Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Drug design on quantum computers

Abstract

The promised industrial applications of quantum computers often rest on their anticipated ability to perform accurate, efficient quantum chemical calculations. Computational drug discovery relies on accurate predictions of how candidate drugs interact with their targets in a cellular environment involving several thousands of atoms at finite temperatures. Although quantum computers are still far from being used as daily tools in the pharmaceutical industry, here we explore the challenges and opportunities of applying quantum computers to drug design. We discuss where these could transform industrial research and identify the substantial further developments needed to reach this goal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow of electronic-structure calculations on quantum computers.
Fig. 2: Elements required for quantum computing, quantum algorithm design and the scaling of quantum algorithms.
Fig. 3: Drug design by targeting proteins.

Similar content being viewed by others

References

  1. Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical r&d efficiency. Nat. Rev. Drug Discov. 11, 191–200 (2012).

    Article  Google Scholar 

  2. Allen, B. K. et al. Design of a systemic small molecule clinical STING agonist using physics-based simulations and artificial intelligence. Preprint at https://www.biorxiv.org/content/10.1101/2022.05.23.493001v4 (2022).

  3. Palermo, G. & De Vivo, M. in Computational Chemistry for Drug Discovery 1–15 (Springer, 2014); https://doi.org/10.1007/978-94-007-6178-0_100975-1

  4. Shukla, R. & Tripathi, T. in Molecular Dynamics Simulation in Drug Discovery: Opportunities and Challenges 295–316 (Springer, 2021); https://doi.org/10.1007/978-981-15-8936-2_12

  5. Irle, S., Vuong, V. Q., Elayyan, M. H., Talipov, M. R. & Abel, S. M. in Protein Molecular Dynamics Simulations with Approximate QM: What Can We Learn? 149–161 (Springer, 2020); https://doi.org/10.1007/978-1-0716-0282-9_10

  6. Heifetz, A. Quantum Mechanics in Drug Discovery. Methods in Molecular Biology (Springer, 2020); https://books.google.ch/books?id=yYgeygEACAAJ

  7. Maltarollo, V. G., Gertrudes, J. C., Oliveira, P. R. & Honorio, K. M. Applying machine learning techniques for ADME-Tox prediction: a review. Expert Opin. Drug Metab. Toxicol. 11, 259–271 (2015).

    Article  Google Scholar 

  8. Jayatunga, M. K., Xie, W., Ruder, L., Schulze, U. & Meier, C. AI in small-molecule drug discovery: a coming wave? Nat. Rev. Drug Discov. 21, 175–176 (2022).

    Article  Google Scholar 

  9. Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

    Article  ADS  Google Scholar 

  10. Cao, Y. et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 119, 10856–10915 (2019).

    Article  Google Scholar 

  11. Bauer, B., Bravyi, S., Motta, M. & Chan, G. K.-L. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev. 120, 12685–12717 (2020).

    Article  Google Scholar 

  12. Liu, H. et al. Prospects of quantum computing for molecular sciences. Mater. Theory 6, 11 (2022).

    Article  ADS  Google Scholar 

  13. Baiardi, A., Christandl, M. & Reiher, M. Quantum computing for molecular biology. ChemBioChem 24, e202300120 (2023).

  14. Blunt, N. S. et al. Perspective on the current state-of-the-art of quantum computing for drug discovery applications. J. Chem. Theory Comput. 18, 7001–7023 (2022).

    Article  Google Scholar 

  15. Lee, S. et al. Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry. Nat. Commun. 14, 1952 (2023).

    Article  ADS  Google Scholar 

  16. Khedkar, A. & Roemelt, M. Modern multireference methods and their application in transition metal chemistry. Phys. Chem. Chem. Phys. 23, 17097–17112 (2021).

    Article  Google Scholar 

  17. Pernal, K. Electron correlation from the adiabatic connection for multireference wave functions. Phys. Rev. Lett. 120, 013001 (2018).

    Article  ADS  Google Scholar 

  18. Bofill, J. M. & Pulay, P. The unrestricted natural orbital–complete active space (UNO–CAS) method: an inexpensive alternative to the complete active space–self-consistent-field (CAS–SCF) method. J. Chem. Phys. 90, 3637–3646 (1989).

    Article  ADS  Google Scholar 

  19. Li, Z., Li, J., Dattani, N. S., Umrigar, C. J. & Chan, G. K.-L. The electronic complexity of the ground-state of the FeMo cofactor of nitrogenase as relevant to quantum simulations. J. Chem. Phys. 150, 024302 (2019).

    Article  ADS  Google Scholar 

  20. Goings, J. J. et al. Reliably assessing the electronic structure of cytochrome p450 on today’s classical computers and tomorrow’s quantum computers. Proc. Natl Acad. Sci. USA 119, e2203533119 (2022).

    Article  Google Scholar 

  21. Lee, J. & Head-Gordon, M. Distinguishing artificial and essential symmetry breaking in a single determinant: approach and application to the C60, C36 and C20 fullerenes. Phys. Chem. Chem. Phys. 21, 4763–4778 (2019).

    Article  Google Scholar 

  22. Cheng, L., Gauss, J., Ruscic, B., Armentrout, P. B. & Stanton, J. F. Bond dissociation energies for diatomic molecules containing 3d transition metals: benchmark scalar-relativistic coupled-cluster calculations for 20 molecules. J. Chem. Theory Comput. 13, 1044–1056 (2017).

    Article  Google Scholar 

  23. Degroote, M., Henderson, T. M., Zhao, J., Dukelsky, J. & Scuseria, G. E. Polynomial similarity transformation theory: a smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS Hamiltonian. Phys. Rev. B 93, 125124 (2016).

    Article  ADS  Google Scholar 

  24. Rissler, J., Noack, R. M. & White, S. R. Measuring orbital interaction using quantum information theory. Chem. Phys. 323, 519–531 (2006).

    Article  Google Scholar 

  25. Stein, C. J. & Reiher, M. Automated selection of active orbital spaces. J. Chem. Theory Comput. 12, 1760–1771 (2016).

    Article  Google Scholar 

  26. Stein, C. J. & Reiher, M. Measuring multi-configurational character by orbital entanglement. Mol. Phys. 115, 2110–2119 (2017).

    Article  ADS  Google Scholar 

  27. Ding, L. et al. Concept of orbital entanglement and correlation in quantum chemistry. J. Chem. Theory Comput. 17, 79–95 (2021).

    Article  Google Scholar 

  28. Cao, Y., Romero, J. & Aspuru-Guzik, A. Potential of quantum computing for drug discovery. IBM J. Res. Dev. 62, 6:1–6:20 (2018).

    Article  Google Scholar 

  29. Aaronson, S. Read the fine print. Nat. Phys. 11, 291–293 (2015).

    Article  Google Scholar 

  30. Wiebe, N. Key questions for the quantum machine learner to ask themselves. New J. Phys. 22, 091001 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  31. Tang, E. Dequantizing algorithms to understand quantum advantage in machine learning. Nat. Rev. Phys. 4, 692–693 (2022).

    Article  Google Scholar 

  32. Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).

    Article  ADS  Google Scholar 

  33. McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S. C. & Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 92, 015003 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  34. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article  Google Scholar 

  35. Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  36. Quek, Y., França, D. S., Khatri, S., Meyer, J. J. & Eisert, J. Exponentially tighter bounds on limitations of quantum error mitigation. Preprint at https://arxiv.org/abs/2210.11505 (2022).

  37. Takagi, R., Endo, S., Minagawa, S. & Gu, M. Fundamental limits of quantum error mitigation. npj Quantum Inf. 8, 114 (2022).

    Article  ADS  Google Scholar 

  38. Campbell, E. T., Terhal, B. M. & Vuillot, C. Roads towards fault-tolerant universal quantum computation. Nature 549, 172–179 (2017).

    Article  ADS  Google Scholar 

  39. Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl Acad. Sci. USA 114, 7555–7560 (2017).

    Article  ADS  Google Scholar 

  40. Lee, J. et al. Even more efficient quantum computations of chemistry through tensor hypercontraction. PRX Quantum 2, 030305 (2021).

    Article  ADS  Google Scholar 

  41. Ge, Y., Tura, J. & Cirac, J. I. Faster ground state preparation and high-precision ground energy estimation with fewer qubits. J. Math. Phys. 60, 022202 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  42. Lin, L. & Tong, Y. Near-optimal ground state preparation. Quantum 4, 372 (2020).

    Article  ADS  Google Scholar 

  43. Steudtner, M. et al. Fault-tolerant quantum computation of molecular observables. Quantum 7, 1164 (2023).

  44. O’Brien, T. E. et al. Efficient quantum computation of molecular forces and other energy gradients. Phys. Rev. Res. 4, 043210 (2022).

    Article  Google Scholar 

  45. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  ADS  Google Scholar 

  46. Vigliar, C. et al. Error-protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021).

    Article  Google Scholar 

  47. Poulin, D., Kitaev, A., Steiger, D. S., Hastings, M. B. & Troyer, M. Quantum algorithm for spectral measurement with a lower gate count. Phys. Rev. Lett. 121, 010501 (2018).

    Article  ADS  Google Scholar 

  48. Wecker, D. et al. Solving strongly correlated electron models on a quantum computer. Phys. Rev. A 92, 062318 (2015).

    Article  ADS  Google Scholar 

  49. Kenakin, T. P. in Pharmacology in Drug Discovery and Development 2nd edn (ed. Kenakin, T. P.) Ch. 1, 1–20 (Academic, 2017); https://www.sciencedirect.com/science/article/pii/B9780128037522000016

  50. Polishchuk, P. G., Madzhidov, T. I. & Varnek, A. Estimation of the size of drug-like chemical space based on GDB-17 data. J. Comput. Aided Mol. Des. 27, 675–679 (2013).

    Article  ADS  Google Scholar 

  51. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

    Article  Google Scholar 

  52. Cournia, Z., Allen, B. & Sherman, W. Relative binding free energy calculations in drug discovery: recent advances and practical considerations. J. Chem. Inf. Model. 57, 2911–2937 (2017).

    Article  Google Scholar 

  53. Jiménez-Luna, J., Grisoni, F., Weskamp, N. & Schneider, G. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opin. Drug Discov. 16, 949–959 (2021).

    Article  Google Scholar 

  54. Tinberg, C. E. et al. Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501, 212–216 (2013).

    Article  ADS  Google Scholar 

  55. King, E., Aitchison, E., Li, H. & Luo, R. Recent developments in free energy calculations for drug discovery. Front. Mol. Biosci. 8 10.3389/fmolb.2021.712085 (2021).

  56. Kaynak, B. T. et al. Sampling of protein conformational space using hybrid simulations: a critical assessment of recent methods. Front. Mol. Biosci. 9, 832847 (2022).

    Article  Google Scholar 

  57. Song, L. F. & Merz Jr, K. M. Evolution of alchemical free energy methods in drug discovery. J. Chem. Inf. Model. 60, 5308–5318 (2020).

    Article  Google Scholar 

  58. Karplus, M. & McCammon, J. A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9, 646–652 (2002).

    Article  Google Scholar 

  59. Amaro, R. E. & Mulholland, A. J. Multiscale methods in drug design bridge chemical and biological complexity in the search for cures. Nat. Rev. Chem. 2, 0148 (2018).

    Article  Google Scholar 

  60. von Burg, V. et al. Quantum computing enhanced computational catalysis. Phys. Rev. Res. 3, 033055 (2021).

    Article  Google Scholar 

  61. Taylor, C. J. et al. A brief introduction to chemical reaction optimization. Chem. Rev. 123, 3089–3126 (2023).

    Article  Google Scholar 

  62. Xin, D. et al. Development of a 13C NMR chemical shift prediction procedure using B3LYP/cc-pVDZ and empirically derived systematic error correction terms: A computational small molecule structure elucidation method. J. Org. Chem. 82, 5135–5145 (2017).

    Article  Google Scholar 

  63. Joyce, L. A. et al. Beyond optical rotation: what’s left is not always right in total synthesis. Chem. Sci. 9, 415–424 (2017).

    Article  Google Scholar 

  64. Merten, C., Golub, T. P. & Kreienborg, N. M. Absolute configurations of synthetic molecular scaffolds from vibrational CD spectroscopy. J. Org. Chem. 84, 8797–8814 (2019).

    Article  Google Scholar 

  65. O’Brien, T. E. et al. Quantum computation of molecular structure using data from challenging-to-classically-simulate nuclear magnetic resonance experiments. PRX Quantum 3, 030345 (2022).

    Article  ADS  Google Scholar 

  66. Gao, P., Zhang, J., Peng, Q., Zhang, J. & Glezakou, V.-A. General protocol for the accurate prediction of molecular 13C/1H NMR chemical shifts via machine learning augmented DFT. J. Chem. Inf. Model. 60, 3746–3754 (2020).

    Article  Google Scholar 

  67. Smith, B. R., Eastman, C. M. & Njardarson, J. T. Beyond C, H, O and N! analysis of the elemental composition of US FDA approved drug architectures. J. Med. Chem. 57, 9764–9773 (2014).

    Article  Google Scholar 

  68. Phillips, M. A. & Pombeiro, J. A. Transition metal-based prodrugs for anticancer drug delivery. Curr. Med. Chem. 26, 7476–7519 (2019).

    Article  Google Scholar 

  69. Lee, Y.-C., Brell, C. G. & Flammia, S. T. Topological quantum error correction in the Kitaev honeycomb model. J. Stat. Mech. Theory Exp. 2017, 083106 (2017).

    Article  MathSciNet  Google Scholar 

  70. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Article  ADS  Google Scholar 

  71. Berry, D. W., Gidney, C., Motta, M., McClean, J. R. & Babbush, R. Qubitization of arbitrary basis quantum chemistry leveraging sparsity and low rank factorization. Quantum 3, 208 (2019).

    Article  Google Scholar 

  72. Gilyén, A., Su, Y., Charikar, M., Low, G. H. & Wiebe, N. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proc. 51st Annual ACM SIGACT Symposium on Theory of Computing 193–204 ACM (2019). https://dl.acm.org/doi/10.1145/3313276.3316366

  73. Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article  ADS  Google Scholar 

  74. Tubman, N. M. et al. Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices. Preprint at https://arxiv.org/pdf/1809.05523.pdf (2018).

  75. Mitarai, K., Toyoizumi, K. & Mizukami, W. Perturbation theory with quantum signal processing. Quantum 7, 1000 (2023).

    Article  Google Scholar 

  76. Barcza, G., Legeza, O., Marti, K. H. & Reiher, M. Quantum-information analysis of electronic states of different molecular structures. Phys. Rev. A 83, 012508 (2011).

    Article  ADS  Google Scholar 

  77. Haghshenas, R., Gray, J., Potter, A. C. & Chan, G. K.-L. Variational power of quantum circuit tensor networks. Phys. Rev. X 12, 011047 (2022).

    Google Scholar 

  78. Gilyén, A., Arunachalam, S. & Wiebe, N. in Optimizing Quantum Optimization Algorithms via Faster Quantum Gradient Computation 1425–1444 (Society for Industrial and Applied Mathematics, 2019); https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.87

  79. Babbush, R. et al. Quantum simulation of exact electron dynamics can be more efficient than classical mean-field methods. Nat. Commun. 14, 4058 (2023).

    Article  ADS  Google Scholar 

  80. Simon, S. et al. Improved precision scaling for simulating coupled quantum-classical dynamics. Preprint at https://arxiv.org/abs/2307.13033 (2023).

  81. Somma, R. D., Batista, C. D. & Ortiz, G. Quantum approach to classical statistical mechanics. Phys. Rev. Lett. 99, 030603 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  82. Babbush, R., Berry, D. W., Kothari, R., Somma, R. D. & Wiebe, N. Exponential quantum speedup in simulating coupled classical oscillators. Phys. Rev. X 13, 041041 (2023).

  83. Jin, S., Liu, N. & Yu, Y. Time complexity analysis of quantum algorithms via linear representations for nonlinear ordinary and partial differential equations. J. Comput. Phys. 487, 112149 (2023).

    Article  MathSciNet  Google Scholar 

  84. Waldron, T. T., Schrift, G. L. & Murphy, K. P. The salt-dependence of a protein-ligand interaction: ion-protein binding energetics. J. Mol. Biol. 346, 895–905 (2005).

    Article  Google Scholar 

  85. Petukh, M., Stefl, S. & Alexov, E. The role of protonation states in ligand-receptor recognition and binding. Curr. Pharm. Des. 19, 4182–4190 (2013).

    Article  Google Scholar 

  86. Aleksić, S., Seeliger, D. & Brown, J. B. ADMET predictability at Boehringer Ingelheim: state-of-the-art, and do bigger datasets or algorithms make a difference? Mol. Inform. 41, 2100113 (2022).

    Article  Google Scholar 

  87. Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    Article  ADS  Google Scholar 

  88. McClean, J. R. et al. What the foundations of quantum computer science teach us about chemistry. J. Chem. Phys. 155, 150901 (2021).

    Article  ADS  Google Scholar 

  89. Hastings, M. B., Wecker, D., Bauer, B. & Troyer, M. Improving quantum algorithms for quantum chemistry. Quantum Info. Comput. 15, 1–21 (2015).

    MathSciNet  Google Scholar 

  90. Low, G. H. & Chuang, I. L. Hamiltonian simulation by qubitization. Quantum 3, 163 (2019).

    Article  Google Scholar 

  91. Litinski, D. & Nickerson, N. Active volume: an architecture for efficient fault-tolerant quantum computers with limited non-local connections. Preprint at https://arxiv.org/pdf/2211.15465.pdf (2022).

  92. Chen, E. H. et al. Calibrated decoders for experimental quantum error correction. Phys. Rev. Lett. 128, 110504 (2022).

    Article  ADS  Google Scholar 

  93. Bravyi, S. et al. High-threshold and low-overhead fault-tolerant quantum memory. Preprint at https://arxiv.org/pdf/2308.07915.pdf (2023).

  94. Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).

    Article  ADS  Google Scholar 

  95. Acharya, R. et al. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).

    Article  ADS  Google Scholar 

  96. Sehnal, D. et al. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 49, W431–W437 (2021).

    Article  ADS  Google Scholar 

  97. Gibney, E. Hello quantum world! Google publishes landmark quantum supremacy claim. Nature 574, 461–462 (2019).

    Article  ADS  Google Scholar 

  98. Bonagura, C. et al. High-resolution crystal structure of compound I intermediate of cytochrome c peroxidase (CcP). Biochemistry 42, 5600–5608 (2003).

Download references

Acknowledgements

We thank D. McConnell, A. Renner, C. Ehrendorfer, L. Pautasso, M. Möller and A. Pflanzer for comments on the various iterations of this Perspective. The molecules reported are visualized in Mol*96. We also thank F. Levi and R. Brierley for help in shaping the content and scope of this Perspective.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Santagati.

Ethics declarations

Competing interests

R.B. (Google), R.M.P. (QC Ware) and N.C.R. (Google) have partial ownership in terms of stock or options in their respective companies. R.S., M.D., N.M., M.S. and C.U.-U. are employees of Boehringer Ingelheim, a research-driven global pharmaceutical company.

Peer review

Peer review information

Nature Physics thanks Andreas Goetz and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santagati, R., Aspuru-Guzik, A., Babbush, R. et al. Drug design on quantum computers. Nat. Phys. 20, 549–557 (2024). https://doi.org/10.1038/s41567-024-02411-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-024-02411-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing