Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

OPINION

Structural underpinnings of oestrogen receptor mutations in endocrine therapy resistance

A Publisher Correction to this article was published on 05 September 2018

Abstract

Oestrogen receptor-α (ERα), a key driver of breast cancer, normally requires oestrogen for activation. Mutations that constitutively activate ERα without the need for hormone binding are frequently found in endocrine-therapy-resistant breast cancer metastases and are associated with poor patient outcomes. The location of these mutations in the ER ligand-binding domain and their impact on receptor conformation suggest that they subvert distinct mechanisms that normally maintain the low basal state of wild-type ERα in the absence of hormone. Such mutations provide opportunities to probe fundamental issues underlying ligand-mediated control of ERα activity. Instructive contrasts between these ERα mutations and those that arise in the androgen receptor (AR) during anti-androgen treatment of prostate cancer highlight differences in how activation functions in ERs and AR control receptor activity, how hormonal pressures (deprivation versus antagonism) drive the selection of phenotypically different mutants, how altered protein conformations can reduce antagonist potency and how altered ligand–receptor contacts can invert the response that a receptor has to an agonist ligand versus an antagonist ligand. A deeper understanding of how ligand regulation of receptor conformation is linked to receptor function offers a conceptual framework for developing new anti-oestrogens that might be more effective in preventing and treating breast cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of nuclear receptor domain structure, ligand-induced conformations and dimer formation.
Fig. 2: Activating mutations in the ERα ligand-binding domain and their pharmacological phenotypes and mechanisms.
Fig. 3: Agonist and antagonist binding to ERα ligand-binding domains and binding affinities.
Fig. 4: Locations of activating mutations in ER and AR and the relationship of AR mutations to AR antagonists.

References

  1. 1.

    Katzenellenbogen, B. S. & Frasor, J. Therapeutic targeting in the estrogen receptor hormonal pathway. Semin. Oncol. 31, 28–38 (2004).

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Rugo, H. S. et al. Endocrine therapy for hormone receptor-positive metastatic breast cancer: American Society of Clinical Oncology guideline. J. Clin. Oncol. 34, 3069–3103 (2016).

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Tryfonidis, K., Zardavas, D., Katzenellenbogen, B. S. & Piccart, M. Endocrine treatment in breast cancer: cure, resistance and beyond. Cancer Treat. Rev. 50, 68–81 (2016).

    PubMed  Article  Google Scholar 

  4. 4.

    Smith, D. F. & Toft, D. O. Minireview: the intersection of steroid receptors with molecular chaperones: observations and questions. Mol. Endocrinol. 22, 2229–2240 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Pratt, W. B. & Toft, D. O. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. 228, 111–133 (2003).

    Article  CAS  Google Scholar 

  6. 6.

    Weigelt, B. et al. Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res. 65, 9155–9158 (2005).

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Chandarlapaty, S. et al. Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: a secondary analysis of the BOLERO-2 clinical trial. JAMA Oncol. 2, 1310–1315 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Fribbens, C. et al. Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J. Clin. Oncol. 34, 2961–2968 (2016).

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Spoerke, J. M. et al. Heterogeneity and clinical significance of ESR1 mutations in ER-positive metastatic breast cancer patients receiving fulvestrant. Nat. Commun. 7, 11579 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Chu, D. et al. ESR1 mutations in circulating plasma tumor DNA from metastatic breast cancer patients. Clin. Cancer. Res. 22, 993–999 (2016).

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Fanning, S. W. et al. Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. eLife 5, e12792 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Garcia-Murillas, I. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl Med. 7, 302ra133 (2015).

    PubMed  Article  Google Scholar 

  14. 14.

    Jeselsohn, R. et al. Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin. Cancer Res. 20, 1757–1767 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    Li, S. et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 4, 1116–1130 (2013).

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Merenbakh-Lamin, K. et al. D538G mutation in estrogen receptor-alpha: A novel mechanism for acquired endocrine resistance in breast cancer. Cancer Res. 73, 6856–6864 (2013).

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Robinson, D. R. et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 45, 1446–1451 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Bahreini, A. et al. Mutation site and context dependent effects of ESR1 mutation in genome-edited breast cancer cell models. Breast Cancer Res. 19, 60 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19.

    Carlson, K. E., Choi, I., Gee, A., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. Altered ligand binding properties and enhanced stability of a constitutively active estrogen receptor: evidence that an open pocket conformation is required for ligand interaction. Biochemistry 36, 14897–14905 (1997).

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Clatot, F. et al. Kinetics, prognostic and predictive values of ESR1 circulating mutations in metastatic breast cancer patients progressing on aromatase inhibitor. Oncotarget 7, 74448–74459 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Mao, C., Livezey, M., Kim, J. E. & Shapiro, D. J. Antiestrogen resistant cell lines expressing estrogen receptor alpha mutations upregulate the unfolded protein response and are killed by BHPI. Scientif. Rep. 6, 34753 (2016).

    Article  CAS  Google Scholar 

  22. 22.

    Toy, W. et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 45, 1439–1445 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    Toy, W. et al. Activating ESR1 mutations differentially affect the efficacy of ER antagonists. Cancer Discov. 7, 277–287 (2017).

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Wang, P. et al. Sensitive detection of mono- and polyclonal ESR1 Mutations in primary tumors, metastatic lesions, and cell-free DNA of breast cancer patients. Clin. Cancer Res. 22, 1130–1137 (2016).

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Jordan, V. C., Curpan, R. & Maximov, P. Y. Estrogen receptor mutations found in breast cancer metastases integrated with the molecular pharmacology of selective ER modulators. J. Natl Cancer Inst. 107, djv075 (2015).

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Pakdel, F., Reese, J. C. & Katzenellenbogen, B. S. Identification of charged residues in an N-terminal portion of the hormone-binding domain of the human estrogen receptor important in transcriptional activity of the receptor. Mol. Endocrinol. 7, 1408–1417 (1993).

    PubMed  CAS  Google Scholar 

  27. 27.

    Weis, K. E., Ekena, K., Thomas, J. A., Lazennec, G. & Katzenellenbogen, B. S. Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol. Endocrinol. 10, 1388–1398 (1996).

    PubMed  CAS  Google Scholar 

  28. 28.

    Zhang, Q. X., Borg, A., Wolf, D. M., Oesterreich, S. & Fuqua, S. A. An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer. Cancer Res. 57, 1244–1249 (1997).

    PubMed  CAS  Google Scholar 

  29. 29.

    Joseph, J. D. et al. The selective estrogen receptor downregulator GDC-0810 is efficacious in diverse models of ER+ breast cancer. eLife 5, e15828 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Nettles, K. W. et al. NFkappaB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses. Nat. Chem. Biol. 4, 241–247 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Lazennec, G., Ediger, T. R., Petz, L. N., Nardulli, A. M. & Katzenellenbogen, B. S. Mechanistic aspects of estrogen receptor activation probed with constitutively active estrogen receptors: correlations with DNA and coregulator interactions and receptor conformational changes. Mol. Endocrinol. 11, 1375–1386 (1997).

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Kircher, M. & Kelso, J. High-throughput DNA sequencing—concepts and limitations. Bioessays 32, 524–536 (2010).

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34.

    Wilde, O. The Importance of Being Earnest 7th edn (Methuen, 1915).

  35. 35.

    Trevino, L. S. & Weigel, N. L. Phosphorylation: a fundamental regulator of steroid receptor action. Trends Endocrinol. Metab. 24, 515–524 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Likhite, V. S., Stossi, F., Kim, K., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand, deoxyribonucleic acid, and coregulators associated with alterations in estrogen and tamoxifen activity. Mol. Endocrinol. 20, 3120–3132 (2006).

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Yee, D. & Lee, A. V. Crosstalk between the insulin-like growth factors and estrogens in breast cancer. J. Mammary Gland Biol. Neoplasia 5, 107–115 (2000).

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Voudouri, K., Berdiaki, A., Tzardi, M., Tzanakakis, G. N. & Nikitovic, D. Insulin-like growth factor and epidermal growth factor signaling in breast cancer cell growth: focus on endocrine resistant disease. Anal. Cell Pathol. 2015, 975495 (2015).

    Article  CAS  Google Scholar 

  39. 39.

    Curtis, S. H. & Korach, K. S. Steroid receptor knockout models: phenotypes and responses illustrate interactions between receptor signaling pathways in vivo. Adv. Pharmacol. 47, 357–380 (2000).

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Stellato, C. et al. The “busy life” of unliganded estrogen receptors. Proteomics 16, 288–300 (2016).

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Iwase, H. Molecular action of the estrogen receptor and hormone dependency in breast cancer. Breast Cancer 10, 89–96 (2003).

    PubMed  Article  Google Scholar 

  42. 42.

    Groner, A. C. & Brown, M. Role of steroid receptor and coregulator mutations in hormone-dependent cancers. J. Clin. Invest. 127, 1126–1135 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Gee, A. C. & Katzenellenbogen, J. A. Probing conformational changes in the estrogen receptor: evidence for a partially unfolded intermediate facilitating ligand binding and release. Mol. Endocrinol. 15, 421–428 (2001).

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Seielstad, D. A., Carlson, K. E., Kushner, P. J., Greene, G. L. & Katzenellenbogen, J. A. Analysis of the structural core of the human estrogen receptor ligand binding domain by selective proteolysis/mass spectrometric analysis. Biochemistry 34, 12605–12615 (1995).

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    White, R., Sjoberg, M., Kalkhoven, E. & Parker, M. G. Ligand-independent activation of the oestrogen receptor by mutation of a conserved tyrosine. EMBO J. 16, 1427–1435 (1997).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Herynk, M. H. & Fuqua, S. A. Estrogen receptor mutations in human disease. Endocr. Rev. 25, 869–898 (2004).

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Nwachukwu, J. C. et al. Systems structural biology analysis of ligand effects on ERalpha predicts cellular response to environmental estrogens and anti-hormone therapies. Cell Chem. Biol. 24, 35–45 (2017).

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Nwachukwu, J. C. et al. Predictive features of ligand-specific signaling through the estrogen receptor. Mol. Syst. Biol. 12, 864 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Castoria, G. et al. Tyrosine phosphorylation of estradiol receptor by Src regulates its hormone-dependent nuclear export and cell cycle progression in breast cancer cells. Oncogene 31, 4868–4877 (2012).

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Zhao, Y. et al. Structurally novel antiestrogens elicit differential responses from constitutively active mutant estrogen receptors in breast cancer cells and tumors. Cancer Res. 77, 5602–5613 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  51. 51.

    Wrenn, C. K. & Katzenellenbogen, B. S. Structure-function analysis of the hormone binding domain of the human estrogen receptor by region-specific mutagenesis and phenotypic screening in yeast. J. Biol. Chem. 268, 24089–24098 (1993).

    PubMed  CAS  Google Scholar 

  52. 52.

    Madak-Erdogan, Z. et al. Integrative genomics of gene and metabolic regulation by estrogen receptors alpha and beta, and their coregulators. Mol. Syst. Biol. 9, 676 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Jeyakumar, M., Carlson, K. E., Gunther, J. R. & Katzenellenbogen, J. A. Exploration of dimensions of estrogen potency: parsing ligand binding and coactivator binding affinities. J. Biol. Chem. 286, 12971–12982 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. 54.

    Zhao, C. et al. Mutation of Leu-536 in human estrogen receptor-alpha alters the coupling between ligand binding, transcription activation, and receptor conformation. J. Biol. Chem. 278, 27278–27286 (2003).

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    De Mattos-Arruda, L. et al. Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor DNA: a proof-of-principle. Ann. Oncol. 25, 1729–1735 (2014).

    PubMed  Article  Google Scholar 

  56. 56.

    Staby, L. et al. Eukaryotic transcription factors: paradigms of protein intrinsic disorder. Biochem. J. 474, 2509–2532 (2017).

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Jain, V. P. & Tu, R. S. Coupled folding and specific binding: fishing for amphiphilicity. Int. J. Mol. Sci. 12, 1431–1450 (2011).

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Trizac, E., Levy, Y. & Wolynes, P. G. Capillarity theory for the fly-casting mechanism. Proc. Natl. Acad. Sci. USA 107, 2746–2750 (2010).

    PubMed  Article  Google Scholar 

  59. 59.

    Huang, Y. & Liu, Z. Nonnative interactions in coupled folding and binding processes of intrinsically disordered proteins. PLoS ONE 5, e15375 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. 60.

    Brzozowski, A. M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997).

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Shiau, A. K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  62. 62.

    Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. 63.

    Lallous, N. et al. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome. Biol. 17, 10 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. 64.

    Imamura, Y. & Sadar, M. D. Androgen receptor targeted therapies in castration-resistant prostate cancer: bench to clinic. Int. J. Urol. 23, 654–665 (2016).

    PubMed  Article  Google Scholar 

  65. 65.

    Fenton, M. A. et al. Functional characterization of mutant androgen receptors from androgen-independent prostate cancer. Clin. Cancer Res. 3, 1383–1388 (1997).

    PubMed  CAS  Google Scholar 

  66. 66.

    Veldscholte, J. et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 173, 534–540 (1990).

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Yoshida, T. et al. Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Res. 65, 9611–9616 (2005).

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Joseph, J. D. et al. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov. 3, 1020–1029 (2013).

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Nyquist, M. D. et al. TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer. Proc. Natl. Acad. Sci. USA 110, 17492–17497 (2013).

    PubMed  Article  Google Scholar 

  70. 70.

    Balbas, M. D. et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. eLife 2, e00499 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    McGinley, P. L. & Koh, J. T. Circumventing anti-androgen resistance by molecular design. J. Am. Chem. Soc. 129, 3822–3823 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. 72.

    Bohl, C. E., Gao, W., Miller, D. D., Bell, C. E. & Dalton, J. T. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc. Natl. Acad. Sci. USA 102, 6201–6206 (2005).

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Ince, B. A., Zhuang, Y., Wrenn, C. K., Shapiro, D. J. & Katzenellenbogen, B. S. Powerful dominant negative mutants of the human estrogen receptor. J. Biol. Chem. 268, 14026–14032 (1993).

    PubMed  CAS  Google Scholar 

  74. 74.

    Ince, B. A., Schodin, D. J., Shapiro, D. J. & Katzenellenbogen, B. S. Repression of endogenous estrogen receptor activity in MCF-7 human breast cancer cells by dominant negative estrogen receptors. Endocrinology 136, 3194–3199 (1995).

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Schodin, D. J., Zhuang, Y., Shapiro, D. J. & Katzenellenbogen, B. S. Analysis of mechanisms that determine dominant negative estrogen receptor effectiveness. J. Biol. Chem. 270, 31163–31171 (1995).

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Montano, M. M., Ekena, K., Krueger, K. D., Keller, A. L. & Katzenellenbogen, B. S. Human estrogen receptor ligand activity inversion mutants: receptors that interpret antiestrogens as estrogens and estrogens as antiestrogens and discriminate among different antiestrogens. Mol. Endocrinol. 10, 230–242 (1996).

    PubMed  CAS  Google Scholar 

  77. 77.

    Mahfoudi, A., Roulet, E., Dauvois, S., Parker, M. G. & Wahli, W. Specific mutations in the estrogen receptor change the properties of antiestrogens to full agonists. Proc. Natl. Acad. Sci. USA 92, 4206–4210 (1995).

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Wolf, D. M. & Jordan, V. C. The estrogen receptor from a tamoxifen stimulated MCF-7 tumor variant contains a point mutation in the ligand binding domain. Breast Cancer Res. Treatment 31, 129–138 (1994).

    Article  CAS  Google Scholar 

  79. 79.

    Wolf, D. M. & Jordan, V. C. Characterization of tamoxifen stimulated MCF-7 tumor variants grown in athymic mice. Breast Cancer Res. Treatment 31, 117–127 (1994).

    Article  CAS  Google Scholar 

  80. 80.

    Levenson, A. S., Catherino, W. H. & Jordan, V. C. Estrogenic activity is increased for an antiestrogen by a natural mutation of the estrogen receptor. J. Steroid Biochem. Mol. Biol. 60, 261–268 (1997).

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Catherino, W. H., Wolf, D. M. & Jordan, V. C. A naturally occurring estrogen receptor mutation results in increased estrogenicity of a tamoxifen analog. Mol. Endocrinol. 9, 1053–1063 (1995).

    PubMed  CAS  Google Scholar 

  82. 82.

    Levenson, A. S., MacGregor Schafer, J. I., Bentrem, D. J., Pease, K. M. & Jordan, V. C. Control of the estrogen-like actions of the tamoxifen-estrogen receptor complex by the surface amino acid at position 351. J. Steroid Biochem. Mol. Biol. 76, 61–70 (2001).

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Bentrem, D. et al. Molecular mechanism of action at estrogen receptor alpha of a new clinically relevant antiestrogen (GW7604) related to tamoxifen. Endocrinology 142, 838–846 (2001).

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Liu, H. et al. Structure-function relationships of the raloxifene-estrogen receptor-alpha complex for regulating transforming growth factor-alpha expression in breast cancer cells. J. Biol. Chem. 277, 9189–9198 (2002).

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    De Savi, C. et al. Optimization of a novel binding motif to (e)-3-(3,5-difluoro-4-((1r,3r)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1h-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (azd9496), a potent and orally bioavailable selective estrogen receptor downregulator and antagonist. J. Med. Chem. 58, 8128–8140 (2015).

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Wu, Y. L. et al. Structural basis for an unexpected mode of SERM-mediated ER antagonism. Mol. Cell 18, 413–424 (2005).

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Tora, L. et al. The cloned human oestrogen receptor contains a mutation which alters its hormone binding properties. EMBO J. 8, 1981–1986 (1989).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. 88.

    Levenson, A. S. & Jordan, V. C. Transfection of human estrogen receptor (ER) cDNA into ER-negative mammalian cell lines. J. Steroid Biochem. Mol. Biol. 51, 229–239 (1994).

    PubMed  Article  CAS  Google Scholar 

  89. 89.

    Levenson, A. S. & Jordan, V. C. The key to the antiestrogenic mechanism of raloxifene is amino acid 351 (aspartate) in the estrogen receptor. Cancer Res. 58, 1872–1875 (1998).

    PubMed  CAS  Google Scholar 

  90. 90.

    Jiang, S. Y., Parker, C. J. & Jordan, V. C. A model to describe how a point mutation of the estrogen receptor alters the structure-function relationship of antiestrogens. Breast Cancer Res. Treatment 26, 139–147 (1993).

    Article  CAS  Google Scholar 

  91. 91.

    Jiang, S. Y., Langan-Fahey, S. M., Stella, A. L., McCague, R. & Jordan, V. C. Point mutation of estrogen receptor (ER) in the ligand-binding domain changes the pharmacology of antiestrogens in ER-negative breast cancer cells stably expressing complementary DNAs for ER. Mol. Endocrinol. 6, 2167–2174 (1992).

    PubMed  CAS  Google Scholar 

  92. 92.

    Robertson, J. F. et al. A good drug made better: the fulvestrant dose-response story. Clin. Breast Cancer 14, 381–389 (2014).

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Weir, H. M. et al. AZD9496: an oral estrogen receptor inhibitor that blocks the growth of ER-positive and ESR1-mutant breast tumors in preclinical models. Cancer Res. 76, 3307–3318 (2016).

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Garner, F., Shomali, M., Paquin, D., Lyttle, C. R. & Hattersley, G. RAD1901: a novel, orally bioavailable selective estrogen receptor degrader that demonstrates antitumor activity in breast cancer xenograft models. Anticancer Drugs 26, 948–956 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95.

    Wardell, S. E. et al. Efficacy of SERD/SERM Hybrid-CDK4/6 inhibitor combinations in models of endocrine therapy-resistant breast cancer Clin. Cancer. Res. 21, 5121–5130 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96.

    Hattersley, G., Harris, A. G., Simon, J. A. & Constantine, G. D. Clinical investigation of RAD1901, a novel estrogen receptor ligand, for the treatment of postmenopausal vasomotor symptoms: a phase 2 randomized, placebo-controlled, double-blind, dose-ranging, proof-of-concept trial. Menopause 24, 92–99 (2017).

    PubMed  Article  Google Scholar 

  97. 97.

    Liu, J. et al. Rational design of a boron-modified triphenylethylene (GLL398) as an oral selective estrogen receptor downregulator. ACS Med. Chem. Lett. 8, 102–106 (2017).

    PubMed  Article  CAS  Google Scholar 

  98. 98.

    Liu, J. et al. Fulvestrant-3 boronic acid (ZB716): an orally bioavailable selective estrogen receptor downregulator (SERD). J. Med. Chem. 59, 8134–8140 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. 99.

    Jiang, Q., Zhong, Q., Zhang, Q., Zheng, S. & Wang, G. Boron-based 4-hydroxytamoxifen bioisosteres for treatment of de novo tamoxifen resistant breast cancer. ACS Med. Chem. Lett. 3, 392–396 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100.

    Min, J. et al. Adamantyl antiestrogens with novel side chains reveal a spectrum of activities in suppressing estrogen receptor mediated activities in breast cancer cells. J. Med. Chem. 60, 6321–6336 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  101. 101.

    Jordan, V. C. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 1. Receptor interactions. J. Med. Chem. 46, 883–908 (2003).

    PubMed  Article  CAS  Google Scholar 

  102. 102.

    Jordan, V. C. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 2. Clinical considerations and new agents. J. Med. Chem. 46, 1081–1111 (2003).

    PubMed  Article  CAS  Google Scholar 

  103. 103.

    Wakeling, A. E. & Bowler, J. ICI 182,780, a new antioestrogen with clinical potential. J. Steroid Biochem. Mol. Biol. 43, 173–177 (1992).

    PubMed  Article  CAS  Google Scholar 

  104. 104.

    Van de Velde, P. et al. RU 58,668, a new pure antiestrogen inducing a regression of human mammary carcinoma implanted in nude mice. J. Steroid Biochem. Mol. Biol. 48, 187–196 (1994).

    PubMed  Article  Google Scholar 

  105. 105.

    Srinivasan, S. et al. Full antagonism of the estrogen receptor without a prototypical ligand side chain. Nat. Chem. Biol. 13, 111–118 (2017).

    PubMed  Article  CAS  Google Scholar 

  106. 106.

    Zhu, M. et al. Bicyclic core estrogens as full antagonists: synthesis, biological evaluation and structure-activity relationships of estrogen receptor ligands based on bridged oxabicyclic core arylsulfonamides. Org. Biomol. Chem. 10, 8692–8700 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. 107.

    Zheng, Y. et al. Development of selective estrogen receptor modulator (SERM)-like activity through an indirect mechanism of estrogen receptor antagonism: defining the binding mode of 7-oxabicyclo[2.2.1]hept-5-ene scaffold core ligands. ChemMedChem 7, 1094–1100 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  108. 108.

    Lebraud, H. & Heightman, T. D. Protein degradation: a validated therapeutic strategy with exciting prospects. Essays Biochem. 61, 517–527 (2017).

    PubMed  Article  Google Scholar 

  109. 109.

    Abdel-Hafiz, H. A. Epigenetic mechanisms of tamoxifen resistance in luminal breast cancer. Diseases 5, E16 (2017).

    PubMed  Article  Google Scholar 

  110. 110.

    Nagini, S. Breast cancer: current molecular therapeutic targets and new players. Anticancer Agents Med. Chem. 17, 152–163 (2017).

    PubMed  Article  CAS  Google Scholar 

  111. 111.

    Song, X. et al. Development of potent small-molecule inhibitors to drug the undruggable steroid receptor coactivator-3. Proc. Natl. Acad. Sci. USA 113, 4970–4975 (2016).

    PubMed  Article  CAS  Google Scholar 

  112. 112.

    Sahni, J. M. & Keri, R. A. Targeting bromodomain and extraterminal proteins in breast cancer. Pharmacol. Res. https://doi.org/10.1016/j.phrs.2017.11.015 (2017).

  113. 113.

    Josan, J. S. & Katzenellenbogen, J. A. Designer antiandrogens join the race against drug resistance. eLife 2, e00692 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Nardone, A., De Angelis, C., Trivedi, M. V., Osborne, C. K. & Schiff, R. The changing role of ER in endocrine resistance. Breast 24 (Suppl. 2), S60–S66 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Maurer, C., Martel, S., Zardavas, D. & Ignatiadis, M. New agents for endocrine resistance in breast cancer. Breast 34, 1–11 (2017).

    PubMed  Article  Google Scholar 

  116. 116.

    Augereau, P. et al. Hormonoresistance in advanced breast cancer: a new revolution in endocrine therapy. Ther. Adv. Med. Oncol. 9, 335–346 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  117. 117.

    O’Sullivan, C. C. Overcoming endocrine resistance in hormone-receptor positive advanced breast cancer-the emerging role of CDK4/6 inhibitors. Int. J. Cancer Clin. Res. 2, 029 (2015).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    O’Sullivan, C. C. CDK4/6 inhibitors for the treatment of advanced hormone receptor positive breast cancer and beyond: 2016 update. Expert Opin. Pharmacother. 17, 1657–1667 (2016).

    PubMed  Article  CAS  Google Scholar 

  119. 119.

    Seielstad, D. A., Carlson, K. E., Katzenellenbogen, J. A., Kushner, P. J. & Greene, G. L. Molecular characterization by mass spectrometry of the human estrogen receptor ligand-binding domain expressed in Escherichia coli. Mol. Endocrinol. 9, 647–658 (1995).

    PubMed  CAS  Google Scholar 

  120. 120.

    Montano, M. M., Müller, V., Trobaugh, A. & Katzenellenbogen, B. S. The carboxy-terminal F domain of the human estrogen receptor: role in the transcriptional activity of the receptor and the effectiveness of antiestrogens as estrogen antagonists. Mol. Endocrinol. 9, 814–825 (1995).

    PubMed  CAS  Google Scholar 

  121. 121.

    Patel, S. R. & Skafar, D. F. Modulation of nuclear receptor activity by the F domain. Mol. Cell. Endocrinol. 418, 298–305 (2015).

    PubMed  Article  CAS  Google Scholar 

  122. 122.

    Yang, J., Singleton, D. W., Shaughnessy, E. A. & Khan, S. A. The F-domain of estrogen receptor-alpha inhibits ligand induced receptor dimerization. Mol. Cell. Endocrinol. 295, 94–100 (2008).

    PubMed  Article  CAS  Google Scholar 

  123. 123.

    Schwartz, J. A., Zhong, L., Deighton-Collins, S., Zhao, C. & Skafar, D. F. Mutations targeted to a predicted helix in the extreme carboxyl-terminal region of the human estrogen receptor-alpha alter its response to estradiol and 4-hydroxytamoxifen. J. Biol. Chem. 277, 13202–13209 (2002).

    PubMed  Article  CAS  Google Scholar 

  124. 124.

    Tamrazi, A., Carlson, K. E., Daniels, J. R., Hurth, K. M. & Katzenellenbogen, J. A. Estrogen receptor dimerization: ligand binding regulates dimer affinity and dimer dissociation rate. Mol. Endocrinol. 16, 2706–2719 (2002).

    PubMed  Article  CAS  Google Scholar 

  125. 125.

    Nadal, M. et al. Structure of the homodimeric androgen receptor ligand-binding domain. Nat. Commun. 8, 14388 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  126. 126.

    Cheng, Y. & Prusoff, W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973).

    PubMed  Article  CAS  Google Scholar 

  127. 127.

    Li, Z. et al. Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature 523, 347–351 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  128. 128.

    Norris, J. D. et al. Androgen receptor antagonism drives cytochrome P450 17A1 inhibitor efficacy in prostate cancer. J. Clin. Invest. 127, 2326–2338 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Krishnan, A. V. et al. A glucocorticoid-responsive mutant androgen receptor exhibits unique ligand specificity: therapeutic implications for androgen-independent prostate cancer. Endocrinology 143, 1889–1900 (2002).

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank their numerous co-workers for their research efforts. Grant support of much of the work described in this Opinion piece from the following sources: the US National Institutes of Health (PHS R01DK015556 to J.A.K., P41GM104601 and T32GM070421 to the University of Illinois, 5R01CA20499 to S.C., P30CA008748 to Memorial Sloan Kettering Cancer Center and P30CA14599 to the University of Chicago Cancer Center), the Virginia and D.K. Ludwig Fund for Cancer Research (to G.L.G.), the US Department of Defense (DOD BC131458 to G.L.G.) and the Breast Cancer Research Foundation (BCRF 17–083 to J.A.K. and B.S.K. and BCRF 17-082 to B.S.K.).

Author information

Affiliations

Authors

Contributions

J.A.K., C.G.M., B.S.K., G.L.G. and S.C. researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to John A. Katzenellenbogen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Cancer thanks J. Carroll, V. C. Jordan and R. Schiff for their contribution to the peer review of this work.

Related links

cBioPortal database: http://www.cbioportal.org/study?id=msk_impact_2017#summary

Electronic supplementary material

Supplementary Figures

41568_2018_1_MOESM2_ESM.mov

Supplementary Movie 1: Activating Mutations in ER – Outside of the ER Ligand Binding Pocket. ERα LBD dimer showing the locations of the activating mutations (green) relative to the ligand (estradiol), the coactivator helix (orange cylinder) and the AF2 coactivator binding region (yellow helices). Monomers are colored blue and gray, and the h9-h10 loop is red. All of the mutations are far from the ligand binding pocket.

41568_2018_1_MOESM3_ESM.mov

Supplementary Movie 2: Activating Mutations in AR – Inside the AR Ligand Binding Pocket. AR LBD monomer showing the locations of the activating mutations (green) relative to the ligand (testosterone), and the AF2 coactivator binding region (yellow helices). All of the AR mutations are inside the ligand binding pocket in contact with the ligand. The extension of h12 can be seen as a kink in the helix, followed by a strand that makes a β-sheet with the h9-h10 loop region and interferes with the dimerization site used by ERα LBD dimers.

41568_2018_1_MOESM4_ESM.mov

Supplementary Movie 3: ER and AR LBDs Overlapped Showing the Locations of the Mutations Relative to the Ligand Binding Pocket. Overlay of ERα LBD (light blue) and the AR LBD (light red) showing the different locations of endocrine therapy resistance mutations (ER – dark blue outside of the LBP, estradiol; AR – dark red, within the LBP). The structure extends beyond the end of h12 in the structure of the AR LBD but not in the ER LBD structure.

Glossary

Activation functions

Regions of amino acid sequence or 3D structure in transcription factors that are associated with the activation of transcription.

Androgen receptor

(AR). A transcription factor that is a member of the nuclear hormone receptor superfamily. It is the principal mediator of the biological effects of androgens and a major driver of the proliferation and progression of prostate cancer.

Anti-oestrogen

A ligand for the oestrogen receptor (ER) used as one form of endocrine therapy for breast cancer. Anti-oestrogens bind to ER and alter its conformation so that it is unable to stimulate the proliferation and progression of breast cancer cells.

Apo

A term that indicates that a binding protein is in its unliganded state.

Aromatase inhibitors

Used as a form of endocrine therapy for breast cancer that works by blocking the production of oestrogens by the ovaries and other tissues, such as the adrenals, and by the tumour itself.

Conservative mutation

The replacement of a residue in a protein with one that has similar physical properties.

Coulombic repulsion

A force separating two entities of equal charge, either positive–positive or negative–negative, when they are close in space.

Heat shock proteins

(HSPs). A family of proteins that selectively bind other proteins that are intrinsically or aberrantly unfolded. HSP90 is the major protein to which wild-type apo-ERα binds, although other HSPs also likely participate in this binding.

Ligand-binding domain

(LBD). A domain of the oestrogen receptor (ER) responsible for binding oestrogens and anti-oestrogens. It is domain E out of the domains A–F and stretches approximately from amino acid 304 to 554 out of a total of 595 amino acids, accounting for about 40% of the overall length of ERα. It is composed of 12 α-helices and a few β-strand elements that make up the secondary structure.

Ligand-binding pocket

(LBP). An interior region of the ligand-binding domain within which both agonist and antagonist ligands bind, with occasional portions of the ligands extending beyond the confines of the pocket.

Molecular dynamics modelling

(MDM). A computationally intensive method for exploring the conformation and dynamic features of proteins by providing alternating inputs of velocity on individual atoms and relaxation within the energy force field confines of the protein.

Nuclear receptors

A superfamily of proteins of which the oestrogen receptor-α (ERα) and the androgen receptor (AR) are members. Most members of the superfamily function largely as transcription factors, many of which are regulated by the binding of ligands, which can be endogenous metabolites (hormones) or exogenous ligands (pharmaceuticals, xenobiotics and so on).

Oestrogen receptor-α

(ERα). A transcription factor that is a member of the nuclear hormone receptor superfamily. The ERα subtype is the principal mediator of the biological effects of oestrogens and a major driver of the proliferation and progression of breast cancer. ERα is distinguished from another ER subtype, ERβ, which has very different biological activities that are largely unrelated to driving breast cancer progression.

Oestradiol

A steroid with an aromatic A ring that is the principal endogenous oestrogen hormone that drives the proliferation and progression of breast cancer cells.

Selective oestrogen receptor modulator

(SERM). A class of oestrogen receptor-α (ERα) ligands that can have tissue-selective pharmacological effects, acting as agonists in some tissues (such as bone and vascular tissues) and antagonists in others (such as breast and uterine tissues). SERMs such as tamoxifen are used in breast cancer endocrine therapy; other SERMs such as raloxifene are used in hormone replacement therapies to protect bone in postmenopausal women.

Selective oestrogen receptor downregulator

(SERD). A class of oestrogen receptor-α (ERα) ligands such as fulvestrant that cause a reduction in the levels of the ERα protein; they also function as ER antagonists and are used in breast cancer endocrine therapies.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katzenellenbogen, J.A., Mayne, C.G., Katzenellenbogen, B.S. et al. Structural underpinnings of oestrogen receptor mutations in endocrine therapy resistance. Nat Rev Cancer 18, 377–388 (2018). https://doi.org/10.1038/s41568-018-0001-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing