Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diversity of information pathways drives sparsity in real-world networks

Abstract

Complex systems must respond to external perturbations and, at the same time, internally distribute information to coordinate their components. Although networked backbones help with the latter, they limit the components’ individual degrees of freedom and reduce their collective dynamical range. Here we show that real-world networks balance the loss of response diversity with gain in information flow. Encoding network states as density matrices, we demonstrate that such a trade-off mathematically resembles the thermodynamic efficiency characterized by heat and work in physical systems, providing a variational principle to macroscopically explain the sparsity and empirical scaling law observed in hundreds of real-world networks across multiple domains, both analytically and numerically. We show that the emergence of topological features such as modularity, small-worldness and heterogeneity agrees with maximizing the trade-off between information exchange and response diversity from middle to large temporal scales. Our results suggest that the emergence of some of the most prevalent topological features of real-world networks might have a thermodynamic origin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Response diversity and information propagation.
Fig. 2: Effect of topological features on η.
Fig. 3: Scaling in empirical networks.
Fig. 4: Biological networks compared with null models.
Fig. 5: Non-biological networks compared with null models.

Similar content being viewed by others

Data availability

The data necessary to reproduce the results of this work are available in Supplementary Data 1.

Code availability

The code necessary to reproduce the results of this work is available in Supplementary Code 1.

References

  1. Busiello, D. M., Suweis, S., Hidalgo, J. & Maritan, A. Explorability and the origin of network sparsity in living systems. Sci. Rep. 7, 12323 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  2. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    ADS  MathSciNet  PubMed  Google Scholar 

  3. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    ADS  CAS  PubMed  Google Scholar 

  4. Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ravasz, E. & Barabási, A.-L. Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003).

    ADS  Google Scholar 

  6. Tononi, G., Sporns, O. & Edelman, G. M. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl Acad. Sci. USA 91, 5033–5037 (1994).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Albert, R. & Barabási, A.-L. Topology of evolving networks: local events and universality. Phys. Rev. Lett. 85, 5234 (2000).

    ADS  CAS  PubMed  Google Scholar 

  8. Krapivsky, P. L., Redner, S. & Leyvraz, F. Connectivity of growing random networks. Phys. Rev. Lett. 85, 4629 (2000).

    ADS  CAS  PubMed  Google Scholar 

  9. Pacheco, J. M., Traulsen, A. & Nowak, M. A. Coevolution of strategy and structure in complex networks with dynamical linking. Phys. Rev. Lett. 97, 258103 (2006).

    ADS  PubMed  PubMed Central  Google Scholar 

  10. Garlaschelli, D., Capocci, A. & Caldarelli, G. Self-organized network evolution coupled to extremal dynamics. Nat. Phys. 3, 813–817 (2007).

    CAS  Google Scholar 

  11. Dorogovtsev, S. N. & Mendes, J. F. Evolution of networks. Adv. Phys. 51, 1079–1187 (2002).

    ADS  Google Scholar 

  12. Papadopoulos, F., Kitsak, M., Serrano, M. Á., Boguná, M. & Krioukov, D. Popularity versus similarity in growing networks. Nature 489, 537–540 (2012).

    ADS  CAS  PubMed  Google Scholar 

  13. Molkenthin, N. & Timme, M. Scaling laws in spatial network formation. Phys. Rev. Lett. 117, 168301 (2016).

    ADS  PubMed  Google Scholar 

  14. Caldarelli, G., Capocci, A., De Los Rios, P. & Munoz, M. A. Scale-free networks from varying vertex intrinsic fitness. Phys. Rev. Lett. 89, 258702 (2002).

    ADS  CAS  PubMed  Google Scholar 

  15. Gallos, L. K., Havlin, S., Stanley, H. E. & Fefferman, N. H. Propinquity drives the emergence of network structure and density. Proc. Natl Acad. Sci. USA 116, 20360–20365 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kolenbrander, P. E. et al. Communication among oral bacteria. Microbiol. Mol. Biol. Rev. 66, 486–505 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Leeder, A. C., Palma-Guerrero, J. & Glass, N. L. The social network: deciphering fungal language. Nat. Rev. Microbiol. 9, 440–451 (2011).

    CAS  PubMed  Google Scholar 

  18. Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).

    CAS  PubMed  Google Scholar 

  19. Vergassola, M., Villermaux, E. & Shraiman, B. I. ‘Infotaxis’ as a strategy for searching without gradients. Nature 445, 406–409 (2007).

    ADS  CAS  PubMed  Google Scholar 

  20. Nicholson, S. B., García-Pintos, L. P., del Campo, A. & Green, J. R. Time–information uncertainty relations in thermodynamics. Nat. Phys. 16, 1211–1215 (2020).

    CAS  Google Scholar 

  21. Banavar, J. R., Maritan, A. & Rinaldo, A. Size and form in efficient transportation networks. Nature 399, 130–132 (1999).

    ADS  CAS  PubMed  Google Scholar 

  22. Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).

    ADS  CAS  PubMed  Google Scholar 

  23. West, G. B. & Brown, J. H. Life’s universal scaling laws. Phys. Today 57, 36–42 (2004).

    Google Scholar 

  24. Barabási, A.-L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    PubMed  Google Scholar 

  25. West, G. B. & Brown, J. H. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208, 1575–1592 (2005).

    PubMed  Google Scholar 

  26. Marquet, P. A. et al. Scaling and power-laws in ecological systems. J. Exp. Biol. 208, 1749–1769 (2005).

    PubMed  Google Scholar 

  27. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    ADS  MathSciNet  Google Scholar 

  28. Achard, S. & Bullmore, E. Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3, e17 (2007).

    ADS  PubMed  PubMed Central  Google Scholar 

  29. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    CAS  PubMed  Google Scholar 

  30. Rubinov, M., Ypma, R. J. F., Watson, C. & Bullmore, E. T. Wiring cost and topological participation of the mouse brain connectome. Proc. Natl Acad. Sci. USA 112, 10032–10037 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bornholdt, S. & Sneppen, K. Robustness as an evolutionary principle. Proc. R. Soc. Lond. B 267, 2281–2286 (2000).

    CAS  Google Scholar 

  32. Kleinberg, J. M. Navigation in a small world. Nature 406, 845–845 (2000).

    ADS  CAS  PubMed  Google Scholar 

  33. Tadi’c, B., Rodgers, G. J. & Thurner, S. Transport on complex networks: flow, jamming and optimization. Int. J. Bifurcat. Chaos 17, 2363–2385 (2007).

    Google Scholar 

  34. O’Kelly, M. E. A geographer’s analysis of hub-and-spoke networks. J. Transp. Geogr. 6, 171–186 (1998).

    Google Scholar 

  35. Barthélemy, M. Spatial networks. Phys. Rep. 499, 1–101 (2011).

    ADS  MathSciNet  Google Scholar 

  36. Barzel, B. & Barabási, A.-L. Universality in network dynamics. Nat. Phys. 9, 673–681 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Harush, U. & Barzel, B. Dynamic patterns of information flow in complex networks. Nat. Commun. 8, 2181 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  38. Hens, C., Harush, U., Haber, S., Cohen, R. & Barzel, B. Spatiotemporal signal propagation in complex networks. Nat. Phys. 15, 403–412 (2019).

    CAS  Google Scholar 

  39. Barrat, A., Barthelemy, M. & Vespignani, A. Dynamical Processes on Complex Networks (Cambridge Univ. Press, 2008).

  40. Ghavasieh, A. & De Domenico, M. Generalized network density matrices for analysis of multiscale functional diversity. Phys. Rev. E 107, 044304 (2023).

    ADS  CAS  PubMed  Google Scholar 

  41. Ghavasieh, A., Nicolini, C. & De Domenico, M. Statistical physics of complex information dynamics. Phys. Rev. E 102, 052304 (2020).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  42. De Domenico, M. & Biamonte, J. Spectral entropies as information-theoretic tools for complex network comparison. Phys. Rev. X 6, 041062 (2016).

    Google Scholar 

  43. Ghavasieh, A., Bontorin, S., Artime, O., Verstraete, N. & De Domenico, M. Multiscale statistical physics of the pan-viral interactome unravels the systemic nature of SARS-CoV-2 infections. Commun. Phys. 4, 83 (2021).

    CAS  Google Scholar 

  44. Ghavasieh, A., Stella, M., Biamonte, J. & Domenico, M. D. Unraveling the effects of multiscale network entanglement on empirical systems. Commun. Phys. 4, 129 (2021).

  45. Ghavasieh, A., Bertagnolli, G. & De Domenico, M. Dismantling the information flow in complex interconnected systems. Phys. Rev. Research 5, 013084 (2023).

    ADS  CAS  Google Scholar 

  46. Ghavasieh, A. & De Domenico, M. Enhancing transport properties in interconnected systems without altering their structure. Phys. Rev. Research 2, 013155 (2020).

    ADS  CAS  Google Scholar 

  47. Villegas, P., Gili, T., Caldarelli, G. & Gabrielli, A. Laplacian renormalization group for heterogeneous networks. Nat. Phys. 19, 445–450 (2023).

  48. Peixoto, T. P. Nonparametric Bayesian inference of the microcanonical stochastic block model. Phys. Rev. E 95, 012317 (2017).

    ADS  PubMed  Google Scholar 

  49. Clauset, A. The Colorado index of complex networks; https://icon.colorado.edu/#!/networks

  50. Dixit, P. D. et al. Perspective: maximum caliber is a general variational principle for dynamical systems. J. Chem. Phys. 148, 010901 (2018).

    ADS  PubMed  Google Scholar 

  51. Ghosh, K., Dixit, P. D., Agozzino, L. & Dill, K. A. The maximum caliber variational principle for nonequilibria. Annu. Rev. Phys. Chem.71, 213–238 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gilbert, E. N. Random graphs. Ann. Math. Stat. 30, 1141–1144 (1959).

    Google Scholar 

  53. Fienberg, S. E. A brief history of statistical models for network analysis and open challenges. J. Comput. Graph. Stat. 21, 825–839 (2012).

    MathSciNet  Google Scholar 

  54. DeLellis, P., Garofalo, F. & Liuzza, D. et al. Analysis and stability of consensus in networked control systems. Appl. Math. Comput. 217, 988–1000 (2010).

    MathSciNet  Google Scholar 

  55. Hastings, A. Complex interactions between dispersal and dynamics: lessons from coupled logistic equations. Ecology 74, 1362–1372 (1993).

    Google Scholar 

  56. Steele, J. Human dispersals: mathematical models and the archaeological record. Human Biol. 81, 121–140 (2009).

    PubMed  Google Scholar 

  57. Fisher, R. A. The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937).

    Google Scholar 

  58. Belik, V., Geisel, T. & Brockmann, D. Natural human mobility patterns and spatial spread of infectious diseases. Phys. Rev. X 1, 011001 (2011).

    Google Scholar 

  59. Brockmann, D. & Helbing, D. The hidden geometry of complex, network-driven contagion phenomena. Science 342, 1337–1342 (2013).

    ADS  CAS  PubMed  Google Scholar 

  60. Bontorin, S. & De Domenico, M. Multi pathways temporal distance unravels the hidden geometry of network-driven processes. Commun. Phys. 6, 129 (2023).

    Google Scholar 

  61. Boguna, M. et al. Network geometry. Nat. Rev. Phys. 3, 114–135 (2021).

    Google Scholar 

  62. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008).

    ADS  MathSciNet  Google Scholar 

  63. De Domenico, M. Diffusion geometry unravels the emergence of functional clusters in collective phenomena. Phys. Rev. Lett. 118, 168301 (2017).

    ADS  PubMed  Google Scholar 

  64. Lucas, M., Cencetti, G. & Battiston, F. Multiorder laplacian for synchronization in higher-order networks. Phys. Rev. Research 2, 033410 (2020).

    ADS  CAS  Google Scholar 

  65. Lee, S. H., Fricker, M. D. & Porter, M. A. Mesoscale analyses of fungal networks as an approach for quantifying phenotypic traits. J. Complex Networks 5, 145–159 (2017).

    Google Scholar 

  66. Nooner, K. B. et al. The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front. Neurosci. 6, 152 (2012).

  67. Szalkai, B., Kerepesi, C., Varga, B. & Grolmusz, V. Parameterizable consensus connectomes from the Human Connectome Project: the Budapest Reference Connectome Server v3.0. Cogn. Neurodynamics 11, 113–116 (2017).

    Google Scholar 

  68. Ryan, K., Lu, Z. & Meinertzhagen, I. A. The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling. eLife 5, e16962 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. Varshney, L. R., Chen, B. L., Paniagua, E., Hall, D. H. & Chklovskii, D. B. Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7, e1001066 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Arnatkevičiūtė, A., Fulcher, B. D., Pocock, R. & Fornito, A. Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome. PLoS Comput. Biol. 14, e1005989 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  71. Rossi, R. A. & Ahmed, N. K. The network data repository with interactive graph analytics and visualization. In Proc. AAAI Conference on Artificial Intelligence 29, 4292–4293 (2015).

  72. Kim, H., Olave-Rojas, D., Álvarez-Miranda, E. & Son, S.-W. In-depth data on the network structure and hourly activity of the Central Chilean power grid. Sci. Data 5, 180209 (2018).

  73. Blagus, N., Šubelj, L. & Bajec, M. Self-similar scaling of density in complex real-world networks. Phys. A: Stat. Mech. Appl. 391, 2794–2802 (2012).

    Google Scholar 

  74. Guimerà, R., Danon, L., Díaz-Guilera, A., Giralt, F. & Arenas, A. Self-similar community structure in a network of human interactions. Phys. Rev. E 68, 065103(R) (2003).

  75. Sapiezynski, P., Stopczynski, A., Lassen, D. D. & Lehmann, S. Interaction data from the Copenhagen networks study. Sci. Data 6, 315 (2019).

  76. Newman, M. E. J. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006).

  77. Dunne, J. A., Labandeira, C. C. & Williams, R. J. Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction. Proc. R. Soc. B 281, 20133280 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Martinez, N. D. Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecol. Monogr. 61, 367–392 (1991).

    Google Scholar 

  79. Knight, S., Nguyen, H. X., Falkner, N., Bowden, R. & Roughan, M. The Internet topology zoo. IEEE J. Sel. Areas Commun. 29, 1765–1775 (2011).

    Google Scholar 

  80. Crucitti, P., Latora, V. & Porta, S. Centrality measures in spatial networks of urban streets. Phys. Rev. E 73, 036125 (2006).

    ADS  Google Scholar 

Download references

Acknowledgements

M.D.D. acknowledges partial financial support from the Human Frontier Science Program Organization (HFSP ref. RGY0064/2022), from the University of Padua (PRD-BIRD 2022) and from the EU funding within the MUR PNRR ‘National Center for HPC, BIG DATA AND QUANTUM COMPUTING’ (project no. CN00000013 CN1).

Author information

Authors and Affiliations

Authors

Contributions

A.G. and M.D.D. designed the study, performed the theoretical analysis and wrote the manuscript. A.G. performed the numerical experiments.

Corresponding authors

Correspondence to Arsham Ghavasieh or Manlio De Domenico.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Baruch Barzel and Roger Guimerà for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Code 1

The necessary code to reproduce the results of this work.

Supplementary Data 1

Node and link numbers of the empirical networks relevant for the allometric scaling analysis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghavasieh, A., De Domenico, M. Diversity of information pathways drives sparsity in real-world networks. Nat. Phys. 20, 512–519 (2024). https://doi.org/10.1038/s41567-023-02330-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02330-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing