Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct comparison of two spin-squeezed optical clock ensembles at the 10−17 level

Abstract

Building scalable quantum systems that demonstrate performance enhancement based on entanglement is a major goal in quantum computing and metrology. The main challenge arises from the fragility of entanglement in large quantum systems. Optical atomic clocks utilizing a large number of atoms have pushed the frontier of measurement science, building on precise engineering of quantum states and control of atomic interactions. However, state-of-the-art optical atomic clocks are limited by a fundamental source of noise stemming from fluctuations of the population of many atoms—the quantum projection noise. Here, we present an optical clock platform integrated with collective strong-coupling cavity quantum electrodynamics for quantum non-demolition measurements. Optimizing the competition between spin measurement precision and loss of coherence, we measure a metrological enhancement for a large ensemble of atoms beyond the initial coherent spin state. Furthermore, a movable lattice allows the cavity to individually address two independent subensembles, enabling us to spin squeeze two clock ensembles successively and compare their performance without the influence of clock laser noise. Although the clock comparison remains above the effective standard quantum limit, the performance directly verifies 1.9(2) dB clock stability enhancement at the 10−17 level without subtracting any technical noise contributions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical clock with cQED architecture.
Fig. 2: Non-demolition measurements of the collective spin state.
Fig. 3: Directly observed metrological enhancement versus QND probe strength.
Fig. 4: Differential clock comparison.

Similar content being viewed by others

Data availability

The experimental data presented in this article are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The code used for analysis and simulation in this work is available from the corresponding author upon reasonable request.

References

  1. Bothwell, T. et al. JILA SrI optical lattice clock with uncertainty of 2.0 × 10−18. Metrologia 56, 065004 (2019).

    Article  CAS  ADS  Google Scholar 

  2. Brewer, S. M. et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett. 123, 033201 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. McGrew, W. F. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Beloy, K. et al. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 591, 564–569 (2021).

    Article  ADS  Google Scholar 

  5. Roberts, B. M. et al. Search for transient variations of the fine structure constant and dark matter using fiber-linked optical atomic clocks. New J. Phys. 22, 093010 (2020).

    Article  CAS  ADS  Google Scholar 

  6. Sanner, C. et al. Optical clock comparison for Lorentz symmetry testing. Nature 567, 204–208 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Kennedy, C. J. et al. Precision metrology meets cosmology: improved constraints on ultralight dark matter from atom-cavity frequency comparisons. Phys. Rev. Lett. 125, 201302 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Takamoto, M. et al. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photonics 14, 411–415 (2020).

    Article  CAS  ADS  Google Scholar 

  9. Schine, N., Young, A. W., Eckner, W. J., Martin, M. J. & Kaufman, A. M. Long-lived Bell states in an array of optical clock qubits. Nat. Phys. 18, 1067–1073 (2022).

    Article  CAS  Google Scholar 

  10. Bothwell, T. et al. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 602, 420–424 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Itano, W. M. et al. Quantum projection noise: population fluctuations in two-level systems. Phys. Rev. A 47, 3554–3570 (1993).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Al-Masoudi, A., Dörscher, S., Häfner, S., Sterr, U. & Lisdat, C. Noise and instability of an optical lattice clock. Phys. Rev. A 92, 063814 (2015).

    Article  ADS  Google Scholar 

  13. Aeppli, A. et al. Hamiltonian engineering of spin-orbit-coupled fermions in a Wannier–Stark optical lattice clock. Sci. Adv. 8, eadc9242 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marti, G. E. et al. Imaging optical frequencies with 100 μHz precision and 1.1 μm resolution. Phys. Rev. Lett. 120, 103201 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photonics 13, 714–719 (2019).

    Article  CAS  ADS  Google Scholar 

  16. Giovannetti, V. et al. Advances in quantum metrology. Nat. Photonics 5, 222 (2011).

    Article  CAS  ADS  Google Scholar 

  17. Polzik, E. S. et al. Entanglement and spin squeezing in a network of distant optical lattice clocks. Phys. Rev. A 93, 021404 (2016).

    Article  ADS  Google Scholar 

  18. Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010).

    Article  PubMed  ADS  Google Scholar 

  22. Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Orientation-dependent entanglement lifetime in a squeezed atomic clock. Phys. Rev. Lett. 104, 250801 (2010).

    Article  PubMed  ADS  Google Scholar 

  23. Schleier-Smith, M. H., Leroux, I. D. & Vuletić, V. States of an ensemble of two-level atoms with reduced quantum uncertainty. Phys. Rev. Lett. 104, 073604 (2010).

    Article  PubMed  ADS  Google Scholar 

  24. Chen, Z., Bohnet, J. G., Sankar, S. R., Dai, J. & Thompson, J. K. Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting. Phys. Rev. Lett. 106, 133601 (2011).

    Article  PubMed  ADS  Google Scholar 

  25. Cox, K. C., Greve, G. P., Weiner, J. M. & Thompson, J. K. Deterministic squeezed states with collective measurements and feedback. Phys. Rev. Lett. 116, 093602 (2016).

    Article  PubMed  ADS  Google Scholar 

  26. Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  28. Nichol, B. C. et al. An elementary quantum network of entangled optical atomic clocks. Nature 609, 689–694 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Marciniak, C. D. et al. Optimal metrology with programmable quantum sensors. Nature 603, 604–609 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Wasilewski, W. et al. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Greve, G. P., Luo, C., Wu, B. & Thompson, J. K. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Preprint at arxiv.org/abs/2110.14027 (2021).

  32. Malia, B. K., Wu, Y., Martínez-Rincón, J. & Kasevich, M. A. Distributed quantum sensing with mode-entangled spin-squeezed atomic states. Nature 612, 661–665 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Weyers, S. et al. Advances in the accuracy, stability, and reliability of the PTB primary fountain clocks. Metrologia 55, 789–805 (2018).

    Article  CAS  ADS  Google Scholar 

  34. Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    Article  PubMed  ADS  Google Scholar 

  35. Zheng, X. et al. Differential clock comparisons with a multiplexed optical lattice clock. Nature 602, 425–430 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Bowden, W., Vianello, A., Hill, I. R., Schioppo, M. & Hobson, R. Improving the q factor of an optical atomic clock using quantum nondemolition measurement. Phys. Rev. X 10, 041052 (2020).

    CAS  Google Scholar 

  37. Colombo, S., Pedrozo-Peñafiel, E. & Vuletić, V. Entanglement-enhanced optical atomic clocks. Appl. Phys. Lett. 121, 210502 (2022).

    Article  CAS  Google Scholar 

  38. Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Norcia, M. A. & Thompson, J. K. Strong coupling on a forbidden transition in strontium and nondestructive atom counting. Phys. Rev. A 93, 023804 (2016).

    Article  ADS  Google Scholar 

  40. Hood, C. J., Chapman, M. S., Lynn, T. W. & Kimble, H. J. Real-time cavity QED with single atoms. Phys. Rev. Lett. 80, 4157–4160 (1998).

    Article  CAS  ADS  Google Scholar 

  41. Hu, J., Chen, W., Vendeiro, Z., Zhang, H. & Vuletić, V. Entangled collective-spin states of atomic ensembles under nonuniform atom-light interaction. Phys. Rev. A 92, 063816 (2015).

    Article  ADS  Google Scholar 

  42. Schleier-Smith, M. Cavity-enabled Spin Squeezing for a Quantum-enhanced Atomic Clock. PhD thesis, Massachusetts Institute of Technology (2011).

  43. Braverman, B. et al. Near-unitary spin squeezing in 171Yb. Phys. Rev. Lett. 122, 223203 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Kolkowitz, S. et al. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D. 94, 124043 (2016).

    Article  ADS  Google Scholar 

  45. Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).

    Article  Google Scholar 

  46. Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).

    Article  PubMed  ADS  Google Scholar 

  47. Kaubruegger, R., Vasilyev, D. V., Schulte, M., Hammerer, K. & Zoller, P. Quantum variational optimization of Ramsey interferometry and atomic clocks. Phys. Rev. X 11, 041045 (2021).

    CAS  Google Scholar 

  48. Colombo, S. et al. Time-reversal-based quantum metrology with many-body entangled states. Nat. Phys. 18, 925–930 (2022).

    Article  CAS  Google Scholar 

  49. Pezzè, L. & Smerzi, A. Quantum phase estimation algorithm with Gaussian spin states. PRX Quantum 2, 040301 (2021).

    Article  ADS  Google Scholar 

  50. Zhang, X. et al. Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism. Science 345, 1467–1473 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Bromley, S. L. et al. Dynamics of interacting fermions under spin–orbit coupling in an optical lattice clock. Nat. Phys. 14, 399–404 (2018).

    Article  CAS  Google Scholar 

  52. Muniz, J. A. et al. Exploring dynamical phase transitions with cold atoms in an optical cavity. Nature 580, 602–607 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Vaidya, V. D. et al. Tunable-range, photon-mediated atomic interactions in multimode cavity qed. Phys. Rev. X 8, 011002 (2018).

    CAS  Google Scholar 

  54. Davis, E. J. et al. Protecting spin coherence in a tunable Heisenberg model. Phys. Rev. Lett. 125, 060402 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Dogra, N. et al. Dissipation-induced structural instability and chiral dynamics in a quantum gas. Science 366, 1496–1499 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Sauer, J., Fortier, K., Chang, M., Hamley, C. & Chapman, M. Cavity QED with optically transported atoms. Phys. Rev. A 69, 051804 (2004).

    Article  ADS  Google Scholar 

  57. Chen, Z., Bohnet, J. G., Weiner, J. M., Cox, K. C. & Thompson, J. K. Cavity-aided nondemolition measurements for atom counting and spin squeezing. Phys. Rev. A 89, 043837 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding support from National Science Foundation QLCI OMA-2016244, Department of Energy National Quantum Information Science Research Center – Quantum Systems Accelerator, Air Force Office for Scientific Research, DARPA, Vannevar Bush Faculty Fellowship, National Institute of Standards and Technology, and National Science Foundation Phys-1734006. M.M. acknowledges the NSF Graduate Research Fellowship. We gratefully acknowledge early technical contributions and discussions from J. Meyer, J. Uhrich and E. Oelker. We acknowledge A. Aeppli, K. Kim, C. Sanner, R. Hutson, W. Milner and L. Yan for many stimulating discussions. We thank A. M. Rey, C. Luo, E. Polzik, V. Vuletic`, J. Hall, M. Schleier-Smith and M. Kasevich for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and operation of the experiment and data analysis and writing of the manuscript.

Corresponding authors

Correspondence to John M. Robinson or Jun Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Luca Pezze and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Independence of atomic ensembles.

a, Measured correlation coefficient between Jz,A and Jz,B versus the separation between the ensembles. (black circles). The blue line is a Monte Carlo simulation. b, Corresponding change of the QPN due to the finite overlap of the ensembles, with numerical Monte Carlo simulation (blue) and analytical calculation (orange). At our operating ensemble separation, the change to QPN is 0.04 dB.

Extended Data Fig. 2 Pulse sequence for SSS - SSS comparison.

a, Clock pulses are the black pulses, measurements of ensemble A are the red pulses, and the transports are shown as the green and purple pulses. The Bloch spheres depict the spin state distribution at various points during the sequence. We note that the phase evolution is exaggerated for clarity. b, Ramsey fringe measured by varying the phase of the final π/2 pulse. c, Pre and final measurements of ensemble A. d, Pre and final measurements of ensemble B. e, The final measurements of ensemble A and B show strong correlations, allowing for the subtraction of the common-mode laser phase noise. The data in panels (b-e) correspond to the raw data corresponding to the SSS-SSS comparison shown in Fig. 4b.

Source data

Source Data Fig. 1

Source data underlying Fig. 1.

Source Data Fig. 2

Source data underlying Fig. 2.

Source Data Fig. 3

Source data underlying Fig. 3.

Source Data Fig. 4

Source data underlying Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, J.M., Miklos, M., Tso, Y.M. et al. Direct comparison of two spin-squeezed optical clock ensembles at the 10−17 level. Nat. Phys. 20, 208–213 (2024). https://doi.org/10.1038/s41567-023-02310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02310-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing