Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superradiant and subradiant states in lifetime-limited organic molecules through laser-induced tuning

Abstract

An array of radiatively coupled emitters provides a platform for generating, storing and manipulating quantum light. However, the simultaneous positioning and tuning of several lifetime-limited emitters into resonance remains a challenge. Here we report the creation of superradiant and subradiant entangled states in pairs of lifetime-limited and subwavelength-spaced organic molecules by permanently shifting them into resonance with laser-induced tuning. The molecules are embedded as defects in an organic nanocrystal. The pump light redistributes charges in the nanocrystal and dramatically increases the likelihood of resonant molecules. The frequency spectra, lifetimes and second-order correlation functions agree with a simple quantum model. This scalable tuning approach with organic molecules provides a pathway for observing collective quantum phenomena in subwavelength arrays of quantum emitters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of DBT interactions.
Fig. 2: Spectroscopy of two molecules tuned into resonance.
Fig. 3: Simulation of saturation spectra.
Fig. 4: Laser-induced tuning.

Similar content being viewed by others

Data availability

All data supporting this study are available from figshare at https://doi.org/10.6084/m9.figshare.24969456. Source data are provided with this paper.

Code availability

The simulation code is available from figshare at https://doi.org/10.6084/m9.figshare.24969456.

References

  1. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  ADS  CAS  Google Scholar 

  2. Reitz, M., Sommer, C. & Genes, C. Cooperative quantum phenomena in light–matter platforms. PRX Quantum 3, 010201 (2022).

    Article  ADS  Google Scholar 

  3. Lidar, D. A., Chuang, I. L. & Whaley, K. B. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Facchinetti, G., Jenkins, S. D. & Ruostekoski, J. Storing light with subradiant correlations in arrays of atoms. Phys. Rev. Lett. 117, 243601 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Beige, A., Braun, D. & Knight, P. L. Driving atoms into decoherence-free states. New J. Phys. 2, 22 (2000).

    Article  ADS  Google Scholar 

  6. Perczel, J. et al. Topological quantum optics in two-dimensional atomic arrays. Phys. Rev. Lett. 119, 023603 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Parmee, C. D. & Ruostekoski, J. Signatures of optical phase transitions in superradiant and subradiant atomic arrays. Commun. Phys. 3, 205 (2020).

    Article  Google Scholar 

  8. Porras, D. & Cirac, J. I. Collective generation of quantum states of light by entangled atoms. Phys. Rev. A 78, 053816 (2008).

    Article  ADS  Google Scholar 

  9. González-Tudela, A., Paulisch, V., Chang, D. E., Kimble, H. J. & Cirac, J. I. Deterministic generation of arbitrary photonic states assisted by dissipation. Phys. Rev. Lett. 115, 163603 (2015).

    Article  ADS  PubMed  Google Scholar 

  10. Holzinger, R., Plankensteiner, D., Ostermann, L. & Ritsch, H. Nanoscale coherent light source. Phys. Rev. Lett. 124, 253603 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Berchera, I. R. & Degiovanni, I. P. Quantum imaging with sub-Poissonian light: challenges and perspectives in optical metrology. Metrologia 56, 024001 (2019).

    Article  ADS  CAS  Google Scholar 

  12. Bettles, R. J., Gardiner, S. A. & Adams, C. S. Enhanced optical cross section via collective coupling of atomic dipoles in a 2D array. Phys. Rev. Lett. 116, 103602 (2016).

    Article  ADS  PubMed  Google Scholar 

  13. Asenjo-Garcia, A., Moreno-Cardoner, M., Albrecht, A., Kimble, H. J. & Chang, D. E. Exponential improvement in photon storage fidelities using subradiance and ‘selective radiance’ in atomic arrays. Phys. Rev. X 7, 031024 (2017).

    Google Scholar 

  14. Rui, J. et al. A subradiant optical mirror formed by a single structured atomic layer. Nature 583, 369–374 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Bekenstein, R. et al. Quantum metasurfaces with atom arrays. Nat. Phys. 16, 676–681 (2020).

    Article  CAS  Google Scholar 

  16. Eschner, J., Raab, C., Schmidt-Kaler, F. & Blatt, R. Light interference from single atoms and their mirror images. Nature 413, 495–498 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Goban, A. et al. Superradiance for atoms trapped along a photonic crystal waveguide. Phys. Rev. Lett. 115, 063601 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. McGuyer, B. H. et al. Precise study of asymptotic physics with subradiant ultracold molecules. Nat. Phys. 11, 32–36 (2015).

    Article  CAS  Google Scholar 

  19. Solano, P., Barberis-Blostein, P., Fatemi, F. K., Orozco, L. A. & Rolston, S. L. Super-radiance reveals infinite-range dipole interactions through a nanofiber. Nat. Commun. 8, 1857 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferioli, G. et al. Laser-driven superradiant ensembles of two-level atoms near Dicke regime. Phys. Rev. Lett. 127, 243602 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Scheibner, M. et al. Superradiance of quantum dots. Nat. Phys. 3, 106–110 (2007).

    Article  CAS  Google Scholar 

  22. Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Blach, D. D. et al. Superradiance and exciton delocalization in perovskite quantum dot superlattices. Nano Lett. 22, 7811–7818 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Hettich, C. et al. Nanometer resolution and coherent optical dipole coupling of two individual molecules. Science 298, 385–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Lim, S.-H., Bjorklund, T. G., Spano, F. C. & Bardeen, C. J. Exciton delocalization and superradiance in tetracene thin films and nanoaggregates. Phys. Rev. Lett. 92, 107402 (2004).

    Article  ADS  PubMed  Google Scholar 

  26. Tiranov, A. et al. Collective super- and subradiant dynamics between distant optical quantum emitters. Science 379, 389–393 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Trebbia, J.-B., Deplano, Q., Tamarat, P. & Lounis, B. Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters. Nat. Commun. 13, 2962 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tamarat, P., Maali, A., Lounis, B. & Orrit, M. Ten years of single-molecule spectroscopy. J. Phys. Chem. A 104, 1–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Toninelli, C. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615–1628 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Clear, C. et al. Phonon-induced optical dephasing in single organic molecules. Phys. Rev. Lett. 124, 153602 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Wang, D. et al. Turning a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019).

    Article  CAS  Google Scholar 

  32. Colautti, M. et al. Laser-induced frequency tuning of Fourier-limited single-molecule emitters. ACS Nano 14, 13584–13592 (2020).

    Article  PubMed  Google Scholar 

  33. Pazzagli, S. et al. Self-assembled nanocrystals of polycyclic aromatic hydrocarbons show photostable single-photon emission. ACS Nano 12, 4295–4303 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Nicolet, A. A. L. et al. Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites. Chem. Phys. Chem. 8, 1929–1936 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Rezai, M., Wrachtrup, J. & Gerhardt, I. Coherence properties of molecular single photons for quantum networks. Phys. Rev. X 8, 031026 (2018).

    CAS  Google Scholar 

  36. Duquennoy, R. et al. Singular spectrum analysis of two-photon interference from distinct quantum emitters. Phys. Rev. Res. 5, 023191 (2023).

    Article  CAS  Google Scholar 

  37. Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nat. Phys. 4, 60–66 (2008).

    Article  CAS  Google Scholar 

  38. Ambrose, W. P., Basché, T. & Moerner, W. E. Detection and spectroscopy of single pentacene molecules in a p-terphenyl crystal by means of fluorescence excitation. J. Chem. Phys. 95, 7150–7163 (1991).

    Article  ADS  CAS  Google Scholar 

  39. Rattenbacher, D. et al. Coherent coupling of single molecules to on-chip ring resonators. New J. Phys. 21, 062002 (2019).

    Article  ADS  CAS  Google Scholar 

  40. Paulisch, V., Perarnau-Llobet, M., González-Tudela, A. & Cirac, J. I. Quantum metrology with one-dimensional superradiant photonic states. Phys. Rev. A 99, 043807 (2019).

    Article  ADS  CAS  Google Scholar 

  41. Tziperman, O. et al. Spontaneous emission from correlated emitters. Preprint at https://doi.org/10.48550/arXiv.2306.11348 (2023).

  42. Gurlek, B., Sandoghdar, V. & Martin-Cano, D. Engineering long-lived vibrational states for an organic molecule. Phys. Rev. Lett. 127, 123603 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Zirkelbach, J. et al. High-resolution vibronic spectroscopy of a single molecule embedded in a crystal. J. Chem. Phys. 156, 104301 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Schädler, K. G. et al. Electrical control of lifetime-limited quantum emitters using 2D materials. Nano Lett. 19, 3789–3795 (2019).

    Article  ADS  PubMed  Google Scholar 

  45. Moradi, A., Ristanović, Z., Orrit, M., Deperasińska, I. & Kozankiewicz, B. Matrix-induced linear Stark effect of single dibenzoterrylene molecules in 2,3-dibromonaphthalene crystal. Chem. Phys. Chem 20, 55–61 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Grandi, S. et al. Quantum dynamics of a driven two-level molecule with variable dephasing. Phys. Rev. A 94, 063839 (2016).

    Article  ADS  Google Scholar 

  47. Martín-Cano, D., Haakh, H. R., Murr, K. & Agio, M. Large suppression of quantum fluctuations of light from a single emitter by an optical nanostructure. Phys. Rev. Lett. 113, 263605 (2014).

    Article  ADS  PubMed  Google Scholar 

  48. Vivas-Viaña, A., Martín-Cano, D. & Muñoz, C. S. Dissipative stabilization of maximal entanglement between non-identical emitters via two-photon excitation. Preprint at https://arxiv.org/abs/2306.06028 (2023).

Download references

Acknowledgements

J.H. and L.H. acknowledge support from the National Science Foundation (Grant No. DMREF-2324299) and the Office of Science of the US Department of Energy through the Quantum Science Center, a National Quantum Information Science Research Center. We thank C. Toninelli and A. Clark for nanocrystal synthesis and characterization advice.

Author information

Authors and Affiliations

Authors

Contributions

J.H. and L.H. conceived the experiment. C.L. and J.H. designed the experiment, performed the numerical simulations and wrote the paper. C.L. and E.D. collected the data. C.L., V.W. and J.H. performed the analytic calculations. All authors interpreted the results.

Corresponding author

Correspondence to Jonathan D. Hood.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information.

Supplementary Fig. 1–6 and Discussion.

Source data

Source Data for Fig. 1.

Statistical source data.

Source Data for Fig. 2.

Statistical source data.

Source Data for Fig. 3.

Statistical source data.

Source Data for Fig. 4.

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lange, C.M., Daggett, E., Walther, V. et al. Superradiant and subradiant states in lifetime-limited organic molecules through laser-induced tuning. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02404-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02404-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing