar 

  165. Yu, H. et al. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science 371, eabb4309 (2021).

    CAS  PubMed  Google Scholar 

  166. Markmiller, S. et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172, 590–604.e13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Chen, X. et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nat. Biotechnol. 37, 1287–1293 (2019).

    CAS  PubMed  Google Scholar 

  168. Fazal, F. M. et al. Atlas of subcellular RNA localization revealed by APEX-Seq. Cell 178, 473–490.e26 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Taylor, N. O., Wei, M.-T., Stone, H. A. & Brangwynne, C. P. Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys. J. 117, 1285–1300 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Quiroz, F. G. et al. Liquid-liquid phase separation drives skin barrier formation. Science 367, eaax9554 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Zeng, M. et al. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166, 1163–1175.e12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).

    CAS  PubMed  Google Scholar 

  173. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Biochemistry 78, 993–1016 (2009).

    CAS  Google Scholar 

  174. Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Delarue, M. et al. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell 174, 338–349.e20 (2018).

    CAS  PubMed  Google Scholar 

  176. Kroschwald, S., Maharana, S. & Simon, A. Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments. Matters https://doi.org/10.19185/matters.201702000010 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (R35 CA197622, R01 DK073368, and R01 DE030497 to J.Z.) and the Air Force Office of Scientific Research (FA9500-18-1-0051 to J.Z.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Hao Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, S., Zhang, J. Liquid–liquid phase separation drives cellular function and dysfunction in cancer. Nat Rev Cancer 22, 239–252 (2022). https://doi.org/10.1038/s41568-022-00444-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00444-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer