Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Covariant quantum kernels for data with group structure

Abstract

The use of kernel functions is a common technique to extract important features from datasets. A quantum computer can be used to estimate kernel entries as transition amplitudes of unitary circuits. Quantum kernels exist that, subject to computational hardness assumptions, cannot be computed classically. The learning problems for these cases are constructed artificially and it is an important challenge to find quantum kernels that have the potential to be relevant for real-world data. Here we identify a suitable class of learning problems on data that have a group structure, which are amenable to kernel methods. We introduce a family of quantum kernels that can be applied to such data, generalizing from a kernel that is known to have a quantum–classical separation when solving a particular set of problems. We use 27 qubits of a superconducting processor to demonstrate our method with a learning problem that embodies the structure of many essential learning problems on groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Labelling cosets.
Fig. 2: Device layout and circuit mapping.
Fig. 3: Kernel alignment.

Similar content being viewed by others

Data availability

Experiment data are available in the Supplementary Information. Source data are provided with this paper.

Code availability

Code for training the model using kernel alignment is available through the Qiskit machine learning module: https://github.com/qiskit-community/qiskit-machine-learning.

References

  1. Boser, B. E., Guyon, I. M. & Vapnik, V. N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory 144–152 (Association for Computing Machinery, 1992); https://doi.org/10.1145/130385.130401

  2. Vapnik, V., Golowich, S. E. & Smola, A., Support vector method for function approximation, regression estimation and signal processing. In Proceedings of the 9th International Conference on Neural Information Processing Systems (eds Mozer, M. et al.) 281–287 (MIT, 1996). https://doi.org/10.5555/2998981.2999021

  3. Smola, A. J. & Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 14, 199 (2004).

    Article  MathSciNet  Google Scholar 

  4. Ben-Hur, A., Horn, D., Siegelmann, H. T. & Vapnik, V. Support vector clustering. J. Mach. Learn. Res. 2, 125 (2002).

    Google Scholar 

  5. Girolami, M. Mercer kernel-based clustering in feature space. IEEE Trans. Neural Netw. 13, 780 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Lai, P. L. & Fyfe, C. Kernel and nonlinear canonical correlation analysis. Int. J. Neural Syst. 10, 365 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, W., Principe, J. C. & Haykin, S. Kernel Adaptive Filtering: A Comprehensive Introduction, Vol. 57 (Wiley, 2011); https://doi.org/10.1002/9780470608593

  8. Vapnik, V. The Nature of Statistical Learning Theory (Springer, 2013); https://books.google.com/books?id=EqgACAAAQBAJ

  9. Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209 (2019).

    Article  ADS  PubMed  Google Scholar 

  10. Schuld, M. & Killoran, N. Quantum machine learning in feature hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Mitarai, K., Negoro, M., Kitagawa, M. & Fujii, K. Quantum circuit learning. Phys. Rev. A 98, 032309 (2018).

    Article  ADS  CAS  Google Scholar 

  12. Farhi, E. & Neven, H. Classification with quantum neural networks on near term processors. Preprint at https://arxiv.org/abs/1802.06002 (2018).

  13. Grant, E. et al. Hierarchical quantum classifiers. npj Quantum Information 4, 65 (2018).

    Article  ADS  Google Scholar 

  14. Schuld, M., Bocharov, A., Svore, K. M. & Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 101, 032308 (2020).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Benedetti, M., Lloyd, E., Sack, S. & Fiorentini, M. Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 4, 043001 (2019).

    Article  ADS  Google Scholar 

  16. Liu, Y., Arunachalam, S. & Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. 17, 1013 (2021).

    Article  CAS  Google Scholar 

  17. Diaconis, P. Group Representations in Probability and Statistics, Vol. 11 (Institute of Mathematical Statistics, 1988).

  18. Kondor, I. R. Group theoretical methods in machine learning. PhD thesis, Columbia University (2008); https://search.proquest.com/openview/d8ae7d9e47c87bb0acb05bf06ae8b6aa/1?pq-origsite=gscholar&cbl=18750&diss=y

  19. Kondor, R. & Barbosa, M. S. Ranking with kernels in fourier space. The 23rd Conference on Learning Theory, (eds Kalaim A. & Mohrim, M.) 451–463 (COLT, 2010). http://galton.uchicago.edu/~lekheng/meetings/mathofranking/ref/kondor.pdf

  20. Holevo, A. Covariant measurements and uncertainty relations. Rep. Math. Phys. 16, 385 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  21. Serre, J.-P. Linear Representations of Finite Groups, Vol. 42 (Springer, 1977); https://doi.org/10.1007/978-1-4684-9458-7

  22. Rosen, K. H. Elementary Number Theory (Pearson Education, 2011); https://books.google.com/books?id=JqycRAAACAAJ

  23. Markov, I. L. & Saeedi, M. Constant-optimized quantum circuits for modular multiplication and exponentiation, Quantum Information and Computation 12, 361–394 (2012).

  24. Bravyi, S. & Maslov, D. Hadamard-free circuits expose the structure of the clifford group. IEEE Trans. Infor. Theory 67, 4546 (2021).

    Article  MathSciNet  Google Scholar 

  25. Lloyd, S., Schuld, M., Ijaz, A., Izaac, J. & Killoran, N., Quantum embeddings for machine learning. Preprint at https://arxiv.org/abs/2001.03622 (2020).

  26. Otten, M., Goumiri, I. R., Priest, B. W., Chapline, G. F. & Schneider, M. D. Quantum machine learning using gaussian processes with performant quantum kernels. Preprint at https://arxiv.org/abs/2004.11280 (2020).

  27. Cristianini, N., Shawe-Taylor, J., Elisseeff, A. & Kandola, J. On kernel-target alignment. Advances in Neural Information Processing Systems 14, 367–373 (2001).

  28. Cortes, C., Mohri, M. & Rostamizadeh, A. Algorithms for learning kernels based on centered alignment. J. Mach. Learn. Res. 13, 795 (2012).

    MathSciNet  Google Scholar 

  29. Bullins, B., Zhang, C. & Zhang, Y. Not-so-random features. In proceedings of the 6th International Conference on Learning Representations (2017); https://openreview.net/forum?id=Hk8XMWgRb

  30. Chamberland, C., Zhu, G., Yoder, T. J., Hertzberg, J. B. & Cross, A. W. Topological and subsystem codes on low-degree graphs with flag qubits. Phys. Rev. X 10, 011022 (2020).

    CAS  Google Scholar 

  31. Jurcevic, P. et al. Demonstration of quantum volume 64 on a superconducting quantum computing system. Quantum Sci. Technol. 6, 025020 (2021).

    Article  ADS  Google Scholar 

  32. Gottesman, D. Stabilizer codes and quantum error correction. PhD Thesis. California Institute of Technology (1997).

  33. Hein, M. et al. Entanglement in graph states and its applications. Preprint at https://arxiv.org/abs/quant-ph/0602096 (2006).

  34. Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  35. Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017).

    Google Scholar 

  36. Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Huang, J., Guestrin, C. & Guibas, L. Fourier theoretic probabilistic inference over permutations. J. Mach. Learn. Res. 10, 997–1070 (2009).

  38. Bravyi, S., Gosset, D. & Movassagh, R. Classical algorithms for quantum mean values. Nat. Phys. 17, 337 (2021).

    Article  CAS  Google Scholar 

  39. Bravyi, S., Sheldon, S., Kandala, A., Mckay, D. C. & Gambetta, J. M. Mitigating measurement errors in multiqubit experiments. Phys. Rev. A 103, 042605 (2021).

    Article  ADS  CAS  Google Scholar 

  40. Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).

Download references

Acknowledgements

We thank S. Arunachalam and V. Havlicek for helpful comments and discussions and D. T. McClure and N. Sundaresan for technical assistance with the device. Funding: this work was supported by the IBM Research Frontiers Institute and K.T. acknowledges support from the ARO Grant W911NF-20-1-0014.

Author information

Authors and Affiliations

Authors

Contributions

K.T., J.M.G., J.R.G., T.P.G. and A.D.C. designed the algorithms and experiments. A.D.C., A.K. and Y.K. conducted the experiments and analysis. All authors contributed to the data analysis and writing of the manuscript.

Corresponding author

Correspondence to Kristan Temme.

Ethics declarations

Competing interests

This work is associated with a patent application (Application No. 16/374,354).

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text and Figs. 1–5.

Source data

Source Data Fig. 3

Experimental data in a 26-sheet Excel file displayed in the subplots of Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glick, J.R., Gujarati, T.P., Córcoles, A.D. et al. Covariant quantum kernels for data with group structure. Nat. Phys. 20, 479–483 (2024). https://doi.org/10.1038/s41567-023-02340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02340-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing