Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Minimally rigid clusters in dense suspension flow

Abstract

Dense suspensions are a prototype of fluid that can dynamically enhance their viscosity to resist strong forcing. Recent work established that the key to a large viscosity increase—often in excess of an order of magnitude—is the ability to switch from lubricated, frictionless particle interactions at low stress to a network of frictional contacts at higher stress. However, to isolate network features responsible for the large viscosity has been difficult, given the lack of an appropriate physics-inspired network measure. Here we apply rigidity theory to simulations of dense suspensions in two dimensions and identify a subset of mechanically rigid clusters at each strain step from the frictional contact network. We find that rigid clusters emerge at large shear stress well before the onset of jamming and that the continual breakup and reconfiguration of system-spanning rigid clusters is responsible for the flow states of the highest viscosity. By showing how viscosity is correlated with the rigidity of the underlying network of contact forces, our results provide insights beyond mean-field models and uncover a new contribution to dissipation in dense suspensions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Decomposition of the frictional contact network into rigid clusters.
Fig. 2: Rheology, frictional contact force networks and rigidity.
Fig. 3: Steady-state dynamics of the largest rigid clusters.
Fig. 4: System-spanning rigid cluster statistics define new regime in the suspension state diagram.

Similar content being viewed by others

Data availability

All data used in this Article are available via the Materials Data Facility at https://doi.org/10.18126/xpcw-kgpv.

Code availability

Simulation data used in this study were generated using LF_DEM (https://github.com/ryseto/LF_DEM). Simulation data were analysed to find rigid clusters using rigidClusterLF_DEM (https://github.com/mikevandernaald/rigidCluster_LFDEM).

References

  1. Brown, E. & Jaeger, H. M. Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming. Rep. Prog. Phys. 77, 046602 (2014).

    Article  ADS  Google Scholar 

  2. Morris, J. F. Shear thickening of concentrated suspensions: recent developments and relation to other phenomena. Ann. Rev. Fluid Mech. 52, 121–144 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  3. Seto, R., Botet, R., Meireles, M., Auernhammer, G. K. & Cabane, B. Compressive consolidation of strongly aggregated particle gels. J. Rheol. 57, 1347–1366 (2013).

    Article  ADS  Google Scholar 

  4. Wyart, M. & Cates, M. E. Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett. 112, 098302 (2014).

    Article  ADS  Google Scholar 

  5. Guy, B. M., Hermes, M. & Poon, W. C. K. Towards a unified description of the rheology of hard-particle suspensions. Phys. Rev. Lett. 115, 088304 (2015).

    Article  ADS  Google Scholar 

  6. Lin, N. Y. C. et al. Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys. Rev. Lett. 115, 228304 (2015).

    Article  ADS  Google Scholar 

  7. Singh, A., Mari, R., Denn, M. M. & Morris, J. F. A constitutive model for simple shear of dense frictional suspensions. J. Rheol. 62, 457–468 (2018).

    Article  ADS  Google Scholar 

  8. Singh, A., Ness, C., Seto, R., de Pablo, J. J. & Jaeger, H. M. Shear thickening and jamming of dense suspensions: the ‘roll’ of friction. Phys. Rev. Lett. 124, 248005 (2020).

    Article  ADS  Google Scholar 

  9. Singh, A., Jackson, G. L., van der Naald, M., de Pablo, J. J. & Jaeger, H. M. Stress-activated constraints in dense suspension rheology. Phys. Rev. Fluids 7, 054302 (2022).

    Article  ADS  Google Scholar 

  10. Mari, R., Seto, R., Morris, J. F. & Denn, M. M. Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol. 58, 1693–1724 (2014).

    Article  ADS  Google Scholar 

  11. Ness, C. & Sun, J. Shear thickening regimes of dense non-Brownian suspensions. Soft Matter 12, 914–924 (2016).

    Article  ADS  Google Scholar 

  12. Han, E., James, N. M. & Jaeger, H. M. Stress controlled rheology of dense suspensions using transient flows. Phys. Rev. Lett. 123, 248002 (2019).

    Article  ADS  Google Scholar 

  13. Maxwell, J. C. On the calculation of the equilibrium and stiffness of frames. Philos. Mag. 27, 294–299 (1864).

    Article  Google Scholar 

  14. Phillips, J. & Thorpe, M. Constraint theory, vector percolation and glass formation. Solid State Commun. 53, 699–702 (1985).

    Article  ADS  Google Scholar 

  15. He, H. & Thorpe, M. F. Elastic properties of glasses. Phys. Rev. Lett. 54, 2107–2110 (1985).

    Article  ADS  Google Scholar 

  16. Liu, K., Kollmer, J. E., Daniels, K. E., Schwarz, J. & Henkes, S. Spongelike rigid structures in frictional granular packings. Phys. Rev. Lett. 126, 088002 (2021).

    Article  ADS  Google Scholar 

  17. Henkes, S., Quint, D. A., Fily, Y. & Schwarz, J. M. Rigid cluster decomposition reveals criticality in frictional jamming. Phys. Rev. Lett. 116, 028301 (2016).

    Article  ADS  Google Scholar 

  18. Phillips, J. Topology of covalent non-crystalline solids I: short-range order in chalcogenide alloys. J. Non-Cryst. Solids 34, 153–181 (1979).

    Article  ADS  Google Scholar 

  19. Noll, N., Mani, M., Heemskerk, I., Streichan, S. J. & Shraiman, B. I. Active tension network model suggests an exotic mechanical state realized in epithelial tissues. Nat. Phys. 13, 1221–1226 (2017).

    Article  Google Scholar 

  20. Atia, L. et al. Geometric constraints during epithelial jamming. Nat. Phys. 14, 613–620 (2018).

    Article  Google Scholar 

  21. Yan, L. & Bi, D. Multicellular rosettes drive fluid-solid transition in epithelial tissues. Phys. Rev. X 9, 153–181 (2019).

    Google Scholar 

  22. Smedskjaer, M. M., Mauro, J. C. & Yue, Y. Prediction of glass hardness using temperature-dependent constraint theory. Phys. Rev. Lett. 105, 115503 (2010).

    Article  ADS  Google Scholar 

  23. Hespenheide, B. M., Jacobs, D. J. & Thorpe, M. F. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus. J. Phys.: Condens. Matter 16, S5055–S5064 (2004).

    ADS  Google Scholar 

  24. Heroy, S., Taylor, D., Shi, F. B., Forest, M. G. & Mucha, P. J. Rigid graph compression: motif-based rigidity analysis for disordered fiber networks. Multiscale Model. Simul. 16, 1283–1304 (2018).

    Article  MathSciNet  Google Scholar 

  25. Berthier, E. et al. Rigidity percolation control of the brittle-ductile transition in disordered networks. Phys. Rev. Mater. 3, 075602 (2019).

    Article  Google Scholar 

  26. Zhang, S. et al. Correlated rigidity percolation and colloidal gels. Phys. Rev. Lett. 123, 058001 (2019).

    Article  ADS  Google Scholar 

  27. Majmudar, T. S. & Behringer, R. P. Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005).

    Article  ADS  Google Scholar 

  28. Corwin, E. I., Jaeger, H. M. & Nagel, S. R. Structural signature of jamming in granular media. Nature 435, 1075–1078 (2005).

    Article  ADS  Google Scholar 

  29. Vinutha, H. & Sastry, S. Disentangling the role of structure and friction in shear jamming. Nat. Phys. 12, 578–583 (2016).

    Article  Google Scholar 

  30. Vinutha, H. & Sastry, S. Force networks and jamming in shear-deformed sphere packings. Phys. Rev. E 99, 012123 (2019).

    Article  ADS  Google Scholar 

  31. Lester, D. & Li, R. The frictional pebble game: an algorithm for rigidity percolation in saturated frictional assemblies. J. Comput. Phys. 369, 225–236 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  32. Jacobs, D. J. & Hendrickson, B. An algorithm for two-dimensional rigidity percolation: the pebble game. J. Comput. Phys. 137, 346–365 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  33. Peters, I. R., Majumdar, S. & Jaeger, H. M. Direct observation of dynamic shear jamming in dense suspensions. Nature 532, 214–217 (2016).

    Article  ADS  Google Scholar 

  34. Seto, R., Mari, R., Morris, J. F. & Denn, M. M. Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett. 111, 218301 (2013).

    Article  ADS  Google Scholar 

  35. Jacobs, D. J., Rader, A. J., Kuhn, L. A. & Thorpe, M. F. Protein flexibility predictions using graph theory. Proteins: Struct. Funct. Bioinf. 44, 150–165 (2001).

    Article  Google Scholar 

  36. Gameiro, M., Singh, A., Kondic, L., Mischaikow, K. & Morris, J. F. Interaction network analysis in shear thickening suspensions. Phys. Rev. Fluids 5, 034307 (2020).

    Article  ADS  Google Scholar 

  37. Nabizadeh, M., Singh, A. & Jamali, S. Structure and dynamics of force clusters and networks in shear thickening suspensions. Phys. Rev. Lett. 129, 068001 (2022).

    Article  ADS  Google Scholar 

  38. Mari, R. & Seto, R. Force transmission and the order parameter of shear thickening. Soft Matter 15, 6650–6659 (2019).

    Article  ADS  Google Scholar 

  39. Singh, A., Pednekar, S., Chun, J., Denn, M. M. & Morris, J. F. From yielding to shear jamming in a cohesive frictional suspension. Phys. Rev. Lett. 122, 098004 (2019).

    Article  ADS  Google Scholar 

  40. Rathee, V., Blair, D. L. & Urbach, J. S. Localized stress fluctuations drive shear thickening in dense suspensions. Proc. Natl Acad. Sci. USA 114, 8740–8745 (2017).

    Article  ADS  Google Scholar 

  41. Rathee, V., Miller, J. M., Blair, D. L. & Urbach, J. S. Structure of propagating high stress fronts in a shear thickening suspension. Proc. Natl Acad. Sci. USA 119, e2203795119 (2022).

    Article  Google Scholar 

  42. Thomas, J. E. et al. Microscopic origin of frictional rheology in dense suspensions: correlations in force space. Phys. Rev. Lett. 121, 128002 (2018).

    Article  ADS  Google Scholar 

  43. E. Thomas, J. et al. Investigating the nature of discontinuous shear thickening: beyond a mean-field description. J. Rheol. 64, 329–341 (2020).

    Article  ADS  Google Scholar 

  44. Edens, L. E. et al. Shear stress dependence of force networks in 3D dense suspensions. Soft Matter 17, 7476–7486 (2021).

  45. Babu, V., Vinutha, H., Bi, D. & Sastry, S. Discontinuous rigidity transition associated with shear jamming in granular simulations. Soft Matter 19, 9399–9404 (2023).

  46. Liu, K., Henkes, S. & Schwarz, J. Frictional rigidity percolation: a new universality class and its superuniversal connections through minimal rigidity proliferation. Phys. Rev. X 9, 021006 (2019).

  47. Mari, R., Seto, R., Morris, J. F. & Denn, M. M. Discontinuous shear thickening in Brownian suspensions by dynamic simulation. Proc. Natl Acad. Sci. USA 112, 15326–15330 (2015).

    Article  ADS  Google Scholar 

  48. Brown, E. & Jaeger, H. M. The role of dilation and confining stresses in shear thickening of dense suspensions. J. Rheol. 56, 875–923 (2012).

    Article  ADS  Google Scholar 

  49. Goyal, A., Martys, N. S. & Del Gado, E. Flow induced rigidity percolation in shear thickening suspensions. Preprint at https://arxiv.org/abs/2210.00337 (2022).

  50. Morris, J. F. Lubricated-to-frictional shear thickening scenario in dense suspensions. Phys. Rev. Fluids 3, 110508 (2018).

    Article  ADS  Google Scholar 

  51. Mari, R., Seto, R., Morris, J. F. & Denn, M. M. Nonmonotonic flow curves of shear thickening suspensions. Phys. Rev. E 91, 052302 (2015).

    Article  ADS  Google Scholar 

  52. Melrose, J. R. & Ball, R. C. The pathological behaviour of sheared hard spheres with hydrodynamic interactions. Europhys. Lett. 32, 535–540 (1995).

    Article  ADS  Google Scholar 

  53. Kulkarni, S. D. & Morris, J. F. Ordering transition and structural evolution under shear in Brownian suspensions. J. Rheol. 53, 417–439 (2009).

    Article  ADS  Google Scholar 

  54. O’Hern, C. S., Silbert, L. E., Liu, A. J. & Nagel, S. R. Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68, 011306 (2003).

    Article  ADS  Google Scholar 

  55. Speedy, R. J. Glass transition in hard disc mixtures. J. Chem. Phys. 110, 4559–4565 (1999).

    Article  ADS  Google Scholar 

  56. Perera, D. N. & Harrowell, P. Stability and structure of a supercooled liquid mixture in two dimensions. Phys. Rev. E 59, 5721 (1999).

    Article  ADS  Google Scholar 

  57. Denn, M. M. & Morris, J. F. Rheology of non-Brownian suspensions. Annu. Rev. Chem. Biomol. Eng. 5, 203–228 (2014).

  58. Jeffrey, D. J. The calculation of the low Reynolds number resistance functions for two unequal spheres. Phys. Fluids A 4, 16–29 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  59. Goodrich, C. P., Ellenbroek, W. G. & Liu, A. J. Stability of jammed packings I: the rigidity length scale. Soft Matter 9, 10993–10999 (2013).

    Article  Google Scholar 

  60. Chubynsky, M. V. & Thorpe, M. F. Algorithms for three-dimensional rigidity analysis and a first-order percolation transition. Phys. Rev. E 76, 041135 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Henkes for fruitful and illuminating discussions as well as for making their rigidLibrary code for implementing the pebble game on frictional networks freely available. We acknowledge support from the Center for Hierarchical Materials Design (CHiMaD) under award no. 70NANB19H005 (US Department of Commerce) and from the Army Research Office under grants W911NF-19-1-0245 (to A.S.), W911NF-20-2-0044 (to M.v.d.N.) and W911NF-21-2-0146 (to H.M.J.).

Author information

Authors and Affiliations

Authors

Contributions

A.S. and M.v.d.N. conceived the project. A.S. and T.T.E. ran the simulations, whereas K.T. and M.v.d.N. wrote the code to analyse the data. H.M.J. and J.J.d.P. supervised the study. M.v.d.N., A.S. and H.M.J. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Abhinendra Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Silke Henkes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and discussion.

Supplementary Video 1

Video showing the flow of clusters.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Naald, M., Singh, A., Eid, T.T. et al. Minimally rigid clusters in dense suspension flow. Nat. Phys. 20, 653–659 (2024). https://doi.org/10.1038/s41567-023-02354-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02354-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing