Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Robust continuous time crystal in an electron–nuclear spin system

Abstract

Crystals spontaneously break the continuous translation symmetry of free space. Analogously, time crystals lift translational invariance in time. Here we demonstrate a robust continuous time crystal in an electron–nuclear spin system of a semiconductor tailored by tuning the material composition. Continuous, time-independent external driving of the sample produces periodic auto-oscillations with a coherence time exceeding hours. Varying the experimental parameters reveals wide ranges in which the time crystal remains stable. At the edges of these ranges, we find chaotic behaviour with a lifted periodicity corresponding to the melting of the crystal. The time crystal state enables fundamental studies of nonlinear interactions and has potential applications as a precise on-chip frequency standard.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical properties of the Si-doped In0.03Ga0.97As structure.
Fig. 2: Periodic auto-oscillations of the CTC.
Fig. 3: Dependence of the CTC period on the experimental conditions.
Fig. 4: Melting of the CTC.

Similar content being viewed by others

Data availability

The data are publicly available in a repository: https://doi.org/10.6084/m9.figshare.22731122.

References

  1. Wilczek, F. Quantum time crystals. Phys. Rev. Lett. 109, 160401 (2012).

    Article  ADS  Google Scholar 

  2. Shapere, A. & Wilczek, F. Classical time crystals. Phys. Rev. Lett. 109, 160402 (2012).

    Article  ADS  Google Scholar 

  3. Nozières, P. Time crystals: can diamagnetic currents drive a charge density wave into rotation? Europhys. Lett. 103, 57008 (2013).

    Article  ADS  Google Scholar 

  4. Bruno, P. Impossibility of spontaneously rotating time crystals: a no-go theorem. Phys. Rev. Lett. 111, 070402 (2013).

    Article  ADS  Google Scholar 

  5. Watanabe, H. & Oshikawa, M. Absence of quantum time crystals. Phys. Rev. Lett. 114, 251603 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  6. Else, D. V., Monroe, C., Nayak, C. & Yao, N. Y. Discrete time crystals. Annu. Rev. Condens. Matter Phys. 11, 467–499 (2020).

    Article  ADS  Google Scholar 

  7. Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    Article  ADS  Google Scholar 

  8. Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    Article  ADS  Google Scholar 

  9. Zaletel, M. P. et al. Colloquium: quantum and classical discrete time crystals. Rev. Mod. Phys. 95, 031001 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  10. Iemini, F. et al. Boundary time crystals. Phys. Rev. Lett. 121, 035301 (2018).

    Article  ADS  Google Scholar 

  11. Buča, B., Tindall, J. & Jaksch, D. Non-stationary coherent quantum many-body dynamics through dissipation. Nat. Commun. 10, 1730 (2019).

    Article  ADS  Google Scholar 

  12. Keßler, H., Cosme, J. G., Hemmerling, M., Mathey, L. & Hemmerich, A. Emergent limit cycles and time crystal dynamics in an atom–cavity system. Phys. Rev. A 99, 053605 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  13. Kongkhambut, P. et al. Observation of a continuous time crystal. Science 377, 670–673 (2022).

    Article  ADS  Google Scholar 

  14. Liu, T., Ou, J.-Y., MacDonald, K. F. & Zheludev, N. I. Photonic metamaterial analogue of a continuous time crystal. Nat. Phys. 19, 986–991 (2023).

    Article  Google Scholar 

  15. Scott, A. C. The Nonlinear Universe (Springer, 2007).

  16. Andronov, A. A., Vitt, A. A. & Khaikin, S. E. Theory of Oscillators 1st edn (Pergamon, 1966).

  17. Novikov, V. A. & Fleisher, V. G. Influence of local anisotropy on the states and resonant properties of an optically oriented system of electron and nuclear spins of semiconductors. Sov. J. Exp. Theor. Phys. 47, 539–547 (1978).

    ADS  Google Scholar 

  18. Kalevich, V. K., Korenev, V. L. & Chenis, A. Quasi-periodic oscillations of the electron-nuclear spin system of a semiconductor. Phys. Solid State 35, 831–833 (1993).

    ADS  Google Scholar 

  19. Meier, F. & Zakharchenya, B. P. (eds) Optical Orientation (North-Holland, 1984).

  20. Fleisher, V. G. & Merkulov, I. A. in Optical Orientation (eds Meier, F. & Zakharchenya, B. P.) Ch. 5 (North-Holland, 1984).

  21. Hanle, W. Über magnetische beeinflussung der polarisation der resonanzfluoreszenz. Z. für. Phys. 30, 93–105 (1924).

    Article  ADS  Google Scholar 

  22. Rittmann, C. et al. Unveiling the electron-nuclear spin dynamics in an n-doped InGaAs epilayer by spin noise spectroscopy. Phys. Rev. B 106, 035202 (2022).

    Article  ADS  Google Scholar 

  23. D’yakonov, M. I., Merkulov, I. A. & Perel’, V. I. Instabilities in the spin system of optically oriented electrons and nuclei in semiconductors. Sov. J. Exp. Theor. Phys. 51, 175 (1980).

    ADS  Google Scholar 

  24. Litvyak, V. M. et al. Warm-up spectroscopy of quadrupole-split nuclear spins in n-GaAs epitaxial layers. Phys. Rev. B 104, 235201 (2021).

    Article  ADS  Google Scholar 

  25. Vladimirova, M. et al. Simultaneous measurements of nuclear-spin heat capacity, temperature, and relaxation in GaAs microstructures. Phys. Rev. B 105, 155305 (2022).

    Article  ADS  Google Scholar 

  26. D’yakonov, M. I., Merkulov, I. A. & Perel’, V. I. Optical-orientation anisotropy produced in semiconductors by quadrupole splitting of the spin levels of the lattice nuclei. Sov. J. Exp. Theor. Phys. 49, 160–165 (1979).

    ADS  Google Scholar 

  27. Artemova, E. S. et al. Sinergetic phenomena in the electron-nucleus spin system of AlGaAs in a strong magnetic field. Nonlinearity 4, 49–57 (1991).

    Article  ADS  Google Scholar 

  28. Bakaleinikov, L. & Galaktionov, E. Existence of homoclinic trajectories in a model of the coupled spin system of electrons and nuclei in semiconductors under conditions of optical orientation. Tech. Phys. 39, 982–988 (1994).

    Google Scholar 

Download references

Acknowledgements

We thank D. R. Yakovlev for fruitful discussions. We acknowledge financial support from the German Research Foundation through the International Collaborative Research Centre (grant no. TRR160, Project A1). A.G. and M.B. acknowledge support from the Federal Ministry of Education and Research, Germany (Project QR.X, contract no. 16KISQ011). M.B. acknowledges support from the Research Alliance Ruhr. The Resource Center Nanophotonics of Saint-Petersburg State University provided the epilayer sample.

Author information

Authors and Affiliations

Authors

Contributions

V.L.K. and A.G. conceived the experiment. A.N.K., P.S.S. and A.G. built the experimental apparatus and performed the measurements. A.N.K., N.E.K., P.S.S., V.L.K. and A.G. analysed the data. N.E.K. and V.L.K. provided the theoretical description. All authors contributed to the interpretation of the data. N.E.K., V.L.K. and A.G. wrote the manuscript in close consultation with M.B., who supervised the project.

Corresponding author

Correspondence to A. Greilich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greilich, A., Kopteva, N.E., Kamenskii, A.N. et al. Robust continuous time crystal in an electron–nuclear spin system. Nat. Phys. 20, 631–636 (2024). https://doi.org/10.1038/s41567-023-02351-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02351-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing