Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emergence of highly coherent two-level systems in a noisy and dense quantum network

Abstract

Quantum sensors and qubits are usually two-level systems (TLS), the quantum analogues of classical bits assuming binary values 0 or 1. They are useful to the extent to which superpositions of 0 and 1 persist despite a noisy environment. The standard prescription to avoid decoherence of solid-state qubits is their isolation by means of extreme dilution in ultrapure materials. We demonstrate a different strategy using the rare-earth insulator LiY1−xTbxF4 (x = 0.001) which realizes a dense random network of TLS. Some TLS belong to strongly interacting Tb3+ pairs whose quantum states, thanks to localization effects, form highly coherent qubits with 100-fold longer coherence times than single ions. Our understanding of the underlying decoherence mechanisms—and of their suppression—suggests that coherence in networks of dipolar coupled TLS can be enhanced rather than reduced by the interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clock states of Tb3+ ions in LiY1−xTbxF4.
Fig. 2: Hahn echo of single Tb3+ ions and spectrally detuned pairs.
Fig. 3: Dynamics and coherence of typical single ions and pairs.
Fig. 4: Superior coherence of pairs compared to typical ions.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The source codes used for the numerical simulations are provided with this paper.

References

  1. Basko, D. M., Aleiner, I. L. & Altshuler, B. L. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).

    Article  ADS  CAS  Google Scholar 

  2. Huse, D. A., Nandkishore, R. & Oganesyan, V. Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014).

    Article  ADS  Google Scholar 

  3. Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    Article  ADS  Google Scholar 

  4. Nandkishore, R., Gopalakrishnan, S. & Huse, D. A. Spectral features of a many-body-localized system weakly coupled to a bath. Phys. Rev. B 90, 064203 (2014).

    Article  ADS  Google Scholar 

  5. Yao, N. Y. et al. Many-body localization in dipolar systems. Phys. Rev. Lett. 113, 243002 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Burin, A. L. Many-body delocalization in a strongly disordered system with long-range interactions: finite-size scaling. Phys. Rev. B 91, 094202 (2015).

    Article  ADS  Google Scholar 

  7. Gornyi, I. V., Mirlin, A. D., Müller, M. & Polyakov, D. G. Absence of many-body localization in a continuum. Ann. Phys. 529, 1600365 (2017).

    Article  Google Scholar 

  8. De Roeck, W. & Huveneers, F. M. C. Stability and instability towards delocalization in many-body localization systems. Phys. Rev. B 95, 155129 (2017).

    Article  ADS  Google Scholar 

  9. Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Gopalakrishnan, S. & Parameswaran, S. A. Dynamics and transport at the threshold of many-body localization. Phys. Rep. 862, 1–62 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  11. Smith, J. et al. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016).

    Article  CAS  Google Scholar 

  12. Roushan, P. et al. Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science 358, 1175–1179 (2017).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  13. Lukin, A. et al. Probing entanglement in a many-body–localized system. Science 364, 256–260 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Guo, Q. et al. Observation of energy-resolved many-body localization. Nat. Phys. 17, 234–239 (2021).

    Article  ADS  CAS  Google Scholar 

  15. Chiaro, B. et al. Direct measurement of nonlocal interactions in the many-body localized phase. Phys. Rev. Res. 4, 013148 (2022).

    Article  CAS  Google Scholar 

  16. Léonard, J. et al. Probing the onset of quantum avalanches in a many-body localized system. Nat. Phys. 19, 481–485 (2023).

    Article  Google Scholar 

  17. Ho, W. W., Choi, S., Lukin, M. D. & Abanin, D. A. Critical time crystals in dipolar systems. Phys. Rev. Lett. 119, 010602 (2017).

    Article  ADS  PubMed  Google Scholar 

  18. Choi, J. et al. Depolarization dynamics in a strongly interacting solid-state spin ensemble. Phys. Rev. Lett. 118, 093601 (2017).

    Article  ADS  PubMed  Google Scholar 

  19. Kucsko, G. et al. Critical thermalization of a disordered dipolar spin system in diamond. Phys. Rev. Lett. 121, 023601 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Forrester, P. A. & Hempstead, C. F. Paramagnetic resonance of Tb3+ ions in CaWO4 and CaF2. Phys. Rev. 126, 923–930 (1962).

    Article  ADS  CAS  Google Scholar 

  21. Laursen, I. & Holmes, L. M. Paramagnetic resonance of Tb3+ in LiY0.99Tb0.01F4. J. Phys. C Solid State Phys. 7, 3765 (1974).

    Article  ADS  CAS  Google Scholar 

  22. Holmes, L. M., Johansson, T. & Guggenheim, H. J. Ferromagnetism in LiTbF4. Solid State Commun. 12, 993–997 (1973).

    Article  ADS  CAS  Google Scholar 

  23. Youngblood, R. W., Aeppli, G., Axe, J. D. & Griffin, J. A. Spin dynamics of a model singlet ground-state system. Phys. Rev. Lett. 49, 1724–1727 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Carr, H. Y. & Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630–638 (1954).

    Article  ADS  CAS  Google Scholar 

  25. Meiboom, S. & Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958).

    Article  ADS  CAS  Google Scholar 

  26. Prokof’ev, N. V. & Stamp, P. C. E. Theory of the spin bath. Rep. Prog. Phys. 63, 669–726 (2000).

    Article  ADS  Google Scholar 

  27. Kittel, C. & Abrahams, E. Dipolar broadening of magnetic resonance lines in magnetically diluted crystals. Phys. Rev. 90, 238–239 (1953).

    Article  ADS  CAS  Google Scholar 

  28. Burin, A. L. Localization in a random xy model with long-range interactions: intermediate case between single-particle and many-body problems. Phys. Rev. B 92, 104428 (2015).

    Article  ADS  Google Scholar 

  29. Ghosh, S., Rosenbaum, T. F., Aeppli, G. & Coppersmith, S. N. Entangled quantum state of magnetic dipoles. Nature 425, 48–51 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Silevitch, D. M., Tang, C., Aeppli, G. & Rosenbaum, T. F. Tuning high-Q nonlinear dynamics in a disordered quantum magnet. Nat. Commun. 10, 4001 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Ruskuc, A., Wu, C.-J., Rochman, J., Choi, J. & Faraon, A. Nuclear spin-wave quantum register for a solid-state qubit. Nature 602, 408–413 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Le Dantec, M. et al. Twenty-three-millisecond electron spin coherence of erbium ions in a natural-abundance crystal. Sci. Adv. 7, eabj9786 (2022).

    Article  Google Scholar 

  34. Mims, W. B. Envelope modulation in spin-echo experiments. Phys. Rev. B 5, 2409–2419 (1972).

    Article  ADS  Google Scholar 

  35. Mitrikas, G. & Prokopiou, G. Modulation depth enhancement of ESEEM experiments using pulse trains. J. Magn. Reson. 254, 75–85 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Baltisberger, J. H. et al. Communication: phase incremented echo train acquisition in NMR spectroscopy. Chem. Phys. 136, 211104 (2012).

    ADS  Google Scholar 

  37. Doll, A. & Jeschke, G. Wideband frequency-swept excitation in pulsed EPR spectroscopy. J. Magn. Reson. 280, 46–62 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Grimm, M. Quantum Coherence in Rare-earth Magnets. PhD thesis, ETH Zurich (2023).

  39. Bergli, J., Galperin, Y. M. & Altshuler, B. L. Decoherence in qubits due to low-frequency noise. New J. Phys. 11, 025002 (2009).

    Article  ADS  Google Scholar 

  40. Schweiger, A. and Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance 1st edn (Oxford Univ. Press, 2001).

  41. Zemann, J. Crystal structures, 2nd edition. Vol. 1 by R. W. G. Wyckoff. Interscience Publishers (1965).

  42. Holmes, L. M., Als-Nielsen, J. & Guggenheim, H. J. Dipolar and nondipolar interactions in LiTbF4. Phys. Rev. B 12, 180–190 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Polyhach for support with the spectrometer and M. Döbeli for Rutherford backscattering spectroscopy concentration measurements. We thank H. Sigg and J. Bailey for useful discussions. This work was financially supported by the Swiss National Science Foundation, grant nos. 200021_166271 (G.A. and M.M.) and P500PT_203179 (A.B.); Eidgenössische Technische Hochschule Zürich (grant no. ETH-48 16- 1 (G.J.)); and European Research Council under the European Union’s Horizon 2020 research and innovation programme HERO (grant agreement no. 810451 (G.A.)).

Author information

Authors and Affiliations

Authors

Contributions

A.B., M.G., R.T. and G.A. planned the experiments with inputs from all authors. S.G., G.M., M.M., G.J. and G.A. supervised the project. A.B., N.W. and R.T. adapted and operated the set-up. A.B. and N.W. performed the experiments and collected data. A.B., M.G. and N.W. analysed the data with inputs from all authors. M.G. and M.M. developed the theory and performed the simulations. A.B., M.G., M.M. and G.A. wrote the paper with input from all authors.

Corresponding authors

Correspondence to A. Beckert, M. Müller or G. Aeppli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Sean Giblin, Vadim Oganesyan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Experimental setup.

Microwave circuitry of the experimental setup (details see Doll & Jeschke in Methods), including a schematic of the microwave cavity. ‘AWG’ stands for the arbitrary waveform generator and ‘ADC’ for the analog to digital converter. The orientation of BDC and BAC are given with respect to the crystallographic axes of the sample.

Extended Data Fig. 2 Hahn-echo measurements of Tb3+ ions.

a Bloch sphere representation of \(\left\vert 0\right\rangle\) and \(\left\vert 1\right\rangle\), illustrating the action of a π/2 − pulse. b Hahn-echo pulse sequence. Following the initial π/2-pulse, a π-pulse is applied after a waiting time τ and the magnetic-moment-induced echo signal (red) is detected at 2τ. c Integrated echo area as a function of the external magnetic field Bz, measured at a carrier frequency of 27.75 GHz. Square π/2- and π-pulses of 12 and 24 ns duration were delayed by τ = 500 ns, respectively. The red line denotes Gaussian fits to the echo signal of the Iz = − 1/2 and − 3/2 HF states. At B3/2 fluctuators are more strongly aligned to the magnetic field which leads to a larger echo signal compared to B1/2.

Source data

Extended Data Fig. 3 Hahn-echo envelopes.

Data of Fig. 3e plotted against τ to highlight the approximately simple exponential (β = 0.9) decay of the nnn pair Hahn-echo signal (orange) as opposed to typical ions at x = 0.1% (purple) and x = 0.01% (green) with β = 1/2.

Source data

Extended Data Fig. 4 Tb–F oscillations in the CPMG experiment.

Data of Fig. 4c (right) plotted against τ3/2 = [t/(2N)]3/2 instead of t1/2, showing that the oscillations originating from Tb-F interactions fall on top of each other. The frequencies ωI match the original case (N = 1) treated by Mims34. and 2ωI for N > 1, as well as an increasing oscillation amplitude with increasing N as shown by Mitrikas et al.35.

Source data

Extended Data Fig. 5 Tb3+ - F coupling.

a Hahn echo envelopes of the x = 0.1% crystal at 27.5 GHz with fits for a selection of fields Bz. b Extracted coupling strengths Bnn for nn coupling of F ions to the Tb3+ ion. Parameters for three frequencies across B3/2 are shown. The black solid line is the theoretical prediction. c Fitted characteristic timescale T1/e. Detuning from the clock-condition increases the magnetic moments and thus decreases the coherence time. See main text for details. All errorbars denote fit uncertainty, extracted from the covariance matrix.

Source data

Extended Data Fig. 6 Closeup and noisefloor of the CPMG data.

a Linear scale of the typical ion data set shown in Fig. 4c. The dashed line indicates RMS noise floor. b Respective data for nnn pairs.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Discussion and Tables 1–3.

Supplementary Data 1

Source data for Supplementary Fig. 1.

Supplementary Code 1

Supplementary code for numerical simulation.

Source data

Source Data Fig. 1

Data underlying Fig. 1 as .xlsx.

Source Data Fig. 2

Data underlying Fig. 2 as .xlsx.

Source Data Fig. 3

Data underlying Fig. 3 as .xlsx.

Source Data Fig. 4

Data underlying Fig. 4 as .xlsx.

Source Data Extended Data Fig. 2

Data underlying Extended Data Fig. 2 as .txt.

Source Data Extended Data Fig. 3

Data underlying Extended Data Fig. 3 as .xlsx.

Source Data Extended Data Fig. 4

Data underlying Extended Data Fig. 4 as .xlsx.

Source Data Extended Data Fig. 5

Data underlying Extended Data Fig. 5 as .xlsx.

Source Data Extended Data Fig. 6

Data underlying Extended Data Fig. 6 as .xlsx.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beckert, A., Grimm, M., Wili, N. et al. Emergence of highly coherent two-level systems in a noisy and dense quantum network. Nat. Phys. 20, 472–478 (2024). https://doi.org/10.1038/s41567-023-02321-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02321-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing