Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Attosecond metrology of the two-dimensional charge distribution in molecules

Abstract

Photoionization as a half-scattering process is not instantaneous. Usually, time delays in photoionization are on the order of tens of attoseconds. In going from a single atom to a nano-object, one can expect the delay to increase, since the photoelectron scatters over a larger distance. Here we show that this intuition is not correct when comparing three-dimensional and planar molecules. Using attosecond interferometry, we find that the time delays in two-dimensional (2D) carbon-based molecules can be significantly shorter than those of three-dimensional counterparts. The measured time delay carries the signature of the spatial distribution of the 2D hole created in the residual molecular cation, allowing us to obtain its dimensions with angstrom accuracy. Our results demonstrate that the photoionization delay depends on the symmetry and shape of the created hole, as we show by identifying a quadrupole contribution in the measured delay of 2D molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Attosecond interferometry for delay measurements in complex molecules.
Fig. 2: Attosecond photoionization delays in naphthalene and adamantane.
Fig. 3: Attosecond time delays in fluorene and pyrene.
Fig. 4: Attosecond time delays in 2D molecules as a function of hole surface.

Similar content being viewed by others

Data availability

All the data necessary to validate the results are included in the main text and Supplementary Information. Additional data are available upon reasonable request to V.L. or F.L. Source data are provided with this paper.

References

  1. Hawkes, P. W. & Spence, J. C. H. Science of Microscopy (Springer, 2007).

  2. Becker, U. & Shirley, D. A. VUV and Soft X-Ray Photoionization (Plenum, 1996).

  3. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  4. Lépine, F., Ivanov, M. Y. & Vrakking, M. J. J. Attosecond molecular dynamics: fact or fiction? Nat. Photonics 8, 195–204 (2014).

    Article  ADS  Google Scholar 

  5. Pazourek, R., Nagele, S. & Burgdörfer, J. Attosecond chronoscopy of photoemission. Rev. Mod. Phys. 87, 765–802 (2015).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Wigner, E. P. Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 98, 145–147 (1955).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Klünder, K. et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).

    Article  ADS  PubMed  Google Scholar 

  9. Isinger, M. et al. Photoionization in the time and frequency domain. Science 358, 893–896 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Huppert, M., Jordan, I., Baykusheva, D., von Conta, A. & Wörner, H. J. Attosecond delays in molecular photoionization. Phys. Rev. Lett. 117, 093001 (2016).

    Article  ADS  PubMed  Google Scholar 

  11. Vos, J. et al. Orientation-dependent stereo wigner time delay and electron localization in a small molecule. Science 360, 1326–1330 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Biswas, S. et al. Probing molecular environment through photoemission delays. Nat. Phys. 16, 778–783 (2020).

    Article  CAS  Google Scholar 

  13. Loriot, V. et al. High harmonic generation-2ω attosecond stereo-photoionization interferometry in N2. J. Phys. Photonics 2, 024003 (2020).

    Article  ADS  CAS  Google Scholar 

  14. Nandi, S. et al. Attosecond timing of electron emission from a molecular shape resonance. Sci. Adv. 6, eaba7762 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gong, X. et al. Attosecond spectroscopy of size-resolved water clusters. Nature 609, 507–511 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Seiffert, L. et al. Attosecond chronoscopy of electron scattering in dielectric nanoparticles. Nat. Phys. 13, 766–770 (2017).

    Article  CAS  Google Scholar 

  17. Ossiander, M. et al. Absolute timing of the photoelectric effect. Nature 561, 374–377 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Jordan, I. et al. Attosecond spectroscopy of liquid water. Science 369, 974–979 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft x-rays. Science 302, 1540–1543 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Dahlström, J. M. et al. Theory of attosecond delays in laser-assisted photoionization. Chem. Phys. 414, 53–64 (2013).

    Article  Google Scholar 

  22. Linstrom, P. & Mallard, W. The NIST chemistry webbook: a chemical data resource on the internet. J. Chem. Eng. Data 46, 1059 (2001).

    Article  CAS  Google Scholar 

  23. Mauritsson, J., Gaarde, M. B. & Schafer, K. J. Accessing properties of electron wave packets generated by attosecond pulse trains through time-dependent calculations. Phys. Rev. A 72, 013401 (2005).

    Article  ADS  Google Scholar 

  24. Kotur, M. et al. Spectral phase measurement of a Fano resonance using tunable attosecond pulses. Nat. Commun. 7, 10566 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hervé, M. et al. Ultrafast dynamics of correlation bands following XUV molecular photoionization. Nat. Phys. 17, 327–331 (2021).

    Article  Google Scholar 

  26. Tao, Z. et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science 353, 62 (2016).

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  27. Siek, F. et al. Angular momentum-induced delays in solid-state photoemission enhanced by intra-atomic interactions. Science 357, 1274 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Garg, M. et al. Real-space subfemtosecond imaging of quantum electronic coherences in molecules. Nature Photonics 16, 196–202 (2022).

    Article  ADS  CAS  Google Scholar 

  29. Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477–3484 (1997).

    Article  ADS  CAS  Google Scholar 

  30. Stener, M., De Alti, G. & Decleva, P. Convergence of the density functional one-centre expansion for the molecular continuum: N2 and (CH3)3N. Theor. Chem. Acc. 101, 247–256 (1999).

    Article  CAS  Google Scholar 

  31. Toffoli, D., Stener, M., Fronzoni, G. & Decleva, P. Convergence of the multicenter B-spline DFT approach for the continuum. Chem. Phys. 276, 25–43 (2002).

    Article  CAS  Google Scholar 

  32. Nisoli, M., Decleva, P., Calegari, F., Palacios, A. & Martín, F. Attosecond electron dynamics in molecules. Chem. Rev. 117, 10760–10825 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Baykusheva, D. & Wörner, H. J. Theory of attosecond delays in molecular photoionization. J. Chem. Phys. 146, 124306 (2017).

    Article  ADS  PubMed  Google Scholar 

  34. Smith, F. T. Lifetime matrix in collision theory. Phys. Rev. 118, 349–356 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  35. Stener, M., Toffoli, D., Fronzoni, G. & Decleva, P. Recent advances in molecular photoionization by density functional theory based approaches. Theor. Chem. Acc. 117, 943–956 (2007).

    Article  CAS  Google Scholar 

  36. van Leeuwen, R. & Baerends, E. J. Exchange-correlation potential with correct asymptotic behavior. Phys. Rev. A 49, 2421–2431 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Hervé, E. Constant and G. Karras for fruitful discussions. All calculations were performed at the Centro de Computación Científica (CCC) of the Universidad Autónoma de Madrid and the MareNostrum supercomputer of the Red Española de Supercomputación. We acknowledge support from CNRS, ANR-16-CE30-0012 ‘Circé’, ANR-15-CE30-0001 ‘CIMBAAD’, the Fédération de recherche André Marie Ampère and the European COST Action AttoChem (CA18222). C.M.G.C., E.P., A.P. and F.M. are supported by the Ministerio de Ciencia e Innovación (MICINN) project PID2019-105458RB-I00 and the Comunidad de Madrid project FULMATEN (ref. Y2018NMT-5028). F.M. acknowledges support from the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (CEX2020-001039-S) and the ‘Maria de Maeztu’ Programme for Units of Excellence in R&D (CEX2018-000805-M).

Author information

Authors and Affiliations

Authors

Contributions

V.L. and F.L. conceived the project. A.B., A.M., C.L.G., Y.H., S.N., F.L., and V.L. performed the experiment. V.L. analysed the data. S.N. developed the analytical model. C.M.G.-C., M.L.-.A. and E.P. performed the theoretical calculations under the supervision of A.P., P.D., and F.M. The manuscript is written by V.L., S.N., and F.L. with inputs from all the authors. V.L., F.M., and F.L. supervised the project.

Corresponding authors

Correspondence to V. Loriot or F. Lépine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Continuum-continuum contribution.

(a) Theoretical continuum-continuum delay τcc from Ref. [21] as a function of the photoelectron energy (solid line). (b) τcc correction for naphthalene (purple), fluorene (fuchsia) and pyrene (fuchsia) calculated from (a) considering the differences in the ionization potentials compared to adamantane.

Extended Data Fig. 2 Experimental two-photon delays.

The experimental values for (a-d) naphthalene and (e-h) adamantane for sidebands SB14, SB16, SB18 and SB20 respectively.

Extended Data Fig. 3 Experimental setup.

The two main components of the setup: a Mach-Zehnder interferometer and a velocity map imaging spectrometer (VMIS). See methods for details.

Extended Data Fig. 4 SE-DFT calculation for as a function of the basis size.

(a,c) photoabsorption cross-section and (b,d) their corresponding Wigner time delay for (a-b) naphthalene and (c-d) adamantane, respectively as a function of the basis size.

Extended Data Table 1 Summary of the experimental measurements and the parameters used to obtain the absolute Wigner delays

Supplementary information

Supplementary Information

1, Analytical model. 2, Relative temporal calibration, Fig. SI1 and Fig. SI2. 3, Angle-resolved photoionization time delay, Fig. SI3. 4, Deconvolution of the states, Fig. SI4.

Source data

Source Data Fig. 1

Transients of Fig. 1b,c.

Source Data Fig. 2

Experimental, model and SE-DFT values of Fig. 2a,c,d.

Source Data Fig. 3

Experimental, model and SE-DFT values of Fig. 3.

Source Data Fig. 4

Experimental, model and SE-DFT values of Fig. 4a and SE-DFT values of Fig. 4b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loriot, V., Boyer, A., Nandi, S. et al. Attosecond metrology of the two-dimensional charge distribution in molecules. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02406-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02406-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing