Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

One-ninth magnetization plateau stabilized by spin entanglement in a kagome antiferromagnet

Abstract

The spin-1/2 antiferromagnetic Heisenberg model on a kagome lattice is geometrically frustrated, which is expected to promote the formation of many-body quantum entangled states. The most sought-after among these is the quantum spin-liquid phase, but magnetic analogues of liquid, solid and supersolid phases may also occur, producing fractional plateaus in the magnetization. Here, we investigate the experimental realization of these predicted phases in the kagome material YCu3(OD)6+xBr3−x (x ≈ 0.5). By combining thermodynamic and Raman spectroscopic techniques, we provide evidence for fractionalized spinon excitations and observe the emergence of a 1/9 magnetization plateau. These observations establish YCu3(OD)6+xBr3−x as a model material for exploring the 1/9 plateau phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Magnetic specific heat and thermal conductivity of YCu3(OD)6.5Br2.5.
Fig. 2: Spinon continuum and dynamic Raman susceptibility of YCu3(OD)6.5Br2.5.
Fig. 3: Power-law analysis of magnetic Raman susceptibility.
Fig. 4: High-field magnetization and 1/9 magnetization plateau.

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    ADS  CAS  PubMed  Google Scholar 

  2. Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2017).

    ADS  PubMed  Google Scholar 

  3. Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    ADS  MathSciNet  Google Scholar 

  4. Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).

    CAS  PubMed  Google Scholar 

  5. Waldtmann, C. et al. First excitations of the spin 1/2 Heisenberg antiferromagnet on the kagomé lattice. Eur. Phys. J. B 2, 501–507 (1998).

  6. Ran, Y., Hermele, M., Lee, P. A. & Wen, X. G. Projected-wave-function study of the spin-1/2 Heisenberg model on the kagomé lattice. Phys. Rev. Lett. 98, 117205 (2007).

    ADS  PubMed  Google Scholar 

  7. Iqbal, Y., Becca, F. & Poilblanc, D. Valence-bond crystal in the extended kagome spin-1/2 quantum Heisenberg antiferromagnet: a variational Monte Carlo approach. Phys. Rev. B 83, 100404(R) (2011).

    ADS  Google Scholar 

  8. He, Y. C., Zaletel, M. P., Oshikawa, M. & Pollmann, F. Signatures of Dirac cones in a DMRG study of the kagome Heisenberg model. Phys. Rev. X 7, 031020 (2017).

    Google Scholar 

  9. Liao, H. J. et al. Gapless spin-liquid ground state in the S = 1/2 kagome antiferromagnet. Phys. Rev. Lett. 118, 137202 (2017).

    ADS  CAS  PubMed  Google Scholar 

  10. Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S = 1/2 kagome Heisenberg antiferromagnet. Science 332, 1173 (2011).

    ADS  CAS  PubMed  Google Scholar 

  11. Jiang, H. C., Wang, Z. & Balents, L. Identifying topological order by entanglement entropy. Nat. Phys. 8, 902–905 (2012).

    CAS  Google Scholar 

  12. Depenbrock, S., McCulloch, I. P. & Schollwöck, U. Nature of the spin-liquid ground state of the S = 1/2 Heisenberg model on the kagome lattice. Phys. Rev. Lett. 109, 067201 (2012).

    ADS  PubMed  Google Scholar 

  13. Kolley, F., Depenbrock, S., McCulloch, I. P., Schollwöck, U. & Alba, V. Phase diagram of the J1–J2 Heisenberg model on the kagome lattice. Phys. Rev. B 91, 104418 (2015).

    ADS  Google Scholar 

  14. Mei, J. W., Chen, J. Y., He, H. & Wen, X. G. Gapped spin liquid with Z2 topological order for the kagome Heisenberg model. Phys. Rev. B 95, 235107 (2017).

    ADS  Google Scholar 

  15. Hida, K. Magnetization process of the S = 1 and 1/2 uniform and distorted kagome Heisenberg antiferromagnets. J. Phys. Soc. Jpn 70, 3673 (2001).

  16. Zhitomirsky, M. E. Field-induced transitions in a kagome antiferromagnet. Phys. Rev. Lett. 88, 057204 (2004).

    ADS  Google Scholar 

  17. Zhitomirsky, M. E. & Tsunetsugu, H. Exact low-temperature behavior of a kagome antiferromagnet at high fields. Phys. Rev. B 70, 100403(R) (2004).

    ADS  Google Scholar 

  18. Honecker, A., Schulenburg, J. & Richter, J. Magnetization plateaus in frustrated antiferromagnetic quantum spin models. J. Phys. Condens. Matter 16, S749 (2004).

    ADS  CAS  Google Scholar 

  19. Nakano, H. & Sakai, T. Magnetization process of kagome-lattice Heisenberg antiferromagnet. J. Phys. Soc. Jpn 79, 053707 (2010).

    ADS  Google Scholar 

  20. Sakai, T. & Nakano, H. Critical magnetization behavior of the triangular- and Kagome-lattice quantum antiferromagnets. Phys. Rev. B 83, 100405(R) (2011).

    ADS  Google Scholar 

  21. Nishimoto, S., Shibta, N. & Hotta, C. Controlling frustrated liquids and solids with an applied field in a kagome Heisenberg antiferromagnet. Nat. Commun. 4, 2287 (2013).

    ADS  PubMed  Google Scholar 

  22. Capponi, S. et al. Numerical study of magnetization plateaus in the spin-1/2 kagome Heisenberg antiferromagnet. Phys. Rev. B 88, 144416 (2013).

    ADS  Google Scholar 

  23. Huerga, D., Capponi, S., Dukelsky, J. & Ortiz, G. Staircase of crystal phases of hard-core bosons on the Kagome lattice. Phys. Rev. B 94, 165124 (2016).

    ADS  Google Scholar 

  24. Plat, X., Momoi, T. & Hott, C. Kinetic frustration induced supersolid in the S = 1/2 kagome lattice antiferromagnet in a magnetic field. Phys. Rev. B 98, 014415 (2018).

    ADS  CAS  Google Scholar 

  25. Schnack, J., Schulenburg, J. & Richter, J. Magnetism of the N = 42 kagome lattice antiferromagnet. Phys. Rev. B 98, 094423 (2018).

    ADS  CAS  Google Scholar 

  26. Picot, T., Ziegler, M., Orus, R. & Poilblanc, D. Spin-S kagome quantum antiferromagnets in a field with tensor networks. Phys. Rev. B 93, 060407 (2016).

    ADS  Google Scholar 

  27. Okuma, R. et al. A series of magnon crystals appearing under ultrahigh magnetic fields in a kagomé antiferromagnet. Nat. Commun. 10, 1229 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fang, D.-Z, Xi, N., Ran, S.-J. & Su, G. Nature of the 1/9-magnetization plateau in the spin-1/2 kagome Heisenberg antiferromagnet. Phys. Rev. B 107, L220401 (2023).

  29. Shores, M. P., Nytko, E. A., Bartlett, B. M. & Nocera, D. G. A structurally perfect S = 1/2 kagomé antiferromagnet. J. Am. Chem. Soc. 127, 13462 (2005).

    CAS  PubMed  Google Scholar 

  30. Mendels, P. & Bert, F. Quantum kagome antiferromagnet ZnCu3(OH)6Cl2. J. Phys. Soc. Jpn 79, 011001 (2010).

    ADS  Google Scholar 

  31. Han, T.-H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).

    ADS  CAS  PubMed  Google Scholar 

  32. Norman, M. R. Colloquium: herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 88, 041002 (2016).

    ADS  MathSciNet  Google Scholar 

  33. Fak, B. et al. Kapellasite: a kagome quantum spin liquid with competing interactions. Phys. Rev. Lett. 109, 037208 (2012).

    ADS  CAS  PubMed  Google Scholar 

  34. Tustain, K. et al. From magnetic order to quantum disorder in the Zn-barlowite series of S = 1/2 kagomé antiferromagnets. NPJ Quantum Mater. 5, 74 (2020).

  35. Feng, Z. et al. Gapped spin-1/2 spinon excitations in a new kagome quantum spin liquid compound Cu3Zn(OH)6FBr. Chin. Phys. Lett. 34, 077502 (2017).

    ADS  Google Scholar 

  36. Wang, J. et al. Emergence of spin singlets with inhomogeneous gaps in the kagome lattice Heisenberg antiferromagnets Zn-barlowite and herbertsmithite. Nat. Phys. 17, 1109 (2021).

    ADS  CAS  Google Scholar 

  37. Chen, X.-H. et al. Quantum spin liquid candidate YCu3(OH)6Br2[Brx(OH)1−x] (x = 0.5): with an almost perfect kagome layer. J. Magn. Magn. Mater. 512, 167066 (2020).

    CAS  Google Scholar 

  38. Zeng, Z. et al. Possible Dirac quantum spin liquid in a kagome quantum antiferromagnet YCu3(OH)6Br2[Brx(OH)1−x]. Phys. Rev. B 105, L121109 (2022).

    ADS  CAS  Google Scholar 

  39. Liu, J. et al. Gapless spin liquid behavior in a kagome Heisenberg antiferromagnet with randomly distributed hexagons of alternate bonds. Phys. Rev. B 105, 024418 (2022).

    ADS  CAS  Google Scholar 

  40. Arh, T. et al. Origin of magnetic ordering in a structurally perfect quantum kagome antiferromagnet. Phys. Rev. Lett. 125, 027203 (2020).

    ADS  CAS  PubMed  Google Scholar 

  41. Hering, M. & Reuther, J. Functional renormalization group analysis of Dzyaloshinksy–Moriya and Heisenberg spin interactions on the kagome lattice. Phys. Rev. B 95, 054418 (2017).

    ADS  Google Scholar 

  42. Kawamura, H. & Uematsu, K. Nature of the randomness-induced quantum spin liquids in two dimensions. J. Phys. Condens. Matter 31, 504003 (2019).

    CAS  PubMed  Google Scholar 

  43. Hong, X. et al. Heat transport of the kagomé Heisenberg quantum spin liquid candidate YCu3(OH)6.5Br2.5: localized magnetic excitations and spin gap. Phys. Rev. B 106, L220406 (2022).

    ADS  CAS  Google Scholar 

  44. Ko, W.-H. et al. Raman signature of the U(1) Dirac spin-liquid state in the spin-\(\frac{1}{2}\) kagome system. Phys. Rev. B 81, 024414 (2010).

    ADS  Google Scholar 

  45. Wulferding, D. et al. Interplay of thermal and quantum spin fluctuations in the kagome lattice compound herbertsmithite. Phys. Rev. B 82, 144412 (2010).

    ADS  Google Scholar 

  46. Wulferding, D., Choi, Y. S., Lee, W. J. & Choi, K.-Y. Raman spectroscopic diagnostic of quantum spin liquids. J. Phys. Condens. Matter 32, 043001 (2020).

    ADS  CAS  PubMed  Google Scholar 

  47. Fu, Y. et al. Dynamical fingerprint of fractionalized excitations in single-crystalline Cu3Zn(OH)6FBr. Nat. Commun. 12, 3048 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zorko, A. et al. Coexistence of magnetic order and persistent spin dynamics in a quantum kagome antiferromagnet with no intersite mixing. Phys. Rev. B 99, 214441 (2019).

    ADS  CAS  Google Scholar 

  49. Rousochatzakis, I., Kourtis, S., Knolle, J., Moessner, R. & Perkins, N. B. Quantum spin liquid at finite temperature: proximate dynamics and persistent typicality. Phys. Rev. B 100, 045117 (2019).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

The work at Sungkyunkwan University was supported by the National Research Foundation (NRF) of Korea (grant nos. RS-2023-00209121 and 2020R1A5A1016518). This research was supported by the SungKyunKwan University and the BK21 FOUR (Graduate School Innovation) funded by the Ministry of Education (MOE, Korea) and the National Research Foundation of Korea (NRF). The work at Seoul National University was financially supported by the NRF of Korea funded by the Korean government (grant no. 2019R1A2C2090648), as well as from the Ministry of Education (grant no. 2021R1A6C101B418). A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation (cooperative agreement no. DMR-1644779), the State of Florida and the US Department of Energy. M.L. is supported by the US Department of Energy, Office of Science and National Quantum Information Science Research Centers. D.W. acknowledges support from the Institute of Basic Science (IBS-R009-Y3). S.L. and S.C. acknowledge support from the Institute of Basic Science (IBS-R011-Y3). The work at the Korea Research Institute of the Max Planck Institute and Pohang University of Science and Technology was supported through the NRF funded by the Ministry of Science, ICT and Future Planning of Korea (grant no. 2022M3H4A1A04074153). A portion of the research was performed in the GIMRT program at IMR, Tohoku University. Additionally, M.L. expresses gratitude to G. Timothy Noe II for making a single-wall fridge for use in this experiment.

Author information

Authors and Affiliations

Authors

Contributions

The experimental project was conceived by K.-Y.C. and S.M.J., who synthesized the single crystals and conducted the magnetic susceptibility measurements. D.W., Y.S.C., S.Y.L. and K.-Y.C. performed the Raman scattering experiments and analysed the Raman data. K.W.N. and K.H.K. measured the thermal conductivity and analysed the thermal conductivity data. M.L. and H.N. carried out the pulsed-field magnetization experiments. T.-H.J., J.-H.P., S.H.L. and S.K.C. measured the specific heat and analysed the specific heat data. C.H.L. performed the NMR experiments. The manuscript was written through the contributions of all authors.

Corresponding author

Correspondence to Kwang-Yong Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Thuc Mai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Sections 1–7.

Source data

Source Data Fig. 1

ASCII data of specific heat, magnetic entropy and thermal conductivity.

Source Data Fig. 2

ASCII data of Raman spectrum, dynamic Raman susceptibility and JPG files of their colour plots.

Source Data Fig. 3

ASCII data of low-frequency Raman spectrum, dynamic Raman susceptibility and the exponent extracted from power-law fits.

Source Data Fig. 4

ASCII data of magnetization curves.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, S., Wulferding, D., Choi, Y. et al. One-ninth magnetization plateau stabilized by spin entanglement in a kagome antiferromagnet. Nat. Phys. 20, 435–441 (2024). https://doi.org/10.1038/s41567-023-02318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02318-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing