Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quasi-crystalline order in vibrating granular matter

Abstract

Quasi-crystals are aperiodic structures with crystallographic properties that are not compatible with that of a single unit cell. Their discovery in a metallic alloy more than four decades ago has required a full reconsideration of our definition of a crystal structure. Quasi-crystalline structures have also been discovered at much larger length scales in different microscopic systems for which the size of the elementary building blocks ranges from the nanometre to the micrometre scale. Here we report the first experimental observation of spontaneous quasi-crystalline self-assembly at the millimetre scale. This result is obtained in a fully athermal system of macroscopic spherical grains vibrating on a substrate. Starting from a liquid-like disordered phase, the grains begin to locally arrange into three types of square and triangle tile that eventually align, forming an eight-fold symmetric quasi-crystal that has been predicted in simulation but not yet experimentally observed in non-atomic systems. These results not only demonstrate an alternative route for the spontaneous assembly of quasi-crystals but are of fundamental interest for the connection between equilibrium and non-equilibrium statistical physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Numerical results obtained with EDMD of a collisional model.
Fig. 2: Experimental results: time evolution.
Fig. 3: Experimental results: self-assembled structure.

Similar content being viewed by others

Data availability

Raw datasets generated during this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

Code availability

The code of the EDMD simulations is available via GitHub at https://github.com/Syrocco/EDMD-QC8. The DEM simulations are implemented through the LAMMPS package available at https://www.lammps.org/.

References

  1. Shechtman, D. & Blech, I. A. The microstructure of rapidly solidified Al6Mn. Metall. Trans. A 16, 1005 (1985).

    Google Scholar 

  2. Levine, D. & Steinhardt, P. J. Quasicrystals: a new class of ordered structures. Phys. Rev. Lett. 53, 2477 (1984).

    ADS  CAS  Google Scholar 

  3. Report of the Executive Committee for 1991. Acta Cryst. A48, 922–946 (1992).

  4. DiVincenzo, D. & Steinhardt, P. Quasicrystals: The State of the Art (World Scientific, 1999).

  5. Ranganathan, S. & Chattopadhyay, K. Quasicrystals. Annu. Rev. Mater. Sci. 21, 437 (1991).

    ADS  CAS  Google Scholar 

  6. Bindi, L., Steinhardt, P. J., Yao, N. & Lu, P. J. Natural quasicrystals. Science 324, 1306 (2009).

    ADS  CAS  PubMed  Google Scholar 

  7. Bindi, L. et al. Evidence for the extraterrestrial origin of a natural quasicrystal. Proc. Natl Acad. Sci. USA 109, 1396 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hayashida, K., Dotera, T., Takano, A. & Matsushita, Y. Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 98, 195502 (2007).

    ADS  PubMed  Google Scholar 

  9. Barkan, K., Diamant, H. & Lifshitz, R. Stability of quasicrystals composed of soft isotropic particles. Phys. Rev. B 83, 172201 (2011).

    ADS  Google Scholar 

  10. Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964 (2009).

    ADS  CAS  PubMed  Google Scholar 

  11. Takano, A. et al. A mesoscopic Archimedean tiling having a new complexity in an ABC star polymer. J. Polym. Sci. B Polym. Phys. 43, 2427 (2005).

    ADS  CAS  Google Scholar 

  12. Zeng, X. et al. Supramolecular dendritic liquid quasicrystals. Nature 428, 157 (2004).

    ADS  CAS  PubMed  Google Scholar 

  13. Zhang, J. & Bates, F. S. Dodecagonal quasicrystalline morphology in a poly(styrene-b-isoprene-b-styrene-b-ethylene oxide) tetrablock terpolymer. J. Am. Chem. Soc. 134, 7636 (2012).

    CAS  PubMed  Google Scholar 

  14. Lifshitz, R. & Diamant, H. Soft quasicrystals—why are they stable?. Philos. Mag. 87, 3021 (2007).

    ADS  CAS  Google Scholar 

  15. Lee, S., Bluemle, M. J. & Bates, F. S. Discovery of a Frank-Kasper σ phase in sphere-forming block copolymer melts. Science 330, 349 (2010).

    ADS  CAS  PubMed  Google Scholar 

  16. Wasio, N. A. et al. Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 507, 86 (2014).

    ADS  CAS  PubMed  Google Scholar 

  17. Förster, S., Meinel, K., Hammer, R., Trautmann, M. & Widdra, W. Quasicrystalline structure formation in a classical crystalline thin-film system. Nature 502, 215 (2013).

  18. Jin, C. et al. Band gap and wave guiding effect in a quasiperiodic photonic crystal. Appl. Phys. Lett. 75, 1848 (1999).

    ADS  CAS  Google Scholar 

  19. Zoorob, M. E., Charlton, M. D. B., Parker, G. J., Baumberg, J. J. & Netti, M. C. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature 404, 740 (2000).

    ADS  CAS  PubMed  Google Scholar 

  20. Liu, Y. et al. Expanding quasiperiodicity in soft matter: supramolecular decagonal quasicrystals by binary giant molecule blends. Proc. Natl Acad. Sci. USA 119, e2115304119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fischer, S. et al. Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry. Proc. Natl Acad. Sci. USA 108, 1810 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiao, C., Fujita, N., Miyasaka, K., Sakamoto, Y. & Terasaki, O. Dodecagonal tiling in mesoporous silica. Nature 487, 349 (2012).

    ADS  CAS  PubMed  Google Scholar 

  23. Haji-Akbari, A. et al. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462, 773 (2009).

    ADS  CAS  PubMed  Google Scholar 

  24. Noya, E. G., Wong, C. K., Llombart, P. & Doye, J. P. K. How to design an icosahedral quasicrystal through directional bonding. Nature 596, 367 (2021).

    ADS  CAS  PubMed  Google Scholar 

  25. Widom, M., Strandburg, K. J. & Swendsen, R. H. Quasicrystal equilibrium state. Phys. Rev. Lett. 58, 706 (1987).

    ADS  CAS  PubMed  Google Scholar 

  26. Dotera, T., Oshiro, T. & Ziherl, P. Mosaic two-lengthscale quasicrystals. Nature 506, 208 (2014).

    ADS  CAS  PubMed  Google Scholar 

  27. Malescio, G. & Sciortino, F. Self-assembly of quasicrystals and their approximants in fluids with bounded repulsive core and competing interactions. J. Mol. Liq. 349, 118209 (2022).

    CAS  Google Scholar 

  28. Fayen, E., Impéror-Clerc, M., Filion, L., Foffi, G. & Smallenburg, F. Self-assembly of dodecagonal and octagonal quasicrystals in hard spheres on a plane. Soft Matter 19, 2654 (2023).

  29. Fayen, E., Jagannathan, A., Foffi, G. & Smallenburg, F. Infinite-pressure phase diagram of binary mixtures of (non)additive hard disks. J. Chem. Phys. 152, 204901 (2020).

    ADS  CAS  PubMed  Google Scholar 

  30. Jaeger, H. M., Nagel, S. R. & Behringer, R. P. Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259 (1996).

    ADS  Google Scholar 

  31. Andreotti, B., Forterre, Y. & Pouliquen, O. Granular Media: Between Fluid and Solid (Cambridge Univ. Press, 2013).

  32. Eshuis, P., van der Weele, K., van der Meer, D., Bos, R. & Lohse, D. Phase diagram of vertically shaken granular matter. Phys. Fluids 19, 123301 (2007).

    ADS  Google Scholar 

  33. Olafsen, J. S. & Urbach, J. S. Clustering, order, and collapse in a driven granular monolayer. Phys. Rev. Lett. 81, 4369 (1998).

    ADS  CAS  Google Scholar 

  34. Reis, P. M., Ingale, R. A. & Shattuck, M. D. Crystallization of a quasi-two-dimensional granular fluid. Phys. Rev. Lett. 96, 258001 (2006).

    ADS  CAS  PubMed  Google Scholar 

  35. Aranson, I. S. & Tsimring, L. S. Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641 (2006).

    ADS  CAS  Google Scholar 

  36. Panaitescu, A., Reddy, K. A. & Kudrolli, A. Nucleation and crystal growth in sheared granular sphere packings. Phys. Rev. Lett. 108, 108001 (2012).

    ADS  PubMed  Google Scholar 

  37. Komatsu, Y. & Tanaka, H. Roles of energy dissipation in a liquid-solid transition of out-of-equilibrium systems. Phys. Rev. X 5, 031025 (2015).

    Google Scholar 

  38. Fayen, E., Filion, L., Foffi, G. & Smallenburg, F. A hard-sphere quasicrystal stabilized by configurational entropy. Preprint at https://arxiv.org/abs/2306.03549 (2023).

  39. Brito, R., Risso, D. & Soto, R. Hydrodynamic modes in a confined granular fluid. Phys. Rev. E 87, 022209 (2013).

    ADS  Google Scholar 

  40. Brito, R., Soto, R. & Garzó, V. Energy nonequipartition in a collisional model of a confined quasi-two-dimensional granular mixture. Phys. Rev. E 102, 052904 (2020).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  41. Garzó, V., Brito, R. & Soto, R. Navier–Stokes transport coefficients for a model of a confined quasi-two-dimensional granular binary mixture. Phys. Fluids 33, 023310 (2021).

    ADS  Google Scholar 

  42. D’Anna, G., Mayor, P., Barrat, A., Loreto, V. & Nori, F. Observing Brownian motion in vibration-fluidized granular matter. Nature 424, 909 (2003).

  43. Sarracino, A., Villamaina, D., Costantini, G. & Puglisi, A. Granular Brownian motion. J. Stat. Mech. 04013, P04013 (2010).

    Google Scholar 

  44. Aumaitre, S., Kruelle, C. A. & Rehberg, I. Segregation in granular matter under horizontal swirling excitation. Phys. Rev. E 64, 041305 (2001).

    ADS  CAS  Google Scholar 

  45. Baldassarri, A., Puglisi, A. & Sarracino, A. Coarsening in granular systems. C. R. Phys. 16, 291 (2015).

    CAS  Google Scholar 

  46. Kudrolli, A. Size separation in vibrated granular matter. Rep. Prog. Phys. 67, 209 (2004).

    ADS  Google Scholar 

  47. Feitosa, K. & Menon, N. Breakdown of energy equipartition in a 2D binary vibrated granular gas. Phys. Rev. Lett. 88, 198301 (2002).

    ADS  PubMed  Google Scholar 

  48. Cundall, P. A. & Strack, O. D. L. A discrete numerical model for granular assemblies. Géotechnique 29, 47 (1979).

    Google Scholar 

  49. Pöschel, T. & Schwager, T. Computational Granular Dynamics (Springer, 2005).

  50. Edwards, S. & Oakeshott, R. Theory of powders. Phys. A: Stat. Mech. Appl. 157, 1080 (1989).

    MathSciNet  Google Scholar 

  51. S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, and the scikit-image contributors. Scikit-image: image processing in Python. Peer J. 2, e453 (2014).

  52. Smallenburg, F. Efficient event-driven simulations of hard spheres. Eur Phys. J. E 45, 22 (2022).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Puglisi and A. Gnoli for their invaluable help in setting up this project and for their comments on the manuscript. We also thank M. Impéror-Clerc, L. Filion, A. Jagannathan and F. Sciortino for carefully reading and commenting on our paper and S. Cabaret for the design of the quasi-2D cell. This work has been done with the support of Investissements d’Avenir of LabEx PALM (grant no. ANR-10-LABX-0039-PALM) and of the Agence Nationale de la Recherche (ANR), grant ANR-18-CE09-0025.

Author information

Authors and Affiliations

Authors

Contributions

G.F. and F.S. conceived the work and supervised the research. A.P, F.R., F.B. and G.F. designed the experiment. A.P. performed the experimental research and analysed the experimental data. A.P., E.F. and R.M. designed the simulations. A.P. and R.M. performed the simulations and analysed the data from the simulations. A.P., F.S. and G.F. wrote the paper. All authors reviewed and commented on the paper and the Supplementary Information.

Corresponding authors

Correspondence to A. Plati or G. Foffi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Joshua Dijksman, Eva Noya and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and discussion.

Supplementary Video 1

Spatial configuration, structure factor, reconstructed tiling and bond orientation histogram as a function of time.

Source data

Source Data Fig. 1

Full data sources for Fig. 1 in a multiple-tab Excel file.

Source Data Fig. 2

Full data sources for Fig. 2 in a multiple-tab Excel file.

Source Data Fig. 3

Full data sources for Fig. 3 in a multiple-tab Excel file.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plati, A., Maire, R., Fayen, E. et al. Quasi-crystalline order in vibrating granular matter. Nat. Phys. 20, 465–471 (2024). https://doi.org/10.1038/s41567-023-02364-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02364-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing