Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ferroelectric and spontaneous quantum Hall states in intrinsic rhombohedral trilayer graphene

Abstract

Non-trivial interacting phases can emerge in elementary materials. As a prime example, continuing advances in device quality have facilitated the observation of a variety of spontaneously ordered quantum states in bilayer graphene. Its natural extension, rhombohedral trilayer graphene—in which the layers are stacked in an ABC fashion—is predicted to host stronger electron–electron interactions than bilayer graphene because of its flatter low-energy bands and larger winding number. Theoretically, five spontaneous quantum Hall phases have been proposed to be candidate electronic ground states. Here we observe evidence for four of the five competing ordered states in interaction-maximized, dual-gated, rhombohedral trilayer graphene. In particular, at small magnetic fields, two states with Chern numbers 3 and 6 can be stabilized at elevated and low perpendicular electric fields, respectively, and both exhibit clear magnetic hysteresis. We also show that the quantum Hall ferromagnets of the zero-energy Landau levels are ferroelectrics with spontaneous layer polarizations even at zero electric field, as evidenced by electric hysteresis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microscopy and transport measurements.
Fig. 2: Electric hysteresis of quantum Hall ferromagnets.
Fig. 3: Anomalous quantum Hall states at low magnetic fields.
Fig. 4: Magnetic hysteresis at a constant electric field E = −20 mV nm−1.

Similar content being viewed by others

Data availability

Original data are available in the Göttingen Research Online Data repository (GRO.data) at https://doi.org/10.25625/VXUMPN.

References

  1. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS  CAS  PubMed  Google Scholar 

  2. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    ADS  CAS  PubMed  Google Scholar 

  3. Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70 (2020).

    ADS  CAS  PubMed  Google Scholar 

  4. Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    ADS  CAS  PubMed  Google Scholar 

  5. Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Science 372, 1323–1327 (2021).

    ADS  CAS  PubMed  Google Scholar 

  6. Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    ADS  PubMed  Google Scholar 

  7. Nandkishore, R. & Levitov, L. Flavor symmetry and competing orders in bilayer graphene. Preprint at https://arxiv.org/abs/1002.1966 (2010).

  8. Zhang, F. Spontaneous chiral symmetry breaking in bilayer graphene. Synth. Met. 210, 9–18 (2015).

    CAS  Google Scholar 

  9. Geisenhof, F. R. et al. Quantum anomalous Hall octet driven by orbital magnetism in bilayer graphene. Nature 598, 53–58 (2021).

    ADS  CAS  PubMed  Google Scholar 

  10. Zhang, F., Min, H. & MacDonald, A. H. Competing ordered states in bilayer graphene. Phys. Rev. B 86, 155128 (2012).

    ADS  Google Scholar 

  11. Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).

    ADS  CAS  PubMed  Google Scholar 

  12. Zhang, Y. et al. Enhanced superconductivity in spin-orbit proximitized bilayer graphene. Nature 613, 268–273 (2023).

    ADS  CAS  PubMed  Google Scholar 

  13. La Barrera et al. Cascade of isospin phase transitions in Bernal-stacked bilayer graphene at zero magnetic field. Nat. Phys. 18, 771–775 (2022).

    Google Scholar 

  14. Seiler, A. M. et al. Quantum cascade of correlated phases in trigonally warped bilayer graphene. Nature 608, 298–302 (2022).

    ADS  CAS  PubMed  Google Scholar 

  15. Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    ADS  CAS  PubMed  Google Scholar 

  16. Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    ADS  CAS  PubMed  Google Scholar 

  17. Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    ADS  CAS  PubMed  Google Scholar 

  18. Koshino, M. & McCann, E. Trigonal warping and Berry’s phase Nπ in ABC-stacked multilayer graphene. Phys. Rev. B 80, 165409 (2009).

    ADS  Google Scholar 

  19. Zhang, F., Sahu, B., Min, H. & MacDonald, A. H. Band structure of ABC-stacked graphene trilayers. Phys. Rev. B 82, 035409 (2010).

    ADS  Google Scholar 

  20. Jung, J. & MacDonald, A. H. Gapped broken symmetry states in ABC-stacked trilayer graphene. Phys. Rev. B 88, 075408 (2013).

  21. Cvetkovic, V. & Vafek, O. Topology and symmetry breaking in ABC trilayer graphene. Preprint at https://arxiv.org/abs/1210.4923 (2012).

  22. Zhang, F., Tilahun, D. & MacDonald, A. H. Hund’s rules for the N = 0 Landau levels of trilayer graphene. Phys. Rev. B 85, 165139 (2012).

  23. Lee, Y. et al. Multicomponent quantum Hall ferromagnetism and Landau level crossing in rhombohedral trilayer graphene. Nano Lett. 16, 227–231 (2016).

    ADS  CAS  PubMed  Google Scholar 

  24. Zhang, L., Zhang, Y., Camacho, J., Khodas, M. & Zaliznyak, I. The experimental observation of quantum Hall effect of l = 3 chiral quasiparticles in trilayer graphene. Nat. Phys. 7, 953–957 (2011).

    CAS  Google Scholar 

  25. Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010).

    ADS  CAS  PubMed  Google Scholar 

  26. Velasco, J. et al. Competing ordered states with filling factor two in bilayer graphene. Nat. Commun. 5, 4550 (2014).

    ADS  CAS  PubMed  Google Scholar 

  27. Pan, C. et al. Layer polarizability and easy-axis quantum Hall ferromagnetism in bilayer graphene. Nano Lett. 17, 3416–3420 (2017).

    ADS  CAS  PubMed  Google Scholar 

  28. Geisenhof, F. R. et al. Impact of electric field disorder on broken-symmetry states in ultraclean bilayer graphene. Nano Lett. 22, 7378–7385 (2022).

    ADS  CAS  PubMed  Google Scholar 

  29. De Poortere, E. P., Tutuc, E., Papadakis, S. J. & Shayegan, M. Resistance spikes at transitions between quantum Hall ferromagnets. Science 290, 1546–1549 (2000).

    ADS  CAS  PubMed  Google Scholar 

  30. Zou, K., Zhang, F., Clapp, C., MacDonald, A. H. & Zhu, J. Transport studies of dual-gated ABC and ABA trilayer graphene. Band gap opening and band structure tuning in very large perpendicular electric fields. Nano Lett. 13, 369–373 (2013).

    ADS  CAS  PubMed  Google Scholar 

  31. Lui, C. H., Li, Z., Mak, K. F., Cappelluti, E. & Heinz, T. F. Observation of an electrically tunable band gap in trilayer graphene. Nat. Phys. 7, 944–947 (2011).

    CAS  Google Scholar 

  32. Aoki, M. & Amawashi, H. Dependence of band structures on stacking and field in layered graphene. Solid State Commun. 142, 123–127 (2007).

    ADS  CAS  Google Scholar 

  33. Koshino, M. Interlayer screening effect in graphene multilayers with ABA and ABC stacking. Phys. Rev. B 81, 125304 (2010).

    ADS  Google Scholar 

  34. Lee, Y. et al. Competition between spontaneous symmetry breaking and single-particle gaps in trilayer graphene. Nat. Commun. 5, 5656 (2014).

    ADS  CAS  PubMed  Google Scholar 

  35. Myhro, K. et al. Large tunable intrinsic gap in rhombohedral-stacked tetralayer graphene at half filling. 2D Mater. 5, 45013 (2018).

    CAS  Google Scholar 

  36. Lee, Y. et al. Gate tunable magnetism and giant magnetoresistance in ABC-stacked few-layer graphene. Preprint at https://arxiv.org/abs/1911.04450 (2019).

  37. Zhang, F. & MacDonald, A. H. Distinguishing spontaneous quantum Hall states in bilayer graphene. Phys. Rev. Lett. 108, 186804 (2012).

    ADS  PubMed  Google Scholar 

  38. Kharitonov, M. Canted antiferromagnetic phase of the ν = 0 quantum Hall state in bilayer graphene. Phys. Rev. Lett. 109, 046803 (2012).

    ADS  PubMed  Google Scholar 

  39. Kharitonov, M. Antiferromagnetic state in bilayer graphene. Phys. Rev. B 86, 195435 (2012).

    ADS  Google Scholar 

  40. Bao, W. et al. Evidence for a spontaneous gapped state in ultraclean bilayer graphene. Proc. Natl Acad. Sci. USA 109, 10802–10805 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Velasco, J. et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat. Nanotech. 7, 156–160 (2012).

    ADS  CAS  Google Scholar 

  42. Freitag, F., Weiss, M., Maurand, R., Trbovic, J. & Schönenberger, C. Spin symmetry of the bilayer graphene ground state. Phys. Rev. B 87, 161402 (2013).

    ADS  Google Scholar 

  43. Li, J. et al. Metallic phase and temperature dependence of the ν = 0 quantum Hall state in bilayer graphene. Phys. Rev. Lett. 122, 097701 (2019).

    ADS  CAS  PubMed  Google Scholar 

  44. Martin, J., Feldman, B. E., Weitz, R. T., Allen, M. T. & Yacoby, A. Local compressibility measurements of correlated states in suspended bilayer graphene. Phys. Rev. Lett. 105, 256806 (2010).

    ADS  CAS  PubMed  Google Scholar 

  45. Lee, D. S., Skákalová, V., Weitz, R. T., von Klitzing, K. & Smet, J. H. Transconductance fluctuations as a probe for interaction-induced quantum Hall states in graphene. Phys. Rev. Lett. 109, 056602 (2012).

    ADS  PubMed  Google Scholar 

  46. Freitag, F., Weiss, M., Maurand, R., Trbovic, J. & Schönenberger, C. Homogeneity of bilayer graphene. Solid State Commun. 152, 2053–2057 (2012).

    ADS  CAS  Google Scholar 

  47. Geisenhof, F. R. et al. Anisotropic strain-induced soliton movement changes stacking order and band structure of graphene multilayers. Implications for charge transport. ACS Appl. Nano Mater. 2, 6067–6075 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

F.W., F.R.G., N. F. and R.T.W. acknowledge funding from the Center for Nanoscience (CeNS) and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy-EXC-2111-390814868 (MCQST). R.T.W. acknowledges partial funding from the DFG SPP 2244 (2DMP). F.Z. acknowledges support from the US National Science Foundation under grant numbers DMR-1945351 through the CAREER programme, DMR-2105139 through the CMP programme and DMR-2324033 through the DMREF programme.

Author information

Authors and Affiliations

Authors

Contributions

F.W., F.R.G. and N.F. fabricated the samples. F.W. and N.F. conducted the electrical measurements with the help of A.M.S. and F.R.G. F.Z. developed the theory. All authors discussed and interpreted the data. The paper was written by F.W, F.Z. and R.T.W., with input from all authors.

Corresponding authors

Correspondence to Fan Zhang or R. Thomas Weitz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Ferroelectric states.

a,b, Map of the resistance difference between forward and backward sweep of the electric field as function of electric field and charge carrier density at B = 3 T in a and B = 8 T in b. The region with vanishing conductance at zero density has been removed due to large resistance variations to enhance visibility.

Extended Data Fig. 2 Quantum Hall states at low magnetic fields.

a-c, fan diagrams of the conductance derivative with respect to the charge carrier density of device A2 (cf. Supporting Table 1) at E = 0 mV nm−1 in a, E = 24 mV nm−1 in b and E = 47 mV nm−1 in c. The filling factors and their corresponding slopes are indicated on the top of each panel. The roman numerals indicate the associated spontaneous quantum Hall states, namely the LAF/CAF state (I), the ALL state (III) and the QAH state (IV). d-f, Fan diagrams of the conductance derivative with respect to the charge carrier density of device B1 (cf. Supporting Table 1) at E = 0 mV nm−1 in d, E = −20 mV nm−1 in e and E = −60 mV nm−1 in f. The filling factors and their corresponding slopes are indicated on the top of each panel.

Extended Data Fig. 3 Device schematics.

a, 3D view of a dual-gated trilayer graphene device with a silicon bottom gate and a gold top gate. b, Cross section of the device shown in a along the graphene axis.

Supplementary information

Supplementary Information

Supplementary Sections 1–6, Figs. 1–5 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winterer, F., Geisenhof, F.R., Fernandez, N. et al. Ferroelectric and spontaneous quantum Hall states in intrinsic rhombohedral trilayer graphene. Nat. Phys. 20, 422–427 (2024). https://doi.org/10.1038/s41567-023-02327-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02327-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing