Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room-temperature long-range ferromagnetic order in a confined molecular monolayer

Abstract

In recent years, research on spin ordering phenomena has broadened to include intermolecular exchange interactions in organic–inorganic crystals and goes beyond the traditional focus on interatomic interactions. However, a crystallized framework used for stabilizing parallel spin alignment through an ordered lattice is indispensable to ferromagnetism. Here we demonstrate room-temperature ferromagnetic order in two-dimensional confined molecule-based monolayers. The confinement effect of the van der Waals interlayer space enables cobaltocene molecules to self-assemble into a monolayer with a honeycomb-like configuration. The spontaneous uniform spin orientation—ferromagnetic coupling—is established by an intermolecular vibronic superexchange interaction, involving a cooperative dynamic Jahn–Teller effect in the confined cobaltocene monolayer. The molecular cobaltocene monolayers exhibit a ferromagnetic transition temperature above room temperature and have a large saturation magnetization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Co(Cp)2/SnS2 structure.
Fig. 2: Ferromagnetism of the confined Co(Cp)2 monolayers.
Fig. 3: Structure of the confined Co(Cp)2.
Fig. 4: Honeycomb cell of a confined Co(Cp)2 monolayer.
Fig. 5: Ferromagnetic coupling of the Co(Cp)2 monolayer.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its Supplementary Information files). Source data are provided with this paper.

References

  1. Aharoni, A. Introduction to the Theory of Ferromagnetism (Clarendon Press, 2000).

  2. Cullity, B. D. & Graham, C. D. Introduction to Magnetic Materials (Wiley, 2011).

  3. Heisenberg, W. Mehrkörperproblem und Resonanz in der Quantenmechanik. Z. f.ür. Phys. 38, 411–426 (1926).

    Article  ADS  Google Scholar 

  4. Dirac, P. A. M. On the theory of quantum mechanics. Proc. R. Soc. Lond. Ser. A 112, 661–677 (1926).

  5. Zener, C. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951).

    Article  CAS  ADS  Google Scholar 

  6. Anderson, P. W. Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 79, 350 (1950).

    Article  ADS  Google Scholar 

  7. Griffiths, D. J. & Schroeter, D. F. Introduction to Quantum Mechanics (Cambridge Univ. Press, 2018).

  8. Belov, K. P., Levitin, R. & Nikitin, S. A. Ferromagnetism and antiferromagnetism of rare-earth metals. Sov. Phys. Uspekhi 7, 179 (1964).

    Article  ADS  Google Scholar 

  9. Kasuya, T. A theory of metallic ferro- and antiferromagnetism on Zener’s model. Prog. Theor. Phys. 16, 45–57 (1956).

    Article  ADS  Google Scholar 

  10. Jonker, G. & Van Santen, J. H. Ferromagnetic compounds of manganese with perovskite structure. Physica 16, 337–349 (1950).

    Article  CAS  ADS  Google Scholar 

  11. Lotgering, F. K. Ferromagnetism in spinels: CuCr2S4 and CuCr2Se4. Solid State Commun. 2, 55–56 (1964).

    Article  CAS  ADS  Google Scholar 

  12. Witte, R. et al. High-entropy oxides: an emerging prospect for magnetic rare-earth transition metal perovskites. Phys. Rev. Mater. 3, 034406 (2019).

    Article  CAS  Google Scholar 

  13. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

  14. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Coomber, A. et al. Intermolecular interactions in the molecular ferromagnetic NH4Ni(mnt)2·H2O. Nature 380, 144–146 (1996).

    Article  CAS  ADS  Google Scholar 

  16. Novoa, J. J., Deumal, M. & Jornet-Somoza, J. Calculation of microscopic exchange interactions and modelling of macroscopic magnetic properties in molecule-based magnets. Chem. Soc. Rev. 40, 3182–3212 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Fukunaga, H. & Miyasaka, H. Magnet design by integration of layer and chain magnetic systems in a pi-stacked pillared layer framework. Angew. Chem. Int Ed. Engl. 54, 569–573 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Ohkoshi, S. et al. Magnetic properties of mixed ferro-ferrimagnets composed of Prussian blue analogs. Phys. Rev. B 56, 11642 (1997).

    Article  CAS  ADS  Google Scholar 

  19. Perlepe, P. et al. Metal-organic magnets with large coercivity and ordering temperatures up to 242°C. Science 370, 587–592 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Berezinskii, V. L. Destruction of long-range in one-dimensional and 2-dimensional systems possessing a continuous symmetry group 2 quantum system. Sov. Phys. Jetp-Ussr 34, 610 (1972).

    ADS  Google Scholar 

  21. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Goodenough, J. B., Wold, A., Arnott, R. & Menyuk, N. Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn3+. Phys. Rev. 124, 373 (1961).

    Article  CAS  ADS  Google Scholar 

  23. Kugel, K. I. & Khomskiĭ, D. I. The Jahn–Teller effect and magnetism: transition metal compounds. Sov. Phys. Uspekhi 25, 231 (1982).

    Article  ADS  Google Scholar 

  24. Englman, R. & Englman, R. The Jahn–Teller Effect in Molecules and Crystals (Wiley, 1972).

  25. Garnica, M. et al. Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene. Nat. Phys. 9, 368–374 (2013).

    Article  CAS  Google Scholar 

  26. Tseng, T. C. et al. Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces. Nat. Chem. 2, 374–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Li, Z. et al. Confined synthesis of 2D nanostructured materials toward electrocatalysis. Adv. Energy Mater. 10, 1900486 (2019).

    Article  Google Scholar 

  28. Lopez-Cabrelles, J. et al. Chemical design and magnetic ordering in thin layers of 2D metal-organic frameworks (MOFs). J. Am. Chem. Soc. 143, 18502–18510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manzeli, S. et al. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  CAS  ADS  Google Scholar 

  30. Sriv, T., Kim, K. & Cheong, H. Low-frequency Raman spectroscopy of few-layer 2H-SnS2. Sci. Rep. 8, 10194 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  31. Lee, C. et al. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Bersuker, I. B. Modern aspects of the Jahn–Teller effect theory and applications to molecular problems. Chem. Rev. 101, 1067–1114 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Zlatar, M., Schläpfer, C.-W., Penka Fowe, E. & Daul, C. A. Density functional theory study of the Jahn–Teller effect in cobaltocene. Pure Appl. Chem. 81, 1397–1411 (2009).

    Article  CAS  Google Scholar 

  34. Seiler, P. & Dunitz, J. D. A new interpretation of the disordered crystal structure of ferrocene. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 35, 1068–1074 (1979).

    Article  ADS  Google Scholar 

  35. Zhang, H., Yavorsky, B. Y. & Cohen, R. E. Polar metallocenes. Molecules 24, 486 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sugimoto, T., Fujiwara, H., Noguchi, S. & Murata, K. New aspects of π–d interactions in magnetic molecular conductors. Sci. Technol. Adv. Mater. 10, 024302 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sceats, E. L. & Green, J. C. Charge transfer composites of bis(cyclopentadienyl) and bis(benzene) transition metal complexes encapsulated in single-walled carbon nanotubes. Phys. Rev. B 75, 245441 (2007).

    Article  ADS  Google Scholar 

  38. Briganti, M. et al. Mixed-sandwich titanium(III) qubits on Au(111): electron delocalization ruled by molecular packing. Nano Lett. 22, 8626 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [LaM(II)]MnO3. Phys. Rev. 100, 564–573 (1955).

    Article  CAS  ADS  Google Scholar 

  40. Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959).

    Article  CAS  ADS  Google Scholar 

  41. Czap, G. et al. Detection of spin-vibration states in single magnetic molecules. Phys. Rev. Lett. 123, 106803 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Czap, G. et al. Probing and imaging spin interactions with a magnetic single-molecule sensor. Science 364, 670–673 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Baker, M. L. et al. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites. Coord. Chem. Rev. 345, 182–208 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  ADS  Google Scholar 

  47. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  ADS  Google Scholar 

  48. Grimme, S. et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  ADS  Google Scholar 

  49. Steiner, S. et al. Calculation of the magnetic anisotropy with projected-augmented-wave methodology and the case study of disordered Fe1−xCox alloys. Phys. Rev. B 93, 224425 (2016).

    Article  ADS  Google Scholar 

  50. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant nos. 21925110, U2032161, 21890751, 22272158, 22303092, 22225301 and 22321001), the National Key R&D Program on Nano Science & Technology of the Ministry of Science and Technology, China (grant no. 2022YFA1203601), the China Academy of Sciences (CAS) Project for Young Scientists in Basic Research (grant no. YSBR-070), University of Science & Technology of China (USTC) Research Funds of the Double First-Class Initiative (grant no. YD2060002004), the Youth Innovation Promotion Association, CAS (grant no. 2018500), the Strategic Priority Research Program, CAS (grant nos. XDB36000000 and XDB0450101), the Innovation Program for Quantum Science and Technology (grant no. 2021ZD0303302), the Key R&D Program of Shandong Province (grant no. 2021CXGC010302), the Users with Excellence Project of Hefei Science Center, CAS (grant no. 2021HSC-UE004), and the National Postdoctoral Program for Innovative Talents (grant nos. BX20190307 and BX20190308). We appreciate the support from beamline 1W1B of the Beijing Synchrotron Radiation Facility, Beijing, China, and beamlines BL12B-a and BL11U of the NSRL, Hefei, China. We thank the electron microscopy facility of the Cryo-EM Centre of USTC for their support and the super computer centres of USTC and CAS for their support. This work was partially carried out at the USTC Centre for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Contributions

C.W. conceived the idea, experimentally realized the study, co-wrote the paper, supervised the entire project and is responsible for the infrastructure and project direction. Y.G. designed and experimentally realized the study, co-wrote the paper and supervised the entire project. Yuhua Liu, H.L., B.Y. and Yang Liu contributed equally to this work; they experimentally realized the study, analysed the data and co-wrote the paper. These works were assisted by J.P., Y.S., Y.Q., K.C., W.C., W.Y. and J.Z. The HAADF-STEM data collection was performed by Y. Lin. and X.T. Theoretical calculations were carried out by H.L. and X.W., Y.X. supervised the whole experimental procedure and co-wrote the paper. All authors discussed the results and commented on and revised the paper.

Corresponding authors

Correspondence to Yuqiao Guo, Xiaojun Wu or Changzheng Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Lorenzo Poggini, Changgu Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Discussion and Tables 1 and 2.

Source data

Source Data for Figs. 2, 3 and 5

Data for Figs. 2a–c, 3a–f and 5b–d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lv, H., Yuan, B. et al. Room-temperature long-range ferromagnetic order in a confined molecular monolayer. Nat. Phys. 20, 281–286 (2024). https://doi.org/10.1038/s41567-023-02312-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02312-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing